請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94226完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉立偉 | zh_TW |
| dc.contributor.advisor | Li-Wei Liu | en |
| dc.contributor.author | 簡振恩 | zh_TW |
| dc.contributor.author | Zhen-En Jian | en |
| dc.date.accessioned | 2024-08-15T16:19:22Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | S. Alavi, J. Ganghoffer, M. Sadighi, M. Nasimsobhan, and A. Akbarzadeh. Continualization method of lattice materials and analysis of size effects revisited based on cosserat models. International Journal of Solids and Structures, 254-255:111894, 2022.
S. E. Alavi, M. Sadighi, M. D. Pazhooh, and J.-F. Ganghoffer. Development of size-dependent consistent couple stress theory of timoshenko beams. Applied Math- ematical Modelling, 79:685–712, 2020. D. Barnett and W. Cai. Properties of the eshelby tensor and existence of the equivalent ellipsoidal inclusion solution. Journal of the Mechanics and Physics of Solids, 121:71–80, 2018. K.-J. Bathe. Finite Element Procedures. Prentice-Hall, 1996. R. Bengtsson, M. Mousavi, R. Afshar, and E. K. Gamstedt. Viscoelastic behavior of softwood based on a multiscale computational homogenization. Mechanics of Materials, 179:104586, 2023. M.-A.Boucher, C.Smith, F.Scarpa, R.Rajasekaran, and K.Evans. Effective topologies for vibration damping inserts in honeycomb structures. Composite Structures, 98:1–9, 2013. M. Chen, N. Hu, C. Zhou, X. Lin, H. Xie, and Q. He. The hierarchical structure and mechanical performance of a natural nanocomposite material: The turtle shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520:97–104, 2017. Y. Chen and M.-H. Fu. Mechanical properties of a novel zero poisson’s ratio honeycomb. Advanced Engineering Materials, 20(2):1700452, 2018. Q. Cheng, L. Jiang, and Z. Tang. Bioinspired layered materials with superior mechanical performance. Accounts of Chemical Research, 47(4):1256–1266, 2014. J. Chung and A. M. Waas. Compressive response of honeycombs under in-plane uniaxial static and dynamic loading, part 1: Experiments. AIAA Journal, 40(5):966– 973, 2002. G. Cricrì, M. Perrella, and C. Calì. Honeycomb failure processes under in-plane loading. Composites Part B: Engineering, 45:1079–1090, 2013. R. De Borst, M. A. Crisfield, J. J. Remmers, and C. V. Verhoosel. Nonlinear Finite Element Analysis of Solids and Structures. John Wiley & Sons, 2012. V. V. Deshpande and R. Piat. Compression failure of porous ceramics: A computational study about the effect of volume fraction on damage evolution and failure. Mechanics of Materials, 177:104533, 2023. Y. Djemaoune, B. Krstic, S. Rasic, D. Radulovic, and M. Dodic. Numerical investigation into in-plane crushing of tube-reinforced damaged 5052 aerospace grade aluminum alloy honeycomb panels. Materials, 14(17):4992, 2021. D.C.Drucker, H.J.Greenberg, and W.Prager. The safety factor of an elastic-plastic body in plane strain. Journal of Applied Mechanics, 18(4):371–378, 2021. J. Dujc, B. Brank, and A. Ibrahimbegovic. Multi-scale computational model for failure analysis of metal frames that includes softening and local buckling. Computer Methods in Applied Mechanics and Engineering, 199:1371–1385, 2010. L. Gibson, M. Ashby, G. Schajer, and C. Robertson. The mechanics of two-dimensional cellular materials. Proceedings of the Royal Society of London. A. Math- ematical and Physical Sciences, 382:25–42, 1982. L. J. Gibson. Biomechanics of cellular solids. Journal of Biomechanics, 38(3):377– 399, 2005. L. J. Gibson and M. F. Ashby. Cellular Solids: Structure and Properties. Cambridge Solid State Science Series. Cambridge University Press, 2 edition, 1997. H. J. Greenberg and W. Prager. Limit design of beams and frames. Transactions of the American Society of Civil Engineers, 117(1):447–458, 1952. A. Gvozdev. The determination of the value of the collapse load for statically indeterminate systems undergoing plastic deformation. International Journal of Me- chanical Sciences, 1(4):322–335, 1960. A.R.Hadjesfandiari and G.F.Dargush. Couple stress theory for solids. International Journal of Solids and Structures, 48(18):2496–2510, 2011. Z. Hashin and S. Shtrikman. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids, 11(2):127–140, 1963. H. Hong, M. Hu, and L. Dai. Dynamic mechanical behavior of hierarchical resin honeycomb by 3d printing. Polymers, 13(1):19, 2021. M. R. Horne. Fundamental propositions in the plastic theory of structures. Journal of the Institution of Civil Engineers, 34(6):174–177, 1950. D. Horrigan and R. Staal. Predicting failure loads of impact damaged honeycomb sandwich panels - a refined model. Journal of Sandwich Structures & Materials, 13(1):111–133, 2011. C. Huet. Application of variational concepts to size effects in elastic heterogeneous bodies. Journal of the Mechanics and Physics of Solids, 38(6):813–841, 1990. L. Iorio, J. D. Ponti, A. Corigliano, and R. Ardito. Bandgap widening and resonator mass reduction through wave locking. Mechanics Research Communications, 134:104200, 2023. C. Kittel and D. Dexter. Introduction to solid state physics. American Journal of Physics, 21:497–498, 1953. W. Koiter. Couple-stress in the theory of elasticity. Philosophical Transactions of the Royal Society of London B, 67:17–44, 1964. S. Kong, S. Zhou, Z. Nie, and K. Wang. The size-dependent natural frequency of bernoulli-euler micro-beams. International Journal of Engineering Science, 46(5):427–437, 2008. D. Lam, F. Yang, A. Chong, J. Wang, and P. Tong. Experiments and theory in strain gradient elasticity. Journal of the Mechanics and Physics of Solids, 51(8):1477– 1508, 2003. E.Lee and I.Kanter. Wave propagation in finite rods of viscoelastic material. Journal of Applied Physics, 24(9):1115–1122, June 2004. W. Li, C. Qiu, Z. Li, and H. Nie. A failure criterion for honeycomb structures considering the onset of instability under out-of-plane loads. Journal of Sandwich Structures & Materials, 23:3519–3539, 2021. C. Lim, G. Zhang, and J. Reddy. A higher-order nonlocal elasticity and strain gradient theory and its applications in wave propagation. Journal of the Mechanics and Physics of Solids, 78:298–313, 2015. L.-W. Liu, H.-K. Hong, and Y.-T. Wu. High-dimensional limit analysis for elastoplastic structures of truss. 08 2014. J. Lubliner. Plasticity Theory. Macmillan, 1990. G. Maier. A matrix structural theory of piecewise linear elastoplasticity with interacting yield planes. Meccanica, 5:54–66, 1970. G. Maier, D. Grierson, and M. Best. Mathematical programming methods for deformation analysis at plastic collapse. Computers & Structures, 7(5):599–612, 1977. S. Malek and L. Gibson. Effective elastic properties of periodic hexagonal honeycombs. Mechanics of Materials, 91:226–240, 2015. M. Manola and V. Koumousis. Ultimate state of plane frame structures with piecewise linear yield conditions and multi-linear behavior: A reduced complementarity approach. Computers & Structures, 130:22–33, 2014. R. Mindlin. Micro-structure in linear elasticity. Columbia University New York, pages 51–78, 1964. R. Mindlin and N. Eshel. On first strain-gradient theories in linear elasticity. International Journal of Solids and Structures, 4(1):109–124, 1968. R. Mindlin and H. Tiersten. Effects of couple-stresses in linear elasticity. Archive for Rational Mechanics and Analysis, 11(1):415–448, 1962. T. Mori and K. Tanaka. Average stress in matrix and average elastic energy of ma- terials with misfitting inclusions. Acta Metallurgica, 21(5):571–574, 1973. B. Neal and P. Symonds. The calculation of collapse loads for framed structures (includes appendix). Journal of the Institution of Civil Engineers, 35(1):21–40, 1950. B. Neal and P. Symonds. The rapid calculation of the plastic collapse load for a framed structure. Proceedings of the Institution of Civil Engineers, 1(2):58–71, 1952. B. Niu and B. Wang. Directional mechanical properties and wave propagation directionality of kagome honeycomb structures. European Journal of Mechanics - A/ Solids, 57:45–58, 2016. P. Onck, E. Andrews, and L. Gibson. Size effects in ductile cellular solids. part i: modeling. International Journal of Mechanical Sciences, 43(3):681–699, 2001. S. Park and X. Gao. Bernoulli–euler beam model based on a modified couple stress theory. Journal of Micromechanics and Microengineering, 16(11):2355, 2006. F.Rahimidehgolan, J.Magliaro, and W.Altenhof. Influence of specimen profile size and thickness on the dynamic compressive behavior of rigid pvc foams. International Journal of Impact Engineering, 179:104676, 2023. D. T. Reilly and A. H. Burstein. The mechanical properties of cortical bone. JBJS, 56(5):1001–1022, 1974. J. C. Simo and T. J. Hughes. Computational Inelasticity. Springer Science & Busi- ness Media, 2006. S. Tangaramvong and F. Tin-Loi. Limit analysis of strain softening steel frames under pure bending. Journal of Constructional Steel Research, 63(9):1151–1159, 2007. S. Tangaramvong, F. Tin-Loi, D. Wu, and W. Gao. Mathematical programming approaches for obtaining sharp collapse load bounds in interval limit analysis. Com- puters & Structures, 125:114–126, 2013. R. Toupin. Elastic materials with couple-stresses. Archive for Rational Mechanics and Analysis, 11(1):385–414, 1962. A.-J.Wang and D.McDowell. In-plane stiffness and yield strength of periodic metal honeycombs. Journal of Engineering Materials and Technology, 126(2):137–156, 2004. A.-J.Wang and D.McDowell. Yield surfaces of various periodic metal honeycombs at intermediate relative density. International Journal of Plasticity, 21(2):285–320, 2005. S.Wang, M.Wang,and Z.Guo. Adjustable low-frequency bandgap of flexural wave in an euler-bernoulli meta-beam with inertial amplified resonators. Physics Letters A, 417:127671, 2021. F. Yang, A. Chong, D. Lam, and P. Tong. Couple stress based strain gradient theory for elasticity. International Journal of Solids and Structures, 39(10):2731–2743, 2002. M.-Y. Yang and J.-S. Huang. Failure surfaces for brittle honeycombs with plateau borders under in-plane biaxial loads. Composite Structures, 72:512–520, 2006. D. Yu, Y. Liu, G. Wang, L. Cai, and J. Qiu. Low frequency torsional vibration gaps in the shaft with locally resonant structures. Physics Letters A, 348:410–414, 2006. D. Yu, J. Wen, H. Zhao, Y. Liu, and X. Wen. Vibration reduction by using the idea of phononic crystals in a pipe-conveying fluid. Journal of Sound and Vibration, 318(1-2):193–205, 2008. G.Zhang and X.-L.Gao. Bandgaps for wave propagation in 2-d periodic three-phase composites with coated star-shaped inclusions and an orthotropic matrix. Composites Part B: Engineering, 182:107319, 2020. J. Zhang, W. Shen, A. Oueslati, and G. D. Saxcé. Shakedown of porous materials. International Journal of Plasticity, 95:123–141, 2017. J. Zhang, B. Shi, and Y. Shen. In-plane crushing response and energy absorp- tion of two different arranged circular honeycombs. Materials Research Express, 10(9):095801, 2023. Z. Zhu, Z. Deng, and J. Du. Elastic wave propagation in hierarchical honeycombs with woodpile-like vertexes. Journal of Vibration and Acoustics, 141:041020, 2019. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94226 | - |
| dc.description.abstract | 先前的研究已經對孔隙材料的靜態行為進行了分析,但尚不全面。本論文旨在補足孔隙材料各項力學分析,涵蓋其動態、黏彈性及彈塑性行為。在動態分析部分,本研究從材料層次引入力偶應力,根據力學層次概念,並透過若干適當假設,推導出孔隙材料單元格(unit cell)層次的動態控制方程式,並考量簡諧波求出解析解,進而探討不同形狀及柏松比下的尺寸效應意義。通過兩種不同的輸入形式分析其響應,並引入 Bloch 定理,求出孔隙材料在特定頻率下的帶隙。結果顯示,不同形狀和柏松比對動態行為有顯著影響,且在特定頻率下存在明顯的帶隙現象。在黏彈性分析中,基於先前的研究,探討了不同微結構幾何對孔隙材料能量吸收及耗散的影響。結果表明,特定的幾何結構在能量吸收和耗散方面具有明顯優勢,為設計提供了一種新的想法。最後,在彈塑性分析部分,本研究採用片段線性模式來描述孔隙材料在多維應力下的行為,並進行了與路徑相關的增量分析。在給定已知路徑下,分析孔隙材料的行為直至崩塌點。此外,在孔隙材料極限分析上,本研究打破了既有的路徑依賴分析的概念,提出了一種與路徑無關並且可以一步求得所有崩塌點形成崩塌面的極限分析理論,並透過增量分析驗證其正確性。結果顯示,新的理論能有效預測材料在多維應力下的崩塌行為。 | zh_TW |
| dc.description.abstract | Previous research has already conducted an analysis of the static behavior of cellular materials, but it remains incomplete. This thesis aims to complement the mechanical analysis of cellular materials, covering their dynamic, viscoelastic, and elastoplastic behaviors. In the dynamic analysis section, this study introduces couple stress at the material point. Based on the concept of mechanical hierarchy and through several appropriate assumptions, dynamic governing equations of the unit cell of cellular materials are derived. By considering harmonic waves, analytical solutions are obtained to explore the significance of size effects under different shapes and Poisson's ratios. The response under two different kinds of input is analyzed, and Bloch's theorem is adopted to determine the band gaps of cellular materials at specific frequencies. The results show that different shapes and Poisson's ratios significantly affect dynamic behavior, and there are notable band gap phenomena at specific frequencies. In the viscoelastic analysis, based on our previous research, the impact of different microstructural geometries on the energy absorption and dissipation of cellular materials is investigated. The results indicate that specific geometries have significant advantages in energy absorption and dissipation, providing new ideas for design. Finally, in the elastoplastic analysis section, this study uses piecewise linear multi-yield surface model to describe the behavior of cellular materials under multidimensional stress and conducts path-dependent incremental analysis. Given a known path, the behavior of cellular materials is analyzed until the collapse point. Additionally, in the limit analysis of cellular materials, this study breaks away from the existing concept of path-dependent analysis and proposes an ultimate analysis theory that is path-independent and can obtain all collapse points forming the collapse surface in one step. Incremental analysis is used to verify its correctness. The results show that the new theory can effectively predict the collapse behavior of materials under multidimensional stress. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:19:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:19:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Acknowledgements i
摘要 iii Abstract v Contents vii List of Figures xi List of Tables xv Denotation xvii Chapter 1 Introduction 1 1.1 Background and motivation 1 1.2 Mechanical properties of cellular materials and analytical methods 2 1.3 Micromechanics and size effec 3 1.4 Wave propagation and vibration 5 1.5 Elastoplastic and limit analysis 5 1.6 Outlines 7 Chapter 2 Mechanics of hexagonal honeycombs 9 2.1 Model of regular honeycomb and unit cell 9 2.2 Decoupled triaxial stress problem 10 2.3 Elastodynamics model of regular honeycombs 11 2.3.1 Material point level (level I) 12 2.3.2 Cross section level (level II) 19 2.3.2.1 Interlayer relationship between the level I and II 24 2.3.3 Cell wall level (level III) 25 2.3.4 Honeycombs level (level IV) 36 2.3.4.1 Interlayer relationship between the level III and IV 36 2.4 Influence factor of couple stress 36 2.4.0.1 Analysis of different cross-sectional shapes and size effect 37 2.4.1 Response to the stress input scenario 39 2.4.1.1 Scenario I: single triangular impulse wave 39 2.4.1.2 Scenario II: impulse sinusoidal wave 40 2.4.1.3 Investigation of modal responses 41 2.4.2 Band gap of regular honeycomb 41 2.5 Viscoelastic analysis of regular honeycomb 50 2.5.1 Influence of viscoelastic constants and microstructure 50 2.5.2 Mechanical response, energy absorption, and dissipation analysis 50 2.5.3 Evaluating the performance of honeycombs 52 Chapter 3 Mechanics of triangular honeycomb 59 3.1 Periodic triangular honeycomb model 59 3.1.1 The response of honeycomb microstructures to external stresses 61 3.2 Elastoplastic model of triangular honeycomb 63 3.2.1 Model formulation for a single cell wall 63 3.2.2 Model formulation for cellular materials level 64 3.2.3 Boundary effect of triangular honeycomb 67 3.3 Incremental analysis of cellular materials 68 3.3.1 Incremental analysis 68 3.3.1.1 Algorithms of incremental analysis 70 3.3.2 A simple case: three bar truss 72 3.3.3 Incremental analysis on n=10 honeycombs 73 3.4 Limit analysis of triangular honeycomb 74 3.5 Validation of collapse surface 77 3.6 Influence of relative density on the microstructure 78 3.6.1 Initial yield surface of honeycombs 78 3.6.2 Collapse surface of honeycombs 78 Chapter 4 Conclusions and future works 93 4.1 Conclusions 93 4.2 Future works 94 References 95 Appendix A - Regular honeycombs 101 A. 1 Couple stress theory on the material-point level 101 A. 2 Kinematics and equilibrium at the cross-section level 102 A. 3 Kinematics and equilibrium at the cell-wall level 103 A. 4 Kinematics and equilibrium at the honeycomb level 04 A. 5 Wave propagation in cellular materials 104 A.5.1 Effective constitution of cellular materials 104 Appendix B - Supplement 109 | - |
| dc.language.iso | en | - |
| dc.subject | 力偶應力 | zh_TW |
| dc.subject | 尺寸效應 | zh_TW |
| dc.subject | 孔隙材料 | zh_TW |
| dc.subject | 彈性動力學 | zh_TW |
| dc.subject | 波動與震動 | zh_TW |
| dc.subject | 帶隙 | zh_TW |
| dc.subject | 崩塌面 | zh_TW |
| dc.subject | 增量分析 | zh_TW |
| dc.subject | 接續降伏面 | zh_TW |
| dc.subject | 極限分析 | zh_TW |
| dc.subject | Collapse surface | en |
| dc.subject | Band gap | en |
| dc.subject | Couple stress | en |
| dc.subject | Size effect | en |
| dc.subject | Cellular materials | en |
| dc.subject | Elastodynamics | en |
| dc.subject | Wave propagation and vibration | en |
| dc.subject | Limit analysis | en |
| dc.subject | Subsequent yield surface | en |
| dc.subject | Incremental analysis | en |
| dc.title | 孔隙材料的微觀力學建模與崩塌面 | zh_TW |
| dc.title | Micromechanical modeling and collapse surface of cellular materials | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳東陽;郭茂坤;舒貽忠 | zh_TW |
| dc.contributor.oralexamcommittee | Tung-Yang Chen ;Mao-Kuen Kuo;Yi-Chung Shu | en |
| dc.subject.keyword | 力偶應力,尺寸效應,孔隙材料,彈性動力學,波動與震動,帶隙,崩塌面,增量分析,接續降伏面,極限分析, | zh_TW |
| dc.subject.keyword | Couple stress,Size effect,Cellular materials,Elastodynamics,Wave propagation and vibration,Band gap,Collapse surface,Incremental analysis,Subsequent yield surface,Limit analysis, | en |
| dc.relation.page | 112 | - |
| dc.identifier.doi | 10.6342/NTU202402381 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 33.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
