Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物科技研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94223
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林劭品zh_TW
dc.contributor.advisorShau-Ping Linen
dc.contributor.author吳靖敏zh_TW
dc.contributor.authorJing Min Gohen
dc.date.accessioned2024-08-15T16:18:28Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-02-
dc.identifier.citation1. Abramov, A. Y., Potapova, E. V., Dremin, V. V., & Dunaev, A. V. (2020). Interaction of Oxidative Stress and Misfolded Proteins in the Mechanism of Neurodegeneration. Life (Basel, Switzerland), 10(7), 101. https://doi.org/10.3390/life10070101
2. Ahmed, S. M., Luo, L., Namani, A., Wang, X. J., & Tang, X. (2017). Nrf2 signaling pathway: Pivotal roles in inflammation. Biochimica et biophysica acta. Molecular basis of disease, 1863(2), 585–597. https://doi.org/10.1016/j.bbadis.2016.11.005
3. Ajoolabady, A., Lindholm, D., Ren, J., & Pratico, D. (2022). ER stress and UPR in Alzheimer's disease: mechanisms, pathogenesis, treatments. Cell death & disease, 13(8), 706. https://doi.org/10.1038/s41419-022-05153-5
4. Akhtar, M. W., Kim, M. S., Adachi, M., Morris, M. J., Qi, X., Richardson, J. A., Bassel-Duby, R., Olson, E. N., Kavalali, E. T., & Monteggia, L. M. (2012). In vivo analysis of MEF2 transcription factors in synapse regulation and neuronal survival. PloS one, 7(4), e34863. https://doi.org/10.1371/journal.pone.0034863
5. Al Mamun, A., Ara Mimi, A., Wu, Y., Zaeem, M., Abdul Aziz, M., Aktar Suchi, S., Alyafeai, E., Munir, F., & Xiao, J. (2021). Pyroptosis in diabetic nephropathy. Clinica chimica acta; international journal of clinical chemistry, 523, 131–143. https://doi.org/10.1016/j.cca.2021.09.003
6. American Psychiatric Association. (2022). Diagnostic and statistical manual of mental disorders (5th ed., text rev.) https://doi.org/10.1176/appi.books.9780890425787
7. Baas, P. W., Rao, A. N., Matamoros, A. J., & Leo, L. (2016). Stability properties of neuronal microtubules. Cytoskeleton (Hoboken, N.J.), 73(9), 442–460. https://doi.org/10.1002/cm.21286
8. Banks, W. A., & Rhea, E. M. (2021). The Blood-Brain Barrier, Oxidative Stress, and Insulin Resistance. Antioxidants (Basel, Switzerland), 10(11), 1695. https://doi.org/10.3390/antiox10111695
9. Barbier, P., Zejneli, O., Martinho, M., Lasorsa, A., Belle, V., Smet-Nocca, C., Tsvetkov, P. O., Devred, F., & Landrieu, I. (2019). Role of Tau as a Microtubule-Associated Protein: Structural and Functional Aspects. Frontiers in aging neuroscience, 11, 204. https://doi.org/10.3389/fnagi.2019.00204
10. Beeman, N., Sapre, T., Ong, S. E., & Yadav, S. (2023). Neurodevelopmental disorder-associated mutations in TAOK1 reveal its function as a plasma membrane remodeling kinase. Science signaling, 16(766), eadd3269. https://doi.org/10.1126/scisignal.add3269
11. Beeman, N., Sapre, T., Ong, S. E., & Yadav, S. (2023). Neurodevelopmental disorder-associated mutations in TAOK1 reveal its function as a plasma membrane remodeling kinase. Science signaling, 16(766), eadd3269. https://doi.org/10.1126/scisignal.add3269
12. Biedler, J. L., Roffler-Tarlov, S., Schachner, M., & Freedman, L. S. (1978). Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer research, 38(11 Pt 1), 3751–3757.
13. Biernat, J., Wu, Y. Z., Timm, T., Zheng-Fischhöfer, Q., Mandelkow, E., Meijer, L., & Mandelkow, E. M. (2002). Protein kinase MARK/PAR-1 is required for neurite outgrowth and establishment of neuronal polarity. Molecular biology of the cell, 13(11), 4013–4028. https://doi.org/10.1091/mbc.02-03-0046
14. Binarová, P., & Tuszynski, J. (2019). Tubulin: Structure, Functions and Roles in Disease. Cells, 8(10), 1294. https://doi.org/10.3390/cells8101294
15. Bivona, G., Iemmolo, M., Piccoli, T., Agnello, L., Lo Sasso, B., Ciaccio, M., & Ghersi, G. (2022). High Cerebrospinal Fluid CX3CL1 Levels in Alzheimer's Disease Patients but Not in Non-Alzheimer's Disease Dementia. Journal of clinical medicine, 11(19), 5498. https://doi.org/10.3390/jcm11195498
16. Bourque, G., Burns, K. H., Gehring, M., Gorbunova, V., Seluanov, A., Hammell, M., Imbeault, M., Izsvák, Z., Levin, H. L., Macfarlan, T. S., Mager, D. L., & Feschotte, C. (2018). Ten things you should know about transposable elements. Genome biology, 19(1), 199. https://doi.org/10.1186/s13059-018-1577-z
17. Bravo, J. I., Nozownik, S., Danthi, P. S., & Benayoun, B. A. (2020). Transposable elements, circular RNAs and mitochondrial transcription in age-related genomic regulation. Development (Cambridge, England), 147(11), dev175786. https://doi.org/10.1242/dev.175786
18. Bright, F., Chan, G., van Hummel, A., Ittner, L. M., & Ke, Y. D. (2021). TDP-43 and Inflammation: Implications for Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. International journal of molecular sciences, 22(15), 7781. https://doi.org/10.3390/ijms22157781
19. Byeon, S., & Yadav, S. (2024). Pleiotropic functions of TAO kinases and their dysregulation in neurological disorders. Science signaling, 17(817), eadg0876. https://doi.org/10.1126/scisignal.adg0876
20. Byeon, S., Werner, B., Falter, R., Davidsen, K., Snyder, C., Ong, S. E., & Yadav, S. (2022). Proteomic Identification of Phosphorylation-Dependent Septin 7 Interactors that Drive Dendritic Spine Formation. Frontiers in cell and developmental biology, 10, 836746. https://doi.org/10.3389/fcell.2022.836746
21. Callahan, L. M., & Coleman, P. D. (1995). Neurons bearing neurofibrillary tangles are responsible for selected synaptic deficits in Alzheimer's disease. Neurobiology of aging, 16(3), 311–314. https://doi.org/10.1016/0197-4580(95)00035-d
22. Canovas, B., & Nebreda, A. R. (2021). Diversity and versatility of p38 kinase signalling in health and disease. Nature reviews. Molecular cell biology, 22(5), 346–366. https://doi.org/10.1038/s41580-020-00322-w
23. Cao, S. S., & Kaufman, R. J. (2014). Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants & redox signaling, 21(3), 396–413. https://doi.org/10.1089/ars.2014.5851
24. Caušević, M., Farooq, U., Lovestone, S., & Killick, R. (2010). β-Amyloid precursor protein and tau protein levels are differently regulated in human cerebellum compared to brain regions vulnerable to Alzheimer's type neurodegeneration. Neuroscience letters, 485(3), 162–166. https://doi.org/10.1016/j.neulet.2010.08.088
25. Cerella, C., Diederich, M., & Ghibelli, L. (2010). The dual role of calcium as messenger and stressor in cell damage, death, and survival. International journal of cell biology, 2010, 546163. https://doi.org/10.1155/2010/546163
26. Chaphalkar, R. M., Stankowska, D. L., He, S., Kodati, B., Phillips, N., Prah, J., Yang, S., & Krishnamoorthy, R. R. (2020). Endothelin-1 Mediated Decrease in Mitochondrial Gene Expression and Bioenergetics Contribute to Neurodegeneration of Retinal Ganglion Cells. Scientific reports, 10(1), 3571. https://doi.org/10.1038/s41598-020-60558-6
27. Chesnokova, E., Beletskiy, A., & Kolosov, P. (2022). The Role of Transposable Elements of the Human Genome in Neuronal Function and Pathology. International journal of molecular sciences, 23(10), 5847. https://doi.org/10.3390/ijms23105847
28. Collier, M. P., & Benesch, J. L. P. (2020). Small heat-shock proteins and their role in mechanical stress. Cell stress & chaperones, 25(4), 601–613. https://doi.org/10.1007/s12192-020-01095-z
29. Colnaghi, L., Rondelli, D., Muzi-Falconi, M., & Sertic, S. (2020). Tau and DNA Damage in Neurodegeneration. Brain sciences, 10(12), 946. https://doi.org/10.3390/brainsci10120946
30. Combs, B., Mueller, R. L., Morfini, G., Brady, S. T., & Kanaan, N. M. (2019). Tau and Axonal Transport Misregulation in Tauopathies. Advances in experimental medicine and biology, 1184, 81–95. https://doi.org/10.1007/978-981-32-9358-8_7
31. Conde, C., & Cáceres, A. (2009). Microtubule assembly, organization and dynamics in axons and dendrites. Nature reviews. Neuroscience, 10(5), 319–332. https://doi.org/10.1038/nrn2631
32. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., Roses, A. D., Haines, J. L., & Pericak-Vance, M. A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families. Science (New York, N.Y.), 261(5123), 921–923. https://doi.org/10.1126/science.8346443
33. da Costa, L. S., Outlioua, A., Anginot, A., Akarid, K., & Arnoult, D. (2019). RNA viruses promote activation of the NLRP3 inflammasome through cytopathogenic effect-induced potassium efflux. Cell death & disease, 10(5), 346. https://doi.org/10.1038/s41419-019-1579-0
34. Damier, P., Hirsch, E. C., Agid, Y., & Graybiel, A. M. (1999). The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson's disease. Brain: a journal of neurology, 122 (Pt 8), 1437–1448. https://doi.org/10.1093/brain/122.8.1437
35. De Marinis, E., Fiocchetti, M., Acconcia, F., Ascenzi, P., & Marino, M. (2013). Neuroglobin upregulation induced by 17β-estradiol sequesters cytocrome c in the mitochondria preventing H2O2-induced apoptosis of neuroblastoma cells. Cell death & disease, 4(2), e508. https://doi.org/10.1038/cddis.2013.30
36. de Oliveira, D. S., Rosa, M. T., Vieira, C., & Loreto, E. L. S. (2021). Oxidative and radiation stress induces transposable element transcription in Drosophila melanogaster. Journal of evolutionary biology, 34(4), 628–638. https://doi.org/10.1111/jeb.13762
37. Diamond, M. S., & Farzan, M. (2013). The broad-spectrum antiviral functions of IFIT and IFITM proteins. Nature reviews. Immunology, 13(1), 46–57. https://doi.org/10.1038/nri3344
38. DiSabato, D. J., Quan, N., & Godbout, J. P. (2016). Neuroinflammation: the devil is in the details. Journal of neurochemistry, 139 Suppl 2(Suppl 2), 136–153. https://doi.org/10.1111/jnc.13607
39. Domizio, J. D., Gulen, M. F., Saidoune, F., Thacker, V. V., Yatim, A., Sharma, K., Nass, T., Guenova, E., Schaller, M., Conrad, C., Goepfert, C., de Leval, L., Garnier, C. V., Berezowska, S., Dubois, A., Gilliet, M., & Ablasser, A. (2022). The cGAS-STING pathway drives type I IFN immunopathology in COVID-19. Nature, 603(7899), 145–151. https://doi.org/10.1038/s41586-022-04421-w
40. Dong, F., Zhang, X., Wold, L. E., Ren, Q., Zhang, Z., & Ren, J. (2005). Endothelin-1 enhances oxidative stress, cell proliferation and reduces apoptosis in human umbilical vein endothelial cells: role of ETB receptor, NADPH oxidase and caveolin-1. British journal of pharmacology, 145(3), 323–333. https://doi.org/10.1038/sj.bjp.0706193
41. Dong, H. K., Gim, J. A., Yeo, S. H., & Kim, H. S. (2017). Integrated late onset Alzheimer's disease (LOAD) susceptibility genes: Cholesterol metabolism and trafficking perspectives. Gene, 597, 10–16. https://doi.org/10.1016/j.gene.2016.10.022
42. Duc Nguyen, H., Hee Jo, W., Hong Minh Hoang, N., & Kim, M. S. (2022). Anti-inflammatory effects of B vitamins protect against tau hyperphosphorylation and cognitive impairment induced by 1,2 diacetyl benzene: An in vitro and in silico study. International immunopharmacology, 108, 108736. https://doi.org/10.1016/j.intimp.2022.108736
43. Dulovic-Mahlow, M., Trinh, J., Kandaswamy, K. K., Braathen, G. J., Di Donato, N., Rahikkala, E., Beblo, S., Werber, M., Krajka, V., Busk, Ø. L., Baumann, H., Al-Sannaa, N. A., Hinrichs, F., Affan, R., Navot, N., Al Balwi, M. A., Oprea, G., Holla, Ø. L., Weiss, M. E. R., Jamra, R. A., … Lohmann, K. (2019). De Novo Variants in TAOK1 Cause Neurodevelopmental Disorders. American journal of human genetics, 105(1), 213–220. https://doi.org/10.1016/j.ajhg.2019.05.005
44. Duly, A. M. P., Kao, F. C. L., Teo, W. S., & Kavallaris, M. (2022). βIII-Tubulin Gene Regulation in Health and Disease. Frontiers in cell and developmental biology, 10, 851542. https://doi.org/10.3389/fcell.2022.851542
45. Eguchi, Y., Shimizu, S., & Tsujimoto, Y. (1997). Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer research, 57(10), 1835–1840.
46. Encinas, M., Iglesias, M., Liu, Y., Wang, H., Muhaisen, A., Ceña, V., Gallego, C., & Comella, J. X. (2000). Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. Journal of neurochemistry, 75(3), 991–1003. https://doi.org/10.1046/j.1471-4159.2000.0750991.x
47. Fan Zhai, Xinyi Ma, Liying Yan, Jie Qiao. (2023). Chapter 6 - The molecular genetics of oogenesis. Human Reproductive and Prenatal Genetics (Second Edition), Academic Press. 145-163. ISBN 9780323913805. https://doi.org/10.1016/B978-0-323-91380-5.00011-3.
48. Fang, C. Y., Lai, T. C., Hsiao, M., & Chang, Y. C. (2020). The Diverse Roles of TAO Kinases in Health and Diseases. International journal of molecular sciences, 21(20), 7463. https://doi.org/10.3390/ijms21207463
49. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer's Disease Neuroimaging Initiative (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer's disease on the cerebral cortex and the hippocampus. Progress in neurobiology, 117, 20–40. https://doi.org/10.1016/j.pneurobio.2014.02.004
50. Foster, E. M., Dangla-Valls, A., Lovestone, S., Ribe, E. M., & Buckley, N. J. (2019). Clusterin in Alzheimer's Disease: Mechanisms, Genetics, and Lessons From Other Pathologies. Frontiers in neuroscience, 13, 164. https://doi.org/10.3389/fnins.2019.00164
51. Fricker, M., Tolkovsky, A. M., Borutaite, V., Coleman, M., & Brown, G. C. (2018). Neuronal Cell Death. Physiological reviews, 98(2), 813–880. https://doi.org/10.1152/physrev.00011.2017
52. Frittoli, E., Palamidessi, A., Iannelli, F., Zanardi, F., Villa, S., Barzaghi, L., Abdo, H., Cancila, V., Beznoussenko, G. V., Della Chiara, G., Pagani, M., Malinverno, C., Bhattacharya, D., Pisati, F., Yu, W., Galimberti, V., Bonizzi, G., Martini, E., Mironov, A. A., Gioia, U., … Scita, G. (2023). Tissue fluidification promotes a cGAS-STING cytosolic DNA response in invasive breast cancer. Nature materials, 22(5), 644–655. https://doi.org/10.1038/s41563-022-01431-x
53. Garg, R., Koo, C. Y., Infante, E., Giacomini, C., Ridley, A. J., & Morris, J. D. H. (2020). Rnd3 interacts with TAO kinases and contributes to mitotic cell rounding and spindle positioning. Journal of cell science, 133(6), jcs235895. https://doi.org/10.1242/jcs.235895
54. Gazquez-Gutierrez, A., Witteveldt, J., R Heras, S., & Macias, S. (2021). Sensing of transposable elements by the antiviral innate immune system. RNA (New York, N.Y.), 27(7), 735–752. Advance online publication. https://doi.org/10.1261/rna.078721.121
55. GBD 2021 Nervous System Disorders Collaborators (2024). Global, regional, and national burden of disorders affecting the nervous system, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021. The Lancet. Neurology, 23(4), 344–381. https://doi.org/10.1016/S1474-4422(24)00038-3
56. GBD 2021 Forecasting Collaborators (2024). Burden of disease scenarios for 204 countries and territories, 2022-2050: a forecasting analysis for the Global Burden of Disease Study 2021. Lancet (London, England), 403(10440), 2204–2256. https://doi.org/10.1016/S0140-6736(24)00685-8
57. Gcwensa, N. Z., Russell, D. L., Cowell, R. M., & Volpicelli-Daley, L. A. (2021). Molecular Mechanisms Underlying Synaptic and Axon Degeneration in Parkinson's Disease. Frontiers in cellular neuroscience, 15, 626128. https://doi.org/10.3389/fncel.2021.626128
58. Giacomini, C., Koo, C. Y., Yankova, N., Tavares, I. A., Wray, S., Noble, W., Hanger, D. P., & Morris, J. D. H. (2018). A new TAO kinase inhibitor reduces tau phosphorylation at sites associated with neurodegeneration in human tauopathies. Acta neuropathologica communications, 6(1), 37. https://doi.org/10.1186/s40478-018-0539-8
59. Giorgi, G., Marcantonio, P., & Del Re, B. (2011). LINE-1 retrotransposition in human neuroblastoma cells is affected by oxidative stress. Cell and tissue research, 346(3), 383–391. https://doi.org/10.1007/s00441-011-1289-0
60. Gong, C. X., & Iqbal, K. (2008). Hyperphosphorylation of microtubule-associated protein tau: a promising therapeutic target for Alzheimer disease. Current medicinal chemistry, 15(23), 2321–2328. https://doi.org/10.2174/092986708785909111
61. González, P., Alvarez, V., Menéndez, M., Lahoz, C. H., Martínez, C., Corao, A. I., Calatayud, M. T., Peña, J., García-Castro, M., & Coto, E. (2007). Myocyte enhancing factor-2A in Alzheimer's disease: genetic analysis and association with MEF2A-polymorphisms. Neuroscience letters, 411(1), 47–51. https://doi.org/10.1016/j.neulet.2006.09.055
62. González, P., Alvarez, V., Menéndez, M., Lahoz, C. H., Martínez, C., Corao, A. I., Calatayud, M. T., Peña, J., García-Castro, M., & Coto, E. (2007). Myocyte enhancing factor-2A in Alzheimer's disease: genetic analysis and association with MEF2A-polymorphisms. Neuroscience letters, 411(1), 47–51. https://doi.org/10.1016/j.neulet.2006.09.055
63. Gritsenko, A., Yu, S., Martin-Sanchez, F., Diaz-Del-Olmo, I., Nichols, E. M., Davis, D. M., Brough, D., & Lopez-Castejon, G. (2020). Priming Is Dispensable for NLRP3 Inflammasome Activation in Human Monocytes In Vitro. Frontiers in immunology, 11, 565924. https://doi.org/10.3389/fimmu.2020.565924
64. Gulen, M. F., Samson, N., Keller, A., Schwabenland, M., Liu, C., Glück, S., Thacker, V. V., Favre, L., Mangeat, B., Kroese, L. J., Krimpenfort, P., Prinz, M., & Ablasser, A. (2023). cGAS-STING drives ageing-related inflammation and neurodegeneration. Nature, 620(7973), 374–380. https://doi.org/10.1038/s41586-023-06373-1
65. Guo, C., Jeong, H. H., Hsieh, Y. C., Klein, H. U., Bennett, D. A., De Jager, P. L., Liu, Z., & Shulman, J. M. (2018). Tau Activates Transposable Elements in Alzheimer's Disease. Cell reports, 23(10), 2874–2880. https://doi.org/10.1016/j.celrep.2018.05.004
66. Guo, C., Jeong, H. H., Hsieh, Y. C., Klein, H. U., Bennett, D. A., De Jager, P. L., Liu, Z., & Shulman, J. M. (2018). Tau Activates Transposable Elements in Alzheimer's Disease. Cell reports, 23(10), 2874–2880. https://doi.org/10.1016/j.celrep.2018.05.004
67. Halcrow, P. W., Quansah, D. N. K., Kumar, N., Steiner, J. P., Nath, A., & Geiger, J. D. (2024). HERV-K (HML-2) Envelope Protein Induces Mitochondrial Depolarization and Neurotoxicity via Endolysosome Iron Dyshomeostasis. The Journal of neuroscience: the official journal of the Society for Neuroscience, 44(14), e0826232024. https://doi.org/10.1523/JNEUROSCI.0826-23.2024
68. Hammad, M., Raftari, M., Cesário, R., Salma, R., Godoy, P., Emami, S. N., & Haghdoost, S. (2023). Roles of Oxidative Stress and Nrf2 Signaling in Pathogenic and Non-Pathogenic Cells: A Possible General Mechanism of Resistance to Therapy. Antioxidants (Basel, Switzerland), 12(7), 1371. https://doi.org/10.3390/antiox12071371
69. Hetz C. (2012). The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nature reviews. Molecular cell biology, 13(2), 89–102. https://doi.org/10.1038/nrm3270
70. Hirao, K., Natsuka, Y., Tamura, T., Wada, I., Morito, D., Natsuka, S., Romero, P., Sleno, B., Tremblay, L. O., Herscovics, A., Nagata, K., & Hosokawa, N. (2006). EDEM3, a soluble EDEM homolog, enhances glycoprotein endoplasmic reticulum-associated degradation and mannose trimming. The Journal of biological chemistry, 281(14), 9650–9658. https://doi.org/10.1074/jbc.M512191200
71. Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., Manabe, T., Yamagishi, S., Bando, Y., Imaizumi, K., Tsujimoto, Y., & Tohyama, M. (2004). Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. The Journal of cell biology, 165(3), 347–356. https://doi.org/10.1083/jcb.200310015
72. Hong, J. T., Son, D. J., Lee, C. K., Yoon, D. Y., Lee, D. H., & Park, M. H. (2017). Interleukin 32, inflammation and cancer. Pharmacology & therapeutics, 174, 127–137. https://doi.org/10.1016/j.pharmthera.2017.02.025
73. Hoyt, S. J., Storer, J. M., Hartley, G. A., Grady, P. G. S., Gershman, A., de Lima, L. G., Limouse, C., Halabian, R., Wojenski, L., Rodriguez, M., Altemose, N., Rhie, A., Core, L. J., Gerton, J. L., Makalowski, W., Olson, D., Rosen, J., Smit, A. F. A., Straight, A. F., Vollger, M. R., … O'Neill, R. J. (2022). From telomere to telomere: The transcriptional and epigenetic state of human repeat elements. Science (New York, N.Y.), 376(6588), eabk3112. https://doi.org/10.1126/science.abk3112
74. Huang, Y., Sun, X., Jiang, H., Yu, S., Robins, C., Armstrong, M. J., Li, R., Mei, Z., Shi, X., Gerasimov, E. S., De Jager, P. L., Bennett, D. A., Wingo, A. P., Jin, P., Wingo, T. S., & Qin, Z. S. (2021). A machine learning approach to brain epigenetic analysis reveals kinases associated with Alzheimer's disease. Nature communications, 12(1), 4472. https://doi.org/10.1038/s41467-021-24710-8
75. Hunter, J. M., Massingham, L. J., Manickam, K., Bartholomew, D., Williamson, R. K., Schwab, J. L., Marhabaie, M., Siemon, A., de Los Reyes, E., Reshmi, S. C., Cottrell, C. E., Wilson, R. K., & Koboldt, D. C. (2022). Inherited and de novo variants extend the etiology of TAOK1-associated neurodevelopmental disorder. Cold Spring Harbor molecular case studies, 8(2), a006180. https://doi.org/10.1101/mcs.a006180
76. Hutchison, M., Berman, K. S., & Cobb, M. H. (1998). Isolation of TAO1, a protein kinase that activates MEKs in stress-activated protein kinase cascades. The Journal of biological chemistry, 273(44), 28625–28632. https://doi.org/10.1074/jbc.273.44.28625
77. Iemmolo, M., Ghersi, G., & Bivona, G. (2023). The Cytokine CX3CL1 and ADAMs/MMPs in Concerted Cross-Talk Influencing Neurodegenerative Diseases. International journal of molecular sciences, 24(9), 8026. https://doi.org/10.3390/ijms24098026
78. Jo, M., Lee, S., Jeon, Y. M., Kim, S., Kwon, Y., & Kim, H. J. (2020). The role of TDP-43 propagation in neurodegenerative diseases: integrating insights from clinical and experimental studies. Experimental & molecular medicine, 52(10), 1652–1662. https://doi.org/10.1038/s12276-020-00513-7
79. Jönsson, M. E., Garza, R., Johansson, P. A., & Jakobsson, J. (2020). Transposable Elements: A Common Feature of Neurodevelopmental and Neurodegenerative Disorders. Trends in genetics: TIG, 36(8), 610–623. https://doi.org/10.1016/j.tig.2020.05.004
80. Kawasaki, H., Morooka, T., Shimohama, S., Kimura, J., Hirano, T., Gotoh, Y., & Nishida, E. (1997). Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. The Journal of biological chemistry, 272(30), 18518–18521. https://doi.org/10.1074/jbc.272.30.18518
81. Ke, P., Gu, J., Liu, J., Liu, Y., Tian, X., Ma, Y., Meng, Y., & Xiao, F. (2023). Syntabulin regulates neuronal excitation/inhibition balance and epileptic seizures by transporting syntaxin 1B. Cell death discovery, 9(1), 187. https://doi.org/10.1038/s41420-023-01461-7
82. Kelley, N., Jeltema, D., Duan, Y., & He, Y. (2019). The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. International journal of molecular sciences, 20(13), 3328. https://doi.org/10.3390/ijms20133328
83. Keshavarz, M., Farrokhi, M. R., & Amiri, A. (2017). Caffeine Neuroprotective Mechanism Against β-Amyloid Neurotoxicity in SHSY5Y Cell Line: Involvement of Adenosine, Ryanodine, and N-Methyl-D-Aspartate Receptors. Advanced pharmaceutical bulletin, 7(4), 579–584. https://doi.org/10.15171/apb.2017.069
84. Kobayashi, A., Kang, M. I., Watai, Y., Tong, K. I., Shibata, T., Uchida, K., & Yamamoto, M. (2006). Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Molecular and cellular biology, 26(1), 221–229. https://doi.org/10.1128/MCB.26.1.221-229.2006
85. Komis, G., Illés, P., Beck, M., & Šamaj, J. (2011). Microtubules and mitogen-activated protein kinase signalling. Current opinion in plant biology, 14(6), 650–657. https://doi.org/10.1016/j.pbi.2011.07.008
86. Kopitar-Jerala N. (2017). The Role of Interferons in Inflammation and Inflammasome Activation. Frontiers in immunology, 8, 873. https://doi.org/10.3389/fimmu.2017.00873
87. Kovac, S., Angelova, P. R., Holmström, K. M., Zhang, Y., Dinkova-Kostova, A. T., & Abramov, A. Y. (2015). Nrf2 regulates ROS production by mitochondria and NADPH oxidase. Biochimica et biophysica acta, 1850(4), 794–801. https://doi.org/10.1016/j.bbagen.2014.11.021
88. Krug, L., Chatterjee, N., Borges-Monroy, R., Hearn, S., Liao, W. W., Morrill, K., Prazak, L., Rozhkov, N., Theodorou, D., Hammell, M., & Dubnau, J. (2017). Retrotransposon activation contributes to neurodegeneration in a Drosophila TDP-43 model of ALS. PLoS genetics, 13(3), e1006635. https://doi.org/10.1371/journal.pgen.1006635
89. Kuriyama, Y., Shimizu, A., Kanai, S., Oikawa, D., Motegi, S. I., Tokunaga, F., & Ishikawa, O. (2021). Coordination of retrotransposons and type I interferon with distinct interferon pathways in dermatomyositis, systemic lupus erythematosus and autoimmune blistering disease. Scientific reports, 11(1), 23146. https://doi.org/10.1038/s41598-021-02522-6
90. Kushnareva, Y., & Newmeyer, D. D. (2010). Bioenergetics and cell death. Annals of the New York Academy of Sciences, 1201, 50–57. https://doi.org/10.1111/j.1749-6632.2010.05633.x
91. La Quaglia, M. P., & Manchester, K. M. (1996). A comparative analysis of neuroblastic and substrate-adherent human neuroblastoma cell lines. Journal of pediatric surgery, 31(2), 315–318. https://doi.org/10.1016/s0022-3468(96)90025-1
92. Laser-Azogui, A., Kornreich, M., Malka-Gibor, E., & Beck, R. (2015). Neurofilament assembly and function during neuronal development. Current opinion in cell biology, 32, 92–101. https://doi.org/10.1016/j.ceb.2015.01.003
93. Le Breton, A., Bettencourt, M. P., & Gendrel, A. V. (2024). Navigating the brain and aging: exploring the impact of transposable elements from health to disease. Frontiers in cell and developmental biology, 12, 1357576. https://doi.org/10.3389/fcell.2024.1357576
94. Lee, G. E., Bang, G., Byun, J., Lee, C. J., Chen, W., Jeung, D., An, H. J., Kang, H. C., Lee, J. Y., Lee, H. S., Hong, Y. S., Kim, D. J., Keniry, M., Kim, J. Y., Choi, J. S., Fanto, M., Cho, S. J., Kim, K. D., & Cho, Y. Y. (2024). Dysregulated CREB3 cleavage at the nuclear membrane induces karyoptosis-mediated cell death. Experimental & molecular medicine, 56(3), 686–699. https://doi.org/10.1038/s12276-024-01195-1
95. Lee, J., Mohammad, N., Lu, Y., Kang, K., Han, K., & Brantly, M. (2022). Alu RNA induces NLRP3 expression through TLR7 activation in α-1-antitrypsin-deficient macrophages. JCI insight, 7(12), e158791. https://doi.org/10.1172/jci.insight.158791
96. Li, J., Zhang, F., Bian, W., Chen, Y., Liu, J., Liu, Z., Xiong, Y., & Wan, X. (2022). cGAS inhibition alleviates Alu RNA-induced immune responses and cytotoxicity in retinal pigmented epithelium. Cell & bioscience, 12(1), 116. https://doi.org/10.1186/s13578-022-00854-y
97. Li, X., Wu, X., Li, W., Yan, Q., Zhou, P., Xia, Y., Yao, W., & Zhu, F. (2023). HERV-W ENV Induces Innate Immune Activation and Neuronal Apoptosis via linc01930/cGAS Axis in Recent-Onset Schizophrenia. International journal of molecular sciences, 24(3), 3000. https://doi.org/10.3390/ijms24033000
98. Li, Y., Liu, L., Barger, S. W., & Griffin, W. S. (2003). Interleukin-1 mediates pathological effects of microglia on tau phosphorylation and on synaptophysin synthesis in cortical neurons through a p38-MAPK pathway. The Journal of neuroscience : the official journal of the Society for Neuroscience, 23(5), 1605–1611. https://doi.org/10.1523/JNEUROSCI.23-05-01605.2003
99. Lin, Y. C., & Koleske, A. J. (2010). Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders. Annual review of neuroscience, 33, 349–378. https://doi.org/10.1146/annurev-neuro-060909-153204
100. Lisek, M., Przybyszewski, O., Zylinska, L., Guo, F., & Boczek, T. (2023). The Role of MEF2 Transcription Factor Family in Neuronal Survival and Degeneration. International journal of molecular sciences, 24(4), 3120. https://doi.org/10.3390/ijms24043120
101. Liu, T., Rohn, J. L., Picone, R., Kunda, P., & Baum, B. (2010). Tao-1 is a negative regulator of microtubule plus-end growth. Journal of cell science, 123(Pt 16), 2708–2716. https://doi.org/10.1242/jcs.068726
102. Liu, J., Zhou, J., Luan, Y., Li, X., Meng, X., Liao, W., Tang, J., & Wang, Z. (2024). cGAS-STING, inflammasomes and pyroptosis: an overview of crosstalk mechanism of activation and regulation. Cell communication and signaling: CCS, 22(1), 22. https://doi.org/10.1186/s12964-023-01466-w
103. Low, H. B., & Zhang, Y. (2016). Regulatory Roles of MAPK Phosphatases in Cancer. Immune network, 16(2), 85–98. https://doi.org/10.4110/in.2016.16.2.85
104. Lue, L. F., Schmitz, C. T., Serrano, G., Sue, L. I., Beach, T. G., & Walker, D. G. (2015). TREM2 Protein Expression Changes Correlate with Alzheimer's Disease Neurodegenerative Pathologies in Post-Mortem Temporal Cortices. Brain pathology (Zurich, Switzerland), 25(4), 469–480. https://doi.org/10.1111/bpa.12190
105. Malek-Ahmadi, M., Perez, S. E., Chen, K., & Mufson, E. J. (2020). Braak Stage, Cerebral Amyloid Angiopathy, and Cognitive Decline in Early Alzheimer's Disease. Journal of Alzheimer's disease: JAD, 74(1), 189–197. https://doi.org/10.3233/JAD-191151
106. Majoros, A., Platanitis, E., Kernbauer-Hölzl, E., Rosebrock, F., Müller, M., & Decker, T. (2017). Canonical and Non-Canonical Aspects of JAK-STAT Signaling: Lessons from Interferons for Cytokine Responses. Frontiers in immunology, 8, 29. https://doi.org/10.3389/fimmu.2017.00029
107. Martinon, F., & Tschopp, J. (2004). Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell, 117(5), 561–574. https://doi.org/10.1016/j.cell.2004.05.004
108. Marttinen, M., Kurkinen, K. M., Soininen, H., Haapasalo, A., & Hiltunen, M. (2015). Synaptic dysfunction and septin protein family members in neurodegenerative diseases. Molecular neurodegeneration, 10, 16. https://doi.org/10.1186/s13024-015-0013-z
109. Massaad, C. A., & Klann, E. (2011). Reactive oxygen species in the regulation of synaptic plasticity and memory. Antioxidants & redox signaling, 14(10), 2013–2054. https://doi.org/10.1089/ars.2010.3208
110. Mathavarajah, S., & Dellaire, G. (2024). LINE-1: an emerging initiator of cGAS-STING signalling and inflammation that is dysregulated in disease. Biochemistry and cell biology = Biochimie et biologie cellulaire, 102(1), 38–46. https://doi.org/10.1139/bcb-2023-0134
111. Mayer, M. P., & Gierasch, L. M. (2019). Recent advances in the structural and mechanistic aspects of Hsp70 molecular chaperones. The Journal of biological chemistry, 294(6), 2085–2097. https://doi.org/10.1074/jbc.REV118.002810
112. Miller, K. N., Victorelli, S. G., Salmonowicz, H., Dasgupta, N., Liu, T., Passos, J. F., & Adams, P. D. (2021). Cytoplasmic DNA: sources, sensing, and role in aging and disease. Cell, 184(22), 5506–5526. https://doi.org/10.1016/j.cell.2021.09.034
113. Mingione, A., Pivari, F., Plotegher, N., Dei Cas, M., Zulueta, A., Bocci, T., Trinchera, M., Albi, E., Maglione, V., Caretti, A., Bubacco, L., Paroni, R., Bottai, D., Ghidoni, R., & Signorelli, P. (2021). Inhibition of Ceramide Synthesis Reduces α-Synuclein Proteinopathy in a Cellular Model of Parkinson's Disease. International journal of molecular sciences, 22(12), 6469. https://doi.org/10.3390/ijms22126469
114. Moens, U., Kostenko, S., & Sveinbjørnsson, B. (2013). The Role of Mitogen-Activated Protein Kinase-Activated Protein Kinases (MAPKAPKs) in Inflammation. Genes, 4(2), 101–133. https://doi.org/10.3390/genes4020101
115. Moldoveanu, T., & Czabotar, P. E. (2020). BAX, BAK, and BOK: A Coming of Age for the BCL-2 Family Effector Proteins. Cold Spring Harbor perspectives in biology, 12(4), a036319. https://doi.org/10.1101/cshperspect.a036319
116. Moon, H. J., Herring, S. K., & Zhao, L. (2021). Clusterin: a multifaceted protein in the brain. Neural regeneration research, 16(7), 1438–1439. https://doi.org/10.4103/1673-5374.301013
117. Natarajaseenivasan, K., Shanmughapriya, S., Velusamy, P., Sayre, M., Garcia, A., Gomez, N. M., & Langford, D. (2020). Inflammation-induced PINCH expression leads to actin depolymerization and mitochondrial mislocalization in neurons. Translational neurodegeneration, 9(1), 32. https://doi.org/10.1186/s40035-020-00211-4
118. Natarajaseenivasan, K., Shanmughapriya, S., Velusamy, P., Sayre, M., Garcia, A., Gomez, N. M., & Langford, D. (2020). Inflammation-induced PINCH expression leads to actin depolymerization and mitochondrial mislocalization in neurons. Translational neurodegeneration, 9(1), 32. https://doi.org/10.1186/s40035-020-00211-4
119. Nopparat, C., Boontor, A., Kutpruek, S., & Govitrapong, P. (2023). The role of melatonin in amyloid beta-induced inflammation mediated by inflammasome signaling in neuronal cell lines. Scientific reports, 13(1), 17841. https://doi.org/10.1038/s41598-023-45220-1
120. Norden, D. M., Trojanowski, P. J., Villanueva, E., Navarro, E., & Godbout, J. P. (2016). Sequential activation of microglia and astrocyte cytokine expression precedes increased Iba-1 or GFAP immunoreactivity following systemic immune challenge. Glia, 64(2), 300–316. https://doi.org/10.1002/glia.22930
121. Ochoa, E., Ramirez, P., Gonzalez, E., De Mange, J., Ray, W. J., Bieniek, K. F., & Frost, B. (2023). Pathogenic tau-induced transposable element-derived dsRNA drives neuroinflammation. Science advances, 9(1), eabq5423. https://doi.org/10.1126/sciadv.abq5423
122. Okamoto, S., Krainc, D., Sherman, K., & Lipton, S. A. (2000). Antiapoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2 transcription factor pathway during neuronal differentiation. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7561–7566. https://doi.org/10.1073/pnas.130502697
123. Olufunmilayo, E. O., Gerke-Duncan, M. B., & Holsinger, R. M. D. (2023). Oxidative Stress and Antioxidants in Neurodegenerative Disorders. Antioxidants (Basel, Switzerland), 12(2), 517. https://doi.org/10.3390/antiox12020517
124. Palma, F. R., Gantner, B. N., Sakiyama, M. J., Kayzuka, C., Shukla, S., Lacchini, R., Cunniff, B., & Bonini, M. G. (2024). ROS production by mitochondria: function or dysfunction?. Oncogene, 43(5), 295–303. https://doi.org/10.1038/s41388-023-02907-z
125. Pan, X., Yan, D., Wang, D., Wu, X., Zhao, W., Lu, Q., & Yan, H. (2017). Mitochondrion-Mediated Apoptosis Induced by Acrylamide is Regulated by a Balance Between Nrf2 Antioxidant and MAPK Signaling Pathways in PC12 Cells. Molecular neurobiology, 54(6), 4781–4794. https://doi.org/10.1007/s12035-016-0021-1
126. Paul, B. D., Snyder, S. H., & Bohr, V. A. (2021). Signaling by cGAS-STING in Neurodegeneration, Neuroinflammation, and Aging. Trends in neurosciences, 44(2), 83–96. https://doi.org/10.1016/j.tins.2020.10.008
127. Perea, J. R., Llorens-Martín, M., Ávila, J., & Bolós, M. (2018). The Role of Microglia in the Spread of Tau: Relevance for Tauopathies. Frontiers in cellular neuroscience, 12, 172. https://doi.org/10.3389/fncel.2018.00172
128. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative Stress: Harms and Benefits for Human Health. Oxidative medicine and cellular longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
129. Platanias L. C. (2003). The p38 mitogen-activated protein kinase pathway and its role in interferon signaling. Pharmacology & therapeutics, 98(2), 129–142. https://doi.org/10.1016/s0163-7258(03)00016-0
130. Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., & Nussbaum, R. L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science (New York, N.Y.), 276(5321), 2045–2047. https://doi.org/10.1126/science.276.5321.2045
131. Pothlichet, J., Meunier, I., Davis, B. K., Ting, J. P., Skamene, E., von Messling, V., & Vidal, S. M. (2013). Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS pathogens, 9(4), e1003256. https://doi.org/10.1371/journal.ppat.1003256
132. Prasad, A., Bharathi, V., Sivalingam, V., Girdhar, A., & Patel, B. K. (2019). Molecular Mechanisms of TDP-43 Misfolding and Pathology in Amyotrophic Lateral Sclerosis. Frontiers in molecular neuroscience, 12, 25. https://doi.org/10.3389/fnmol.2019.00025
133. Pritam, P., Deka, R., Bhardwaj, A., Srivastava, R., Kumar, D., Jha, A. K., Jha, N. K., Villa, C., & Jha, S. K. (2022). Antioxidants in Alzheimer's Disease: Current Therapeutic Significance and Future Prospects. Biology, 11(2), 212. https://doi.org/10.3390/biology11020212
134. Qi, Y., Li, Y., Zhang, Y., Zhang, L., Wang, Z., Zhang, X., Gui, L., & Huang, J. (2015). IFI6 Inhibits Apoptosis via Mitochondrial-Dependent Pathway in Dengue Virus 2 Infected Vascular Endothelial Cells. PloS one, 10(8), e0132743. https://doi.org/10.1371/journal.pone.0132743
135. Radzikowska, U., Eljaszewicz, A., Tan, G., Stocker, N., Heider, A., Westermann, P., Steiner, S., Dreher, A., Wawrzyniak, P., Rückert, B., Rodriguez-Coira, J., Zhakparov, D., Huang, M., Jakiela, B., Sanak, M., Moniuszko, M., O'Mahony, L., Jutel, M., Kebadze, T., Jackson, D. J., … Sokolowska, M. (2023). Rhinovirus-induced epithelial RIG-I inflammasome suppresses antiviral immunity and promotes inflammation in asthma and COVID-19. Nature communications, 14(1), 2329. https://doi.org/10.1038/s41467-023-37470-4
136. Rathinam, V. A., Jiang, Z., Waggoner, S. N., Sharma, S., Cole, L. E., Waggoner, L., Vanaja, S. K., Monks, B. G., Ganesan, S., Latz, E., Hornung, V., Vogel, S. N., Szomolanyi-Tsuda, E., & Fitzgerald, K. A. (2010). The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nature immunology, 11(5), 395–402. https://doi.org/10.1038/ni.1864
137. Ramirez, P., Zuniga, G., Sun, W., Beckmann, A., Ochoa, E., DeVos, S. L., Hyman, B., Chiu, G., Roy, E. R., Cao, W., Orr, M., Buggia-Prevot, V., Ray, W. J., & Frost, B. (2022). Pathogenic tau accelerates aging-associated activation of transposable elements in the mouse central nervous system. Progress in neurobiology, 208, 102181. https://doi.org/10.1016/j.pneurobio.2021.102181
138. Ren, J., Zhang, S., Wang, X., Deng, Y., Zhao, Y., Xiao, Y., Liu, J., Chu, L., & Qi, X. (2022). MEF2C ameliorates learning, memory, and molecular pathological changes in Alzheimer’s disease in vivo and in vitro. Acta biochimica et biophysica Sinica, 54(1), 77–90. https://doi.org/10.3724/abbs.2021012
139. Ren, J., Zhang, S., Wang, X., Deng, Y., Zhao, Y., Xiao, Y., Liu, J., Chu, L., & Qi, X. (2022). MEF2C ameliorates learning, memory, and molecular pathological changes in Alzheimer’s disease in vivo and in vitro. Acta biochimica et biophysica Sinica, 54(1), 77–90. https://doi.org/10.3724/abbs.2021012
140. Reszka, A. A., Seger, R., Diltz, C. D., Krebs, E. G., & Fischer, E. H. (1995). Association of mitogen-activated protein kinase with the microtubule cytoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 92(19), 8881–8885. https://doi.org/10.1073/pnas.92.19.8881
141. Rostami, M. R., & Bradic, M. (2021). The derepression of transposable elements in lung cells is associated with the inflammatory response and gene activation in idiopathic pulmonary fibrosis. Mobile DNA, 12(1), 14. https://doi.org/10.1186/s13100-021-00241-3
142. Russ, E., & Iordanskiy, S. (2023). Endogenous Retroviruses as Modulators of Innate Immunity. Pathogens (Basel, Switzerland), 12(2), 162. https://doi.org/10.3390/pathogens12020162
143. Sajid, M., Ullah, H., Yan, K., He, M., Feng, J., Shereen, M. A., Hao, R., Li, Q., Guo, D., Chen, Y., & Zhou, L. (2021). The Functional and Antiviral Activity of Interferon Alpha-Inducible IFI6 Against Hepatitis B Virus Replication and Gene Expression. Frontiers in immunology, 12, 634937. https://doi.org/10.3389/fimmu.2021.634937
144. Salminen, A., Kauppinen, A., Suuronen, T., Kaarniranta, K., & Ojala, J. (2009). ER stress in Alzheimer's disease: a novel neuronal trigger for inflammation and Alzheimer's pathology. Journal of neuroinflammation, 6, 41. https://doi.org/10.1186/1742-2094-6-41
145. Salpietro, V., Dixon, C. L., Guo, H., Bello, O. D., Vandrovcova, J., Efthymiou, S., Maroofian, R., Heimer, G., Burglen, L., Valence, S., Torti, E., Hacke, M., Rankin, J., Tariq, H., Colin, E., Procaccio, V., Striano, P., Mankad, K., Lieb, A., Chen, S., … Houlden, H. (2019). AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nature communications, 10(1), 3094. https://doi.org/10.1038/s41467-019-10910-w
146. Satapathy, S., Walker, H., Brown, J., Gambin, Y., & Wilson, M. R. (2023). The N-end rule pathway regulates ER stress-induced clusterin release to the cytosol where it directs misfolded proteins for degradation. Cell reports, 42(9), 113059. https://doi.org/10.1016/j.celrep.2023.113059
147. Schmid-Burgk, J. L., Gaidt, M. M., Schmidt, T., Ebert, T. S., Bartok, E., & Hornung, V. (2015). Caspase-4 mediates non-canonical activation of the NLRP3 inflammasome in human myeloid cells. European journal of immunology, 45(10), 2911–2917. https://doi.org/10.1002/eji.201545523
148. Singh, S., Borkar, M. R., & Bhatt, L. K. (2024). Transposable Elements: Emerging Therapeutic Targets in Neurodegenerative Diseases. Neurotoxicity research, 42(1), 9. https://doi.org/10.1007/s12640-024-00688-1
149. Shea, T. B., Dahl, D. C., Nixon, R. A., & Fischer, I. (1997). Triton-soluble phosphovariants of the heavy neurofilament subunit in developing and mature mouse central nervous system. Journal of neuroscience research, 48(6), 515–523.
150. Son, Y., Cheong, Y. K., Kim, N. H., Chung, H. T., Kang, D. G., & Pae, H. O. (2011). Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways?. Journal of signal transduction, 2011, 792639. https://doi.org/10.1155/2011/792639
151. Son, Y., Kim, S., Chung, H. T., & Pae, H. O. (2013). Reactive oxygen species in the activation of MAP kinases. Methods in enzymology, 528, 27–48. https://doi.org/10.1016/B978-0-12-405881-1.00002-1
152. Spires-Jones, T. L., & Hyman, B. T. (2014). The intersection of amyloid beta and tau at synapses in Alzheimer's disease. Neuron, 82(4), 756–771. https://doi.org/10.1016/j.neuron.2014.05.004
153. Sun, W., Samimi, H., Gamez, M., Zare, H., & Frost, B. (2018). Pathogenic tau-induced piRNA depletion promotes neuronal death through transposable element dysregulation in neurodegenerative tauopathies. Nature neuroscience, 21(8), 1038–1048. https://doi.org/10.1038/s41593-018-0194-1
154. Sweeney, P., Park, H., Baumann, M., Dunlop, J., Frydman, J., Kopito, R., McCampbell, A., Leblanc, G., Venkateswaran, A., Nurmi, A., & Hodgson, R. (2017). Protein misfolding in neurodegenerative diseases: implications and strategies. Translational neurodegeneration, 6, 6. https://doi.org/10.1186/s40035-017-0077-5
155. Takata, T., Araki, S., Tsuchiya, Y., & Watanabe, Y. (2020). Oxidative Stress Orchestrates MAPK and Nitric-Oxide Synthase Signal. International journal of molecular sciences, 21(22), 8750. https://doi.org/10.3390/ijms21228750
156. Tavares, I. A., Touma, D., Lynham, S., Troakes, C., Schober, M., Causevic, M., Garg, R., Noble, W., Killick, R., Bodi, I., Hanger, D. P., & Morris, J. D. (2013). Prostate-derived sterile 20-like kinases (PSKs/TAOKs) phosphorylate tau protein and are activated in tangle-bearing neurons in Alzheimer disease. The Journal of biological chemistry, 288(21), 15418–15429. https://doi.org/10.1074/jbc.M112.448183
157. Thal, D. R., & Tomé, S. O. (2022). The central role of tau in Alzheimer's disease: From neurofibrillary tangle maturation to the induction of cell death. Brain research bulletin, 190, 204–217. https://doi.org/10.1016/j.brainresbull.2022.10.006
158. Timm, T., Li, X. Y., Biernat, J., Jiao, J., Mandelkow, E., Vandekerckhove, J., & Mandelkow, E. M. (2003). MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. The EMBO journal, 22(19), 5090–5101. https://doi.org/10.1093/emboj/cdg447
159. Timm, T., Li, X. Y., Biernat, J., Jiao, J., Mandelkow, E., Vandekerckhove, J., & Mandelkow, E. M. (2003). MARKK, a Ste20-like kinase, activates the polarity-inducing kinase MARK/PAR-1. The EMBO journal, 22(19), 5090–5101. https://doi.org/10.1093/emboj/cdg447
160. Tsai, N. P., Wilkerson, J. R., Guo, W., Maksimova, M. A., DeMartino, G. N., Cowan, C. W., & Huber, K. M. (2012). Multiple autism-linked genes mediate synapse elimination via proteasomal degradation of a synaptic scaffold PSD-95. Cell, 151(7), 1581–1594. https://doi.org/10.1016/j.cell.2012.11.040
161. Uchida, A., Peng, J., & Brown, A. (2023). Regulation of neurofilament length and transport by a dynamic cycle of phospho-dependent polymer severing and annealing. Molecular biology of the cell, 34(7), ar68. https://doi.org/10.1091/mbc.E23-01-0024
162. Udeochu, J. C., Amin, S., Huang, Y., Fan, L., Torres, E. R. S., Carling, G. K., Liu, B., McGurran, H., Coronas-Samano, G., Kauwe, G., Mousa, G. A., Wong, M. Y., Ye, P., Nagiri, R. K., Lo, I., Holtzman, J., Corona, C., Yarahmady, A., Gill, M. T., Raju, R. M., … Gan, L. (2023). Tau activation of microglial cGAS-IFN reduces MEF2C-mediated cognitive resilience. Nature neuroscience, 26(5), 737–750. https://doi.org/10.1038/s41593-023-01315-6
163. van Woerden, G. M., Bos, M., de Konink, C., Distel, B., Avagliano Trezza, R., Shur, N. E., Barañano, K., Mahida, S., Chassevent, A., Schreiber, A., Erwin, A. L., Gripp, K. W., Rehman, F., Brulleman, S., McCormack, R., de Geus, G., Kalsner, L., Sorlin, A., Bruel, A. L., Koolen, D. A., … Kleefstra, T. (2021). TAOK1 is associated with neurodevelopmental disorder and essential for neuronal maturation and cortical development. Human mutation, 42(4), 445–459. https://doi.org/10.1002/humu.24176
164. van Vliet, A. R., Verfaillie, T., & Agostinis, P. (2014). New functions of mitochondria associated membranes in cellular signaling. Biochimica et biophysica acta, 1843(10), 2253–2262. https://doi.org/10.1016/j.bbamcr.2014.03.009
165. van Vliet, A. R., & Agostinis, P. (2018). Mitochondria-Associated Membranes and ER Stress. Current topics in microbiology and immunology, 414, 73–102. https://doi.org/10.1007/82_2017_2
166. Vidović, M., & Rikalovic, M. G. (2022). Alpha-Synuclein Aggregation Pathway in Parkinson's Disease: Current Status and Novel Therapeutic Approaches. Cells, 11(11), 1732. https://doi.org/10.3390/cells11111732
167. Villavicencio Tejo, F., & Quintanilla, R. A. (2021). Contribution of the Nrf2 Pathway on Oxidative Damage and Mitochondrial Failure in Parkinson and Alzheimer's Disease. Antioxidants (Basel, Switzerland), 10(7), 1069. https://doi.org/10.3390/antiox10071069
168. Welsbie, D. S., Mitchell, K. L., Jaskula-Ranga, V., Sluch, V. M., Yang, Z., Kim, J., Buehler, E., Patel, A., Martin, S. E., Zhang, P. W., Ge, Y., Duan, Y., Fuller, J., Kim, B. J., Hamed, E., Chamling, X., Lei, L., Fraser, I. D. C., Ronai, Z. A., Berlinicke, C. A., … Zack, D. J. (2017). Enhanced Functional Genomic Screening Identifies Novel Mediators of Dual Leucine Zipper Kinase-Dependent Injury Signaling in Neurons. Neuron, 94(6), 1142–1154.e6. https://doi.org/10.1016/j.neuron.2017.06.008
169. Werner, B., & Yadav, S. (2023). Phosphoregulation of the septin cytoskeleton in neuronal development and disease. Cytoskeleton (Hoboken, N.J.), 80(7-8), 275–289. https://doi.org/10.1002/cm.21728
170. White, S. A., Zhang, L. S., Pasula, D. J., Yang, Y. H. C., & Luciani, D. S. (2020). Bax and Bak jointly control survival and dampen the early unfolded protein response in pancreatic β-cells under glucolipotoxic stress. Scientific reports, 10(1), 10986. https://doi.org/10.1038/s41598-020-67755-3
171. Wilson, D. M., 3rd, Cookson, M. R., Van Den Bosch, L., Zetterberg, H., Holtzman, D. M., & Dewachter, I. (2023). Hallmarks of neurodegenerative diseases. Cell, 186(4), 693–714. https://doi.org/10.1016/j.cell.2022.12.032
172. Wolf, P., Schoeniger, A., & Edlich, F. (2022). Pro-apoptotic complexes of BAX and BAK on the outer mitochondrial membrane. Biochimica et biophysica acta. Molecular cell research, 1869(10), 119317. https://doi.org/10.1016/j.bbamcr.2022.119317
173. Wu, M. F., & Wang, S. G. (2008). Human TAO kinase 1 induces apoptosis in SH-SY5Y cells. Cell biology international, 32(1), 151–156. https://doi.org/10.1016/j.cellbi.2007.08.006
174. Wu, M., Zhang, M., Yin, X., Chen, K., Hu, Z., Zhou, Q., Cao, X., Chen, Z., & Liu, D. (2021). The role of pathological tau in synaptic dysfunction in Alzheimer's diseases. Translational neurodegeneration, 10(1), 45. https://doi.org/10.1186/s40035-021-00270-1
175. Wu, Z., Lu, Z., Ou, J., Su, X., & Liu, J. (2020). Inflammatory response and oxidative stress attenuated by sulfiredoxin 1 in neuron like cells depends on nuclear factor erythroid 2 related factor 2. Molecular medicine reports, 22(6), 4734–4742. https://doi.org/10.3892/mmr.2020.11545
176. Xu, B., Lang, L. M., Lian, S., Guo, J. R., Wang, J. F., Yang, H. M., & Li, S. Z. (2019). Oxidation Stress-Mediated MAPK Signaling Pathway Activation Induces Neuronal Loss in the CA1 and CA3 Regions of the Hippocampus of Mice Following Chronic Cold Exposure. Brain sciences, 9(10), 273. https://doi.org/10.3390/brainsci9100273
177. Liu, X., Zhang, X., Ding, Y., Zhou, W., Tao, L., Lu, P., Wang, Y., & Hu, R. (2017). Nuclear Factor E2-Related Factor-2 Negatively Regulates NLRP3 Inflammasome Activity by Inhibiting Reactive Oxygen Species-Induced NLRP3 Priming. Antioxidants & redox signaling, 26(1), 28–43. https://doi.org/10.1089/ars.2015.6615
178. Yamamuro, A., Kishino, T., Ohshima, Y., Yoshioka, Y., Kimura, T., Kasai, A., & Maeda, S. (2011). Caspase-4 directly activates caspase-9 in endoplasmic reticulum stress-induced apoptosis in SH-SY5Y cells. Journal of pharmacological sciences, 115(2), 239–243. https://doi.org/10.1254/jphs.10217sc
179. Yang, C., Guo, X., Wang, G. H., Wang, H. L., Liu, Z. C., Liu, H., Zhu, Z. X., & Li, Y. (2014). Changes in tau phosphorylation levels in the hippocampus and frontal cortex following chronic stress. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 47(3), 237–244. https://doi.org/10.1590/1414-431X20133275
180. Yang, Y., Wang, H., Kouadir, M., Song, H., & Shi, F. (2019). Recent advances in the mechanisms of NLRP3 inflammasome activation and its inhibitors. Cell death & disease, 10(2), 128. https://doi.org/10.1038/s41419-019-1413-8
181. Yang, Q. Q., & Zhou, J. W. (2019). Neuroinflammation in the central nervous system: Symphony of glial cells. Glia, 67(6), 1017–1035. https://doi.org/10.1002/glia.23571
182. Yin, R., Guo, D., Zhang, S., & Zhang, X. (2016). miR-706 inhibits the oxidative stress-induced activation of PKCα/TAOK1 in liver fibrogenesis. Scientific reports, 6, 37509. https://doi.org/10.1038/srep37509
183. Yin, Y., She, H., Li, W., Yang, Q., Guo, S., & Mao, Z. (2012). Modulation of Neuronal Survival Factor MEF2 by Kinases in Parkinson's Disease. Frontiers in physiology, 3, 171. https://doi.org/10.3389/fphys.2012.00171
184. Yu, Z., Poppe, J. L., & Wang, X. (2013). Mitochondrial mechanisms of neuroglobin's neuroprotection. Oxidative medicine and cellular longevity, 2013, 756989. https://doi.org/10.1155/2013/756989
185. Yuan, A., Rao, M. V., Veeranna, & Nixon, R. A. (2012). Neurofilaments at a glance. Journal of cell science, 125(Pt 14), 3257–3263. https://doi.org/10.1242/jcs.104729
186. Yue, J., & López, J. M. (2020). Understanding MAPK Signaling Pathways in Apoptosis. International journal of molecular sciences, 21(7), 2346. https://doi.org/10.3390/ijms21072346
187. Yum, S., Li, M., Fang, Y., & Chen, Z. J. (2021). TBK1 recruitment to STING activates both IRF3 and NF-κB that mediate immune defense against tumors and viral infections. Proceedings of the National Academy of Sciences of the United States of America, 118(14), e2100225118. https://doi.org/10.1073/pnas.2100225118
188. Zeeshan, H. M., Lee, G. H., Kim, H. R., & Chae, H. J. (2016). Endoplasmic Reticulum Stress and Associated ROS. International journal of molecular sciences, 17(3), 327. https://doi.org/10.3390/ijms17030327
189. Zhang, W., Xiao, D., Mao, Q., & Xia, H. (2023). Role of neuroinflammation in neurodegeneration development. Signal transduction and targeted therapy, 8(1), 267. https://doi.org/10.1038/s41392-023-01486-5
190. Zheng, Y., & Pan, D. (2019). The Hippo Signaling Pathway in Development and Disease. Developmental cell, 50(3), 264–282. https://doi.org/10.1016/j.devcel.2019.06.003
191. Zuo, X., Zhou, J., Li, Y., Wu, K., Chen, Z., Luo, Z., Zhang, X., Liang, Y., Esteban, M. A., Zhou, Y., & Fu, X. D. (2021). TDP-43 aggregation induced by oxidative stress causes global mitochondrial imbalance in ALS. Nature structural & molecular biology, 28(2), 132–142. https://doi.org/10.1038/s41594-020-00537-7
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94223-
dc.description.abstract神經退行性疾病 (Neurodegenerative Diseases),如阿爾茨海默症(Alzheimer’s Disease)和帕金森病(Parkinson’s Disease),其特徵是神經元和突觸的喪失,通常由於異常蛋白質沉積和神經炎症引起。TAOK1(一種絲氨酸/蘇氨酸激酶)被確定為AD和PD患者認知障礙的生物標誌物,並在血漿來源的細胞外囊泡中積累。TAOK1已知會促進細胞死亡、病理性tau蛋白磷酸化,進而調節微管動態。儘管TAOK1在許多研究中與神經發育障礙有關,但其在神經退行性疾病中的作用較少研究。在初步研究中,TAOK1過度表達會降低細胞活力和ATP產量,增加tau蛋白磷酸化,並增加可轉座元件(Transposable Elements)的活動性。為了更好地研究TAOK1在通過tau蛋白誘導的微管失調和TE釋放的神經毒性後果中的作用,我們在人的神經母細胞瘤SH-SY5Y細胞中建立了一個可誘導的TAOK1過度表達細胞株。在本研究中,我們證明了TAOK1過度表達促進了tau蛋白的過度磷酸化,可能導致微管的不穩定。這表現為在神經分化過程中無法維持神經突起的生長。還觀察到了與突觸和微管相關基因表達的補償性變化。神經突起的喪失,加上細胞凋亡的增加,表明TAOK1過度表達與神經毒性有關。進一步分析發現,TAOK1過度表達的細胞在儘管抗氧化基因上調的情況持續顯示出活性氧水平的升高,,這表明氧化壓力是促使炎症反應的驅動因素。還發現內質網應激反應通路基因上調,暗示TAOK1介導的tau蛋白過度磷酸化在病理性蛋白質聚集中的作用。此外,TAOK1過度表達上調了幾個TE家族。隨著STING和TBK1表達的增加,數據表明細胞質雙鏈DNA的檢測增加,並可能通過I型干擾素通路激活炎症(IFN-I)反應,表明TE釋放的神經毒性後果。總體而言,這些發現闡明了TAOK1過度表達如何引起神經毒性並促進促炎機制,可能促進神經退行性疾病的進展。zh_TW
dc.description.abstractNeurodegenerative diseases (NDs) like Alzheimer’s (AD) and Parkinson’s (PD) are characterised by neuron and synapse loss, often due to abnormal protein deposition and neuroinflammation. TAOK1, a serine/threonine kinase, was identified as a biomarker for cognitive impairment in AD and PD, accumulating in plasma-derived extracellular vesicles. TAOK1 is known to contribute to cell death, pathological tau phosphorylation, and by extension, regulation of microtubule dynamics. While TAOK1 has been implicated in neurodevelopmental disorders in many studies, its role in neurodegeneration is less studied. In preliminary studies, TAOK1 overexpression reduces cell viability and ATP production, increases phosphorylated Tau, and transposable elements (TEs) derepression. To better investigate TAOK1’s role in inducing neurotoxicity, therefore promoting neuron and functional loss, we established an inducible TAOK1-overexpressing cell line in human neuroblastoma SH-SY5Y cells. In this study, we have demonstrated that TAOK1 overexpression increases phosphorylated Tau, potentially leading to the destabilisation of microtubules. This was evidenced by inability to maintain neurite outgrowths during neuronal differentiation accompanied by changes in expression of synapse and microtubule-associated genes. Neurite loss, coupled with increased apoptosis, indicates neurotoxic effects linked to TAOK1 overexpression. TAOK1-overexpressing cells also exhibited elevated reactive oxygen species coupled with downregulation of mitochondria protein-coding genes, suggesting mitochondrial dysfunction as a driver of oxidative stress and neurotoxicity. Upregulation of endoplasmic reticulum stress response pathway genes was also discovered, implicating TAOK1-mediated tau hyperphosphorylation in pathological protein aggregation as a source of cellular stress. Additionally, TAOK1 overexpression upregulated several TE families. With increased STING and TBK1 expression, a heightened detection of cytosolic dsDNA and potential activation of inflammatory responses via class I Interferon pathways may be occurring as potential neurotoxic consequences of TE de-repression. Collectively, these findings elucidate how TAOK1 overexpression induces neurotoxicity and promotes pro-inflammatory mechanisms, contributing to the progression of neurodegenerative diseases.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:18:28Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:18:28Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents中文摘要 ii
Abstract iv
Table of Figures ix
1. Introduction 1
1.1. Neurological Health and Neurodegenerative Diseases 1
1.1.1. Introduction 1
1.1.2. Neurodegenerative Diseases & Diagnosis 2
1.2. TAOK1: Discovery, Functions and Implications 3
1.2.1. TAOK1 as a Protein Biomarker for Cognitive Impairments 3
1.2.4. TAOK1, Tau Phosphorylation and Microtubule Dynamics 6
1.4. Reactive Oxygen Species and Neurotoxicity 9
1.5. Transposable Elements and Cellular Function 12
1.7. Neuron and Synapse Loss in Neurodegenerative Diseases 15
1.8 Preliminary Studies 16
1.9. Elucidating the Neurotoxic and Inflammatory Potential of TAOK1 Overexpression in SH-SY5Y Neuroblastoma Cells 17
1.9.1. Project Aims 17
1.9.2. Experimental Design 20
2. Materials and Methods 26
2.1. TAOK1-Overexpressing SH-SY5Y 26
2.2. Cell Count & Viability Assays 28
2.3. RNA Expression 29
2.4. Western Blot Analysis 36
2.5. Microscopy 39
2.6. Dihydroethidium Assay 40
2.7 TUNEL Assey 41
2.8. Statistical Analysis 42
2.9. Antibodies 43
3. Results 46
3.1. TAOK1 Overexpression can be Stably Induced through Doxycycline Treatment throughout Differentiation 46
3.2. TAOK1 Overexpression results in Neuron loss 48
3.3. TAOK1 Overexpression Promotes Cell Death via Programmed Cell Death 50
3.4. TAOK1 Overexpression Drives Neurite Loss in Differentiating SH-SY5Y after branch formation 55
3.4.1. TAOK1 Overexpression Increases Tau Phosphorylation 58
3.4.2. Neurofilament expression may be upregulated to counteract microtubule destabilisation in TAOK1-overexpressing cells 60
3.4.3. Synaptic activity may be dysregulated through microtubule-associated synaptic proteins in TAOK1-overexpressing cells 62
3.4.5. Increased ROS levels has limited effects on Nrf2 Signalling 66
3.4.6. Increased ROS levels in TAOK1 overexpressing cells coincides with potential mitochondrial dysfunction 68
3.5.1. TAOK1 Overexpression may influence cGAS-STING Pathway activity 75
3.5.2. TAOK1 Overexpression has limited effects on PIWI-piRNA Pathway 78
3.6. TAOK1 Overexpression has limited influence on NLRP3 Inflammasome Signalling 79
4. Discussion 80
4.1. Regulation of TAOK1 expression is crucial for Neuron Survival 80
4.1.1. BCL-2 Signalling is unlikely to promote TAOK1-mediated cell death 81
4.1.2. TAOK1 may mediate cell survival through Mef2-MAPK signalling 83
4.2. TAOK1 Expression is critical to Neurite Maintenance in Differentiating Neurons 86
4.2.1. TAOK1-mediated Tau Hyperphosphorylation may disrupt neurite maintenance in differentiating SH-SY5Y via microtubule destabilisation 88
4.2.2. Compensatory upregulation of neurofilament proteins may occur in response to Neurite instability caused by TAOK1-mediated tau hyperphosphorylation 89
4.2.3. TAOK1-mediated tau hyperphosphorylation may dysregulate synaptic activity through microtubule-associated synaptic proteins 90
4.3. TAOK1 Overexpression Dysregulates Redox Homeostasis 94
4.3.1. Mitochondria impairment is associated with increased ROS levels in TAOK1-overexpressing cells 95
4.3.2. Nrf2 antioxidant pathway activity may be potentiated by TAOK1 overexpression, but insufficient to alleviate oxidative stress 96
4.3.3. Oxidative Stress in TAOK1 Overexpression may be associated with ER Stress Response Mechanisms 99
4.4. TAOK1 Expression drives Transposable Element De-Repression 102
5. Future Work & Perspectives 106
5.1.1. TAOK1-induced TE De-repression may promote inflammation through Interferon responses via the cGAS-STING pathway 106
5.1.2. Limited Effects on NLRP3 Inflammasome Signalling 109
5.2. Dose-Dependent effects of TAOK1-Associated Neurotoxicity 113
5.3. Repressing TAOK1 Expression to Suppress Neurodegeneration 116
6. Conclusion 117
7. References 119
8. Appendix 151
-
dc.language.isoen-
dc.subject阿茲海默症zh_TW
dc.subject神經毒性zh_TW
dc.subject氧化壓力zh_TW
dc.subject神經退行性疾病zh_TW
dc.subject發炎反應zh_TW
dc.subject可轉座元件zh_TW
dc.subjectTau蛋白磷酸化zh_TW
dc.subject帕金森氏症zh_TW
dc.subject微管動態zh_TW
dc.subjectabnormal protein depositionen
dc.subjectbiomarkeren
dc.subjectTAOK1en
dc.subjectneurite maintenanceen
dc.subjectneuron lossen
dc.subjectcognitive impairmenten
dc.subjectneurotoxicityen
dc.subjectneuroinflammationen
dc.subjectdementiaen
dc.subjectneurodegenerative diseasesen
dc.subjecttau phosphorylationen
dc.subjectcell deathen
dc.subjecttauopathyen
dc.title探討TAOK1在SH-SY5Y神經母細胞中的神經毒性及神經炎症效應zh_TW
dc.titleElucidating the Neurotoxic and Neuroinflammatory Effect of TAOK1 in SH-SY5Y Neuroblastoma Cellsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee洪千岱;吳佳慶zh_TW
dc.contributor.oralexamcommitteeChien-Tai Hong;Chia-Ching Wuen
dc.subject.keyword神經退行性疾病,阿茲海默症,帕金森氏症,Tau蛋白磷酸化,可轉座元件,發炎反應,氧化壓力,神經毒性,微管動態,zh_TW
dc.subject.keywordTAOK1,biomarker,cell death,neuron loss,neurite maintenance,abnormal protein deposition,tauopathy,tau phosphorylation,neurodegenerative diseases,dementia,cognitive impairment,neurotoxicity,neuroinflammation,en
dc.relation.page158-
dc.identifier.doi10.6342/NTU202402516-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-06-
dc.contributor.author-college生物資源暨農學院-
dc.contributor.author-dept生物科技研究所-
顯示於系所單位:生物科技研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf5.51 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved