請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94213完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭陳澔 | zh_TW |
| dc.contributor.advisor | Hao Kuo-Chen | en |
| dc.contributor.author | 張以昕 | zh_TW |
| dc.contributor.author | I-Hsin Chang | en |
| dc.date.accessioned | 2024-08-15T16:15:20Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | 張立衡、郭陳澔、郭俊翔 (2022)。利用深度學習辨識地震波 p 與 s 到時以及後續關聯與定位。國立中央大學地球科學系暨研究所碩士論文。
甘志文、蒲新杰、李巧盈、許炘志、蕭乃祺 (2015)。中央氣象局自動化震源機制解算。氣象學報,69-86。 黃俊銘、郭陳澔、王乾盈 (2020)。利用深度學習為基礎的 p 波自動挑波套件。國立中央大學地球科學系暨研究所碩士論文。 Allen, R. V. (1978). Automatic earthquake recognition and timing from single trace. Bulletin of the Seismological Society of America, 68(5):1521–1532. Aybar, B. (2020). What is not machine learning. https://www.slideshare.net/slideshow/what-is-not-machine-learning-burak-aybar/238644733#15. Center, I. D. M. (2024). Data distribution. https://ds.iris.edu/data/distribution/. Chang, Y. H., Hung, S. H., and Chen, Y. L. (2019). A fast algorithm for automatic phase picker and event location: Application to the 2018 Hualien earthquake sequences. Terr. Atmos. Ocean. Sci., 30:435–448. Chen, C. and Holland, A. A. (2016). PhasePApy: A Robust Pure Python Package for Automatic Identification of Seismic Phases. Seismological Research Letters, 87(6):1384–1396. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and Bharath, A. A. (2018). Generative adversarial networks: An overview. IEEE Signal Processing Magazine, 35(1):53–65. Dziewonski, A., Chou, T., and Woodhouse, J. (1981). Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. Journal of Geophysical Research: Solid Earth, 86(B4):2825–2852. Ekström, G., Nettles, M., and Dziewoński, A. M. (2012). The global CMT project 2004– 2010: Centroid-moment tensors for 13,017 earthquakes. Physics of the Earth and Planetary Interiors, 200:1–9. Hardebeck, J. L. and Shearer, P. M. (2003). Using s/p amplitude ratios to constrain the focal mechanisms of small earthquakes. Bulletin of the Seismological Society of America, 93(6):2434–2444. Havskov, J., Voss, P. H., and Ottemöller, L. (2020). Seismological Observatory Software: 30 Yr of SEISAN. Seismological Research Letters, 91(3):1846–1852. Huang, C. M., Chang, L. H., Kuo-Chen, H., and Zhuang, Y. (2023). Seisblue: A deep-learning data processing platform for seismology. In EGU General Assembly Conference Abstracts, pages EGU–13927. Huang, K. (2023). Backpropagation algorithm. https://medium.com/%E4%BA%BA%E5%B7%A5%E6%99%BA%E6%85%A7-%E5%80%92%E5%BA%95%E6%9C%89%E5%A4%9A%E6%99%BA%E6%85%A7/%E5%8F%8D%E5%90%91%E5%82%B3%E6%92%AD%E7%AE%97%E6%B3%95-backpropagation-algorithm-71a1845100cf. Ihianle, I. K., Nwajana, A. O., Ebenuwa, S. H., Otuka, R. I., Owa, K., and Orisatoki, M. O. (2020). A deep learning approach for human activities recognition from multimodal sensing devices. IEEE Access, 8:179028–179038. Jian, P.-R., Tseng, T.-L., Liang, W.-T., and Huang, P.-H. (2018). A new automatic full‐ waveform regional moment tensor inversion algorithm and its applications in the Taiwan area. Bulletin of the Seismological Society of America, 108(2):573–587. Kagan, Y. Y. (1991). 3-d rotation of double-couple earthquake sources. Geophysical Journal International, 106(3):709–716. Kuo-Chen, H., Guan, Z. K., Sun, W. F., Jhong, P. Y., and Brown, D. (2019). Aftershock sequence of the 2018 mw 6.4 Hualien earthquake in eastern Taiwan from a dense seismic array data set. Seismological Research Letters, 90(1):60–67. Mallick, S. (2023). Understanding convolutional neural networks (CNN). https://learnopencv.com/understanding-convolutional-neural-networks-cnn/. Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., and Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature communications, 11(1):3952. Reasenberg, P. and Oppenheimer, D. (1986). FPFIT, FPPLOT and FPPAGE; Fortran computer programs for calculating and displaying earthquake fault-plane solutions. Technical Report 739, US Geological Survey (USGS). Reid, H. F. (1910). The California earthquake of April 18, 1906. Report of the State Earthquake Investigation Commission, 2:16–18. Sanderson, G. (2024). Attention in transformers, visually explained | chapter 6, deep learning. https://www.youtube.com/watch?v=eMlx5fFNoYc. Sun, W.-F., Pan, S.-Y., Huang, C.-M., Guan, Z.-K., Yen, I.-C., Ho, C.-W., Chi, T.-C., Ku, C.-S., Huang, B.-S., Fu, C.-C., and Kuo-Chen, H. (2024). Deep learning-based earthquake catalog reveals the seismogenic structures of the 2022 mw 6.9 Chihshang earthquake sequence. Terrestrial, Atmospheric and Oceanic Sciences, 35(1):5. Tang, K., Xu, D., Liu, H., and Zeng, Z. (2021). Context module based multi-patch hierarchical network for motion deblurring. Neural Processing Letters, 53:211–226. Uchide, T. (2020). Focal mechanisms of small earthquakes beneath the Japanese is-lands based on first-motion polarities picked using deep learning. Geophysical Journal International, 223(3):1658–1671. USGS (2022). Seismotectonic regime earthquake calculator (STREC). https://github.com/usgs/strec. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems, volume 30. Wlaschin, S. (2014). Railway oriented programming. https://fsharpforfunandprofit.com/pipeline/. Zhao, M., Xiao, Z., Zhang, M., Yang, Y., Tang, L., and Chen, S. (2023). Ditingmotion: A deep-learning first-motion-polarity classifier and its application to focal mechanism inversion. Frontiers in Earth Science, 11:1103914. Zhu, W. (2020). Technical background: Classification vs segmentation. https://www.bilibili.com/video/BV19K4y1Y7uC/?spm_id_from=333.337.search-card.all.click&vd_source=58f19edb1780051260726b99d81422b0. Zhu, W. and Beroza, G. C. (2019). Phasenet: a deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1):261–273. Zvornicanin, E. (2023). Understanding k-fold cross-validation. https://www.baeldung.com/cs/k-fold-cross-validation. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94213 | - |
| dc.description.abstract | 應對密集地震網和地震資料量劇增的重大挑戰,本研究注重在應用深度學習技術來提高地震資料處理的自動化程度和效率,尤其是在規模大於 0.8 以上的微震觀測領域的發展上。自 2018 年以來,台灣大學構造地震研究室開發 SeisBlue 系統並在 2020 年開始成功應用在多個案例,達到區域性的近即時地震定位。
本研究致力於開發更完善的第三代系統,目標著重在系統擴展、強化和整合。新開發一個以卷積神經網路為基礎的模組(SeisPolor),用於分類地震連續資料中的 P 波極性,進而用 FPFIT 等方法自動解析地震震源機制。而在強化部分著重將波相到時偵測模型以 PyTorch 改寫以提升系統靈活性,提高模型調整與實驗的開發效率。 研究結果顯示,在自動識別P波極性的模型表現優異,精確率達 95%。將預測極性解析成震源機制,並考量測站方位角與距離的包覆度門檻後,採用 Kagan 測試方法評估預測與真實震源機制解之間的相似性,Kagan 測試方法以最小旋轉角度小於40度為預測正確的標準,震源機制解的結果顯示近 80% 的準確率。此外,在重新設計與訓練的波相到時偵測模型,在 P 波和 S 波都解決提早挑選的現象,並使精確率提升約 8%。 此外,本研究以資料管線為主軸重新設計整體系統的自動化流程,系統在實現過程中廣泛借鑒了資訊工程的先進技術,整合了硬體、系統環境、資料庫、資料管線、模型開發、任務監控以及資料可視化、Web UI 互動等多方面技術。 本研究在原有基礎上達到系統擴展、強化和整合。目前已實現了從地震連續資料處理到挑波、定位、規模計算及震源機制解析的半自動化流程。並經實驗與調整後,大幅提升波相到時偵測模型的精確率。結合軟體技術的優勢,本系統不僅加快了資料處理速度,系統重構後強調的管線化設計,也為未來提供了快速開發的可能性,使模型性能不斷提升。對於地震活躍的台灣,該系統將大幅提升地震觀測的速度與品質,抓回大量小規模地震資訊,以高時空解析度的地震目錄協助評估活動構造。 | zh_TW |
| dc.description.abstract | To address the significant challenges posed by the rapid increase in dense seismic networks and seismic data, this study focuses on applying deep learning techniques to enhance the automation and efficiency of seismic data processing, particularly advancing microseismic monitoring developments(0.8M+). Since 2018, the Structural Seismology Lab(SGYLAB) at National Taiwan University has developed the SeisBlue system, which has been successfully applied in multiple cases since 2020 to achieve regional near-real-time earthquake localization.
This research is dedicated to developing a more refined third-generation system, with an emphasis on system expansion, enhancement, and integration. A key development is a CNN-based module(SeisPolor), designed for classifying P-wave polarity in continuous seismic data, subsequently utilizing the FPFIT method to automatically analyze earthquake focal mechanisms. The enhancement efforts include redesign the phase picking model in PyTorch to improve system flexibility and increase the efficiency of model adjustments and experimental development. The results demonstrate that the model for automatic identification of P-wave polarity performs excellently, with a precision of 97%. By converting the predicted polarities into focal mechanisms and considering coverage thresholds based on station azimuth and distance, the Kagan test method is employed to evaluate the similarity between the predicted and actual focal mechanisms. This method uses a minimum rotation angle of less than 40 degrees as the criterion for a correct prediction, showing that nearly 80% of the focal mechanisms are accurate. Moreover, the redesigned and retrained picking model solved the issue of early picking and showed an 8% increase in precision for both P-wave and S-wave. Furthermore, the study redesigned the overall system automation workflow around a data pipeline, extensively drawing on advanced information engineering technologies. The integration encompasses hardware, system environment, databases, data pipelines, model development, task monitoring, data visualization, and Web UI interaction. Building on the existing foundation, this study achieves system expansion, enhancement, and integration. A semi-automated workflow from continuous seismic data processing to picking, localization, magnitude estimation, and focal mechanism analysis has been realized. Through experiments and adjustments, the picking model's accuracy has been significantly improved. Leveraging software technology advantages, the system not only speeds up data processing but also emphasizes a pipeline design in its reconstruction, providing potential for rapid development and continual performance enhancement. For Taiwan, a region prone to seismic activity, this system can significantly enhance the speed and quality of earthquake monitoring, capturing a substantial amount of small earthquake data. It will assist in the evaluation of active structures through a high spatio-temporal resolution earthquake catalog. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:15:20Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:15:20Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
摘要 ii Abstract iv 致謝 vii 目次 ix 圖次 xiii 表次 xvii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 8 1.2.1 應用深度學習的自動化波相到時偵測 8 1.2.2 SeisBlue 的發展與瓶頸(2022) 8 1.2.3 傳統的震源機制解解析方法 11 1.2.4 應用深度學習的自動化震源機制解解析 12 1.3 論文章節架構 14 第二章 實驗一—SeisPolar 震源機制解模組之方法 15 2.1 SeisPolar 架構 16 2.2 問題定義 17 2.3 資料蒐集 18 2.4 資料前處理 20 2.5 標籤 20 2.6 模型設計 21 2.7 模型訓練和驗證 21 2.8 P 波初動極性解析震源機制解—FPFIT 22 2.9 規模估算—AUTOMAG 24 2.10 第一階段測試—極性分類評估 25 2.11 第二階段測試—震源機制解之準確率評估 26 第三章 實驗一—SeisPolar 震源機制解模組之結果 29 3.1 2018 花蓮地震網(有人工標籤) 30 3.2 2022 池上微震觀測網(有人工標籤) 35 3.3 2023 寶來地震網(無人工標籤) 40 第四章 實驗二—波相到時偵測模型在 PyTorch 框架下重設計與訓練 47 4.1 問題定義 47 4.2 資料蒐集 47 4.3 資料前處理 49 4.4 標籤 49 4.5 模型 50 4.6 模型訓練和驗證 53 4.7 測試結果—2020 和平地震網(有人工標籤) 54 第五章 實驗一和實驗二之討論 57 5.1 解決波相到時提早預測的問題 57 5.2 解析生成對抗式網路(GAN)的損失值更新 59 5.3 分析 P 波初動極性模型的信心門檻以及類別權重 61 5.4 分析模型的學習過程 64 5.5 分析模型設計 67 第六章 實驗三—系統整合與永續 68 6.1 如何提高程式碼的維護性與擴展性 69 6.1.1 重構與管線化—管線導向式的程式碼風格(POP) 69 6.2 如何減少組織中溝通與協作成本 71 6.2.1 程式碼版本控制—Git 71 6.2.2 模型版本控制—MLFlow 71 6.2.3 環境套件版本控制—Docker 72 6.3 如何提高使用者操作的便利性 74 6.3.1 自動化監控任務與問題回朔—Airflow 74 6.3.2 高效的資料儲存與檢視—關聯式資料庫(SQL)和階層式資料格式(HDF5) 75 6.3.3 簡潔的使用者參數配制文件 77 6.3.4 互動式地圖網頁(Web UI) 78 6.4 技術評估與取捨 80 第七章 結論 82 參考文獻 85 附錄 A — 深度學習方法簡介 88 A.1 問題定義 91 A.2 模型設計 92 A.2.1 卷積神經網路(Convolutional Neural Network, CNN) 92 A.2.2 變換器(Transformer) 94 A.2.3 生成對抗網路(Generative Adversarial Network, GAN) 98 A.3 模型超參數(Hyperparameter) 100 A.3.1 批量(Batch) 100 A.3.2 迭代次數(Epoch) 100 A.3.3 損失函數(Loss Function) 101 A.3.4 學習率(Learning Rate) 101 A.3.5 優化器(Optimizer) 101 A.3.6 調度器(Learning Rate Scheduler) 102 A.4 模型性能評估與調整 103 A.4.1 欠擬合與過擬合(Underfitting and Overfitting) 103 A.4.2 模型性能的評估指標 105 附錄 B — 震源機制解之實驗結果補充 107 B.1 2018 花蓮地震網 107 B.2 2022 池上微震觀測網 108 B.3 2023 寶來地震網 109 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 深度學習 | zh_TW |
| dc.subject | 地震監測 | zh_TW |
| dc.subject | 震源機制解 | zh_TW |
| dc.subject | SeisPolar | zh_TW |
| dc.subject | SeisBlue | zh_TW |
| dc.subject | SeisBlue | en |
| dc.subject | SeisPolar | en |
| dc.subject | Focal Mechanism | en |
| dc.subject | Deep Learning | en |
| dc.subject | Seismicity Monitoring | en |
| dc.title | 利用深度學習解析震源機制解以及完善 AI 地震觀測平台 SeisBlue | zh_TW |
| dc.title | Utilizing Deep Learning for Focal Mechanism Analysis and Enhancing the SeisBlue AI Seismic Observation Platform | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 曾泰琳;洪淑蕙;林佩瑩;莊永裕 | zh_TW |
| dc.contributor.oralexamcommittee | Tai-Lin Tseng;Shu-Huei Hung;Pei-Ying Lin;Yung-Yu Zhuang | en |
| dc.subject.keyword | 地震監測,深度學習,SeisBlue,SeisPolar,震源機制解, | zh_TW |
| dc.subject.keyword | Seismicity Monitoring,Deep Learning,SeisBlue,SeisPolar,Focal Mechanism, | en |
| dc.relation.page | 109 | - |
| dc.identifier.doi | 10.6342/NTU202402326 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 地質科學系 | - |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 27.38 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
