Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94205
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳彥仰zh_TW
dc.contributor.advisorMike Y. Chenen
dc.contributor.author鄭家宇zh_TW
dc.contributor.authorChia-Yu Chengen
dc.date.accessioned2024-08-15T16:12:54Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation[1] bHaptic Inc. bhaptics tactosy for arms, 2022.
[2] bHaptic Inc. bhaptics tactvisor, 2022.
[3] C.-Y. Cheng, Y. Chen, S. W. Handani, A. Balabantaray, and M. Y. Chen. Paired-ems: Enhancing electrical muscle stimulation (ems)-based force feedback experience by stimulating both muscles in antagonistic pairs. In Proceedings of the CHI Conference on Human Factors in Computing Systems, CHI ’24, New York, NY, USA, 2024. Association for Computing Machinery.
[4] T. Duente, M. Pfeiffer, and M. Rohs. Zap++: A 20-channel electrical muscle stimulation system for fine-grained wearable force feedback. In Proceedings of the 19th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI ’17, New York, NY, USA, 2017. Association for Computing Machinery.
[5] A. Ebisu, S. Hashizume, and Y. Ochiai. Building a feedback loop between electrical stimulation and percussion learning. In ACM SIGGRAPH 2018 Studio, SIGGRAPH‘18, New York, NY, USA, 2018. Association for Computing Machinery.
[6] I. Evangelidis. Task sensitivity and noise: How mechanical properties of preference elicitation tasks account for differences in preferences across tasks. Decision, 1(1), 2023.
[7] T. Goto, B. Tag, K. Kunze, and T. Dingler. Towards enhancing emotional responses to media using auto-calibrating electric muscle stimulation (ems). In Proceedings of 18 the 9th Augmented Human International Conference, AH ’18, New York, NY, USA, 2018. Association for Computing Machinery.
[8] S. Jain, S. Sharma, and D. Babbar. Star-force: A playful implementation of the jedi-force. In Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’17, page 761–766, New York, NY, USA, 2017. Association for Computing Machinery.
[9] S. Kasahara, J. Nishida, and P. Lopes. Preemptive action: Accelerating human reaction using electrical muscle stimulation without compromising agency. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, CHI’19, page 1–15, New York, NY, USA, 2019. Association for Computing Machinery.
[10] S. Kasahara, K. Takada, J. Nishida, K. Shibata, S. Shimojo, and P. Lopes. Preserving agency during electrical muscle stimulation training speeds up reaction time directly after removing ems. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery.
[11] M. Khamis, N. Schuster, C. George, and M. Pfeiffer. Electrocutscenes: Realistic haptic feedback in cutscenes of virtual reality games using electric muscle stimulation. In Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology, VRST ’19, New York, NY, USA, 2019. Association for Computing Machinery.
[12] J. Knibbe, P. Strohmeier, S. Boring, and K. Hornbæk. Automatic calibration of high density electric muscle stimulation. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., 1(3), sep 2017.
[13] Y. Kurita, T. Ishikawa, and T. Tsuji. Stiffness display by muscle contraction via electric muscle stimulation. IEEE Robotics and Automation Letters, 1(2):1014–1019, 2016. 19
[14] D. Levine and B. Bockstahler. Electrical stimulation. Canine rehabilitation and physical therapy, 2:342–58, 2014.
[15] Y.-H. Lin, Y.-W. Wang, P.-S. Ku, Y.-T. Cheng, Y.-C. Hsu, C.-Y. Tsai, and M. Y. Chen. Hapticseer: A multi-channel, black-box, platform-agnostic approach to detecting video game events for real-time haptic feedback. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, CHI ’21, New York, NY, USA, 2021. Association for Computing Machinery.
[16] S. I. LLC. The thrill of the fight, 2016.
[17] P. Lopes, A. Ion, and P. Baudisch. Impacto: Simulating physical impact by combining tactile stimulation with electrical muscle stimulation. In UIST ’15, pages 11–19, New York, NY, USA, 2015. ACM, Association for Computing Machinery.
[18] P. Lopes, A. Ion, W. Mueller, D. Hoffmann, P. Jonell, and P. Baudisch. Proprioceptive interaction. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, CHI ’15, page 939–948, New York, NY, USA, 2015. Association for Computing Machinery.
[19] P. Lopes, S. You, L.-P. Cheng, S. Marwecki, and P. Baudisch. Providing haptics to walls & heavy objects in virtual reality by means of electrical muscle stimulation. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pages 1471–1482, New York, NY, USA, 2017. Association for Computing Machinery.
[20] P. Lopes, S. You, A. Ion, and P. Baudisch. Adding force feedback to mixed reality experiences and games using electrical muscle stimulation. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, CHI ’18, page 1–13, New York, NY, USA, 2018. Association for Computing Machinery.
[21] P. Lopes, D. Yüksel, F. Guimbretière, and P. Baudisch. Muscle-plotter: An interactive system based on electrical muscle stimulation that produces spatial output. In 20 Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST ’16, page 207–217, New York, NY, USA, 2016. Association for Computing Machinery.
[22] K. Lu and A. Brombacher. Haptic feedback in running: Is it possible for information transfer through electrical muscle signalling? In Proceedings of the Fourteenth International Conference on Tangible, Embedded, and Embodied Interaction, TEI ’20, page 479–485, New York, NY, USA, 2020. Association for Computing Machinery.
[23] J. Nishida and K. Suzuki. Biosync: A paired wearable device for blending kinesthetic experience. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, CHI ’17, page 3316–3327, New York, NY, USA, 2017. Association for Computing Machinery.
[24] J. Nishida, K. Yagi, M. Hassan, and K. Suzuki. Wearable kinesthetic i/o device for sharing wrist joint stiffness. In 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pages 3306–3310, Berlin, Germany, 2019. IEEE Engineering in Medicine and Biology Society (EMBC).
[25] M. Pfeiffer, T. Duente, and M. Rohs. Let your body move: A prototyping toolkit for wearable force feedback with electrical muscle stimulation. In Proceedings of the 18th International Conference on Human-Computer Interaction with Mobile Devices and Services, MobileHCI ’16, page 418–427, New York, NY, USA, 2016. Association for Computing Machinery.
[26] B. A. M. Putra, R. H. Masduchi, D. Tinduh, and I. P. A. Pawana. Upper limb muscles activity during punches in virtual reality exergame on standing and sitting position. Surabaya Physical Medicine and Rehabilitation Journal, 3(1):14–22, 2021.
[27] R. Rosenthal, H. Cooper, L. Hedges, et al. Parametric measures of effect size. The handbook of research synthesis, 621(2):231–244, 1994.21
[28] M. Sakashita, S. Hashizume, and Y. Ochiai. Wrist-mounted haptic feedback for support of virtual reality in combination with electrical muscle stimulation and hanger reflex. In M. Kurosu, editor, Human-Computer Interaction. Recognition and Interaction Technologies, pages 544–553, Cham, 2019. Springer International Publishing.
[29] K. M. Seyri and N. A. Maffiuletti. Effect of electromyostimulation training on muscle strength and sports performance. Strength & Conditioning Journal, 33(1):70–75, 2011.
[30] H. Shoukat, A. Rabail, M. I. Mirza, S. Inam, H. Toor, and S. J. Khan. Comparing two types of punches (jab and cross) on the basis of maximum impact and muscle involvement. In 2020 International Conference on Engineering and Emerging Technologies (ICEET), pages 1–5, IEEE, 2020. IEEE, 2020 International Conference on Engineering and Emerging Technologies (ICEET).
[31] P. Strojnik, A. Kralj, and I. Ursic. Programmed six-channel electrical stimulator for complex stimulation of leg muscles during walking. IEEE Transactions on Biomedical Engineering, BME-26(2):112–116, Feb 1979.
[32] E. Tamaki, T. Miyaki, and J. Rekimoto. Possessedhand: Techniques for controlling human hands using electrical muscles stimuli. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI ’11, page 543–552, New York, NY, USA, 2011. Association for Computing Machinery.
[33] Y. Tanaka, A. Takahashi, and P. Lopes. Interactive benefits from switching electrical to magnetic muscle stimulation. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, UIST ’23, New York, NY, USA, 2023. Association for Computing Machinery.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94205-
dc.description.abstract肌肉電擊刺激 (Electrical Muscle Stimulation, EMS) 已成為一種重要的可穿戴式觸覺回饋技術,能夠模擬多種虛擬環境中的力回饋體驗,例如拳擊衝擊力、虛擬物體的重量以及手推牆時的反作用力。為了模擬這些外力事件,EMS往往刺激使用者實際激活的肌肉對面的肌肉(即拮抗肌),導致不自主的肌肉收縮和與現實世界不同的觸覺感受。在本研究中,我們提出了「Paired-EMS」的方法,同時刺激使用者激活的肌肉和先前EMS刺激的肌肉(即拮抗肌肉對),以增強外力回饋體驗。我們首先進行了一項小型的實驗 (n=8),以幫助設計肌肉對的刺激強度,然後進行了一項使用者體驗實驗,評估「Paired-EMS」與先前EMS方法在靜力 (isometric) 和動力 (isotonic)下使用者操作中的表現。實驗結果 (n=32) 顯示,「Paired-EMS」顯著提高了真實感、和諧感和娛樂性 (p<.05),且舒適度結果相似 (p>.36),總體上有 78% 的參與者更喜歡「Paired-EMS」(p<.01)。zh_TW
dc.description.abstractElectrical Muscle Stimulation (EMS) has emerged as a key wearable haptic feedback technology capable of simulating a wide range of force feedback, such as the impact force of boxing punches, the weight of virtual objects, and the reaction force from pushing on a wall. To simulate these external forces, EMS stimulates the muscles that oppose (i.e. antagonistic to) the actual muscles that users activate, causing involuntary muscle contraction and haptic sensations that differ from real-world experiences. In this work, we propose Paired-EMS which simultaneously stimulates both the muscles that users activate and that prior EMS stimulates (i.e. antagonistic muscle pairs) to enhance the external force feedback experience. We first conducted a small formative study (n=8) to help design the stimulation intensity of muscle pairs, then conducted a user experience study to evaluate Paired-EMS vs. prior EMS approaches for both isometric and isotonic user actions. Study results (n=32) showed that Paired-EMS significantly improved realism, harmony, and entertainment (p<.05) with similar comfort (p>.36), and was overall preferred by 78% of participants (p<.01).en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:12:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:12:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 ii
摘要 iv
Abstract v
1 Introduction 1
2 Related Work 3
3 Formative, Intensity Preference Study 6
3.1 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 Study Procedure, Calibration, and Participants . . . . . . . . . . . . . . . 7
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 User Experience Evaluation 10
4.1 Apparatus, Procedure, and Participants . . . . . . . . . . . . . . . . . . . 10
4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5 Discussion 15
6 Conclusions 17
Bibliography 18
-
dc.language.isoen-
dc.subject虛擬實境zh_TW
dc.subject人機互動zh_TW
dc.subject觸覺回饋裝置zh_TW
dc.subjectHaptic devicesen
dc.subjectHuman-centered computingen
dc.subjectVirtual Realityen
dc.titlePaired-EMS:通過刺激拮抗肌肉對增強基於電擊肌肉刺激(EMS)的力回饋體驗zh_TW
dc.titlePaired-EMS: Enhancing Electrical Muscle Stimulation (EMS)-based Force Feedback Experience by Stimulating Both Muscles in Antagonistic Pairsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee鄭龍磻;余能豪;蔡欣叡zh_TW
dc.contributor.oralexamcommitteeLung-Pan Cheng;Neng-Hao Yu;Hsin-Ruey Tsaien
dc.subject.keyword人機互動,虛擬實境,觸覺回饋裝置,zh_TW
dc.subject.keywordHuman-centered computing,Virtual Reality,Haptic devices,en
dc.relation.page22-
dc.identifier.doi10.6342/NTU202402859-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept資訊工程學系-
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf2.11 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved