Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94204
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖文正zh_TW
dc.contributor.advisorWen-Cheng Liaoen
dc.contributor.author蔡竣帆zh_TW
dc.contributor.authorChun-Fan Tsaien
dc.date.accessioned2024-08-15T16:12:36Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-05-
dc.identifier.citation參考文獻
1. Meng, Q. and D.D.L. Chung, Battery in the form of a cement-matrix composite. Cement and Concrete Composites, 2010. 32(10): p. 829-839.
2. Madhavi, T.C. and S. Annamalai, Electrical conductivity of concrete. ARPN J. Eng. Appl. Sci, 2016. 11(9): p. 5979-5982.
3. McCarter, W.J., G. Starrs, and T.M. Chrisp, Electrical conductivity, diffusion, and permeability of Portland cement-based mortars. Cement and Concrete Research, 2000. 30(9): p. 1395-1400.
4. Azarsa, P. and R. Gupta, Electrical resistivity of concrete for durability evaluation: a review. Advances in Materials Science and Engineering, 2017. 2017(1): p. 8453095.
5. Layssi, H., et al., Electrical resistivity of concrete. Concrete international, 2015. 37(5): p. 41-46.
6. Dames, E., V. Rohani, and L. Fulcheri, Chapter Five - Plasma chemistry and plasma reactors for turquoise hydrogen and carbon nanomaterials production, in Advances in Chemical Engineering, M. Pelucchi and M. Maestri, Editors. 2023, Academic Press. p. 253-317.
7. Abolhasani, A., et al., Towards new generation of electrode-free conductive cement composites utilizing nano carbon black. Construction and Building Materials, 2022. 323: p. 126576.
8. Li, H., H.-g. Xiao, and J.-p. Ou, Effect of compressive strain on electrical resistivity of carbon black-filled cement-based composites. Cement and Concrete Composites, 2006. 28(9): p. 824-828.
9. Klueppel, M., The Role of Disorder in Filler Reinforcement of Elastomers on Various Length Scales. 2003. p. 1-86.
10. Nalon, G.H., et al., Effects of different kinds of carbon black nanoparticles on the piezoresistive and mechanical properties of cement-based composites. Journal of Building Engineering, 2020. 32: p. 101724.
11. Zhang, Q., et al., Mechanisms of carbon black in multifunctional cement matrix: Hydration and microstructure perspectives. Construction and Building Materials, 2022. 346: p. 128455.
12. Baker, F.S., et al., Activated Carbon, in Kirk‐Othmer Encyclopedia of Chemical Technology. 2000.
13. Xie, P., P. Gu, and J.J. Beaudoin, Electrical percolation phenomena in cement composites containing conductive fibres. Journal of Materials Science, 1996. 31(15): p. 4093-4097.
14. Banthia, N., S. Djeridane, and M. Pigeon, Electrical resistivity of carbon and steel micro-fiber reinforced cements. Cement and Concrete Research, 1992. 22(5): p. 804-814.
15. Wen, S. and D.D.L. Chung, Partial replacement of carbon fiber by carbon black in multifunctional cement–matrix composites. Carbon, 2007. 45(3): p. 505-513.
16. Wang, Z., et al., Principles, properties and applications of smart conductive cement-based composites: A state-of-the-art review. Construction and Building Materials, 2023. 408: p. 133569.
17. MOTOMA. History and evolution of rechargeable batteries. 2024 [cited 2024 02/19]; Available from: https://www.motoma.com/industry/history-and-evolution-of-rechargeable-batteries.html.
18. Zhang, E.Q. and L. Tang, Rechargeable Concrete Battery. Buildings, 2021. 11(3).
19. Kötz, R. and M. Carlen, Principles and applications of electrochemical capacitors. Electrochimica Acta, 2000. 45(15): p. 2483-2498.
20. Zhang, J., J. Xu, and D. Zhang, A Structural Supercapacitor Based on Graphene and Hardened Cement Paste. Journal of The Electrochemical Society, 2016. 163(3): p. E83.
21. Chanut, N., et al., Carbon–cement supercapacitors as a scalable bulk energy storage solution. Proceedings of the National Academy of Sciences, 2023. 120(32): p. e2304318120.
22. Fan, L., et al., Graphite anode for a potassium‐ion battery with unprecedented performance. Angewandte Chemie, 2019. 131(31): p. 10610-10615.
23. 魏小勝, et al., 鋼纖維水泥基材料的導電特性和水化特性. 中國全文核心期刊, 2006. 第四期: p. p11~p13,p51.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94204-
dc.description.abstract為了達成2050淨零碳排的目標,必須提升再生能源在發電結構中的占比,然而由於使用再生能源進行發電上往往具有不穩定的特性,因此需要在電力系統中設置儲能系統(Energy Storage System, ESS),在用電量少的時候儲存電力,用電量多的時候釋放電力,使非再生能源在發電結構中占比能夠下降。傳統的ESS經常使用電池作為儲能元件,不僅價格較高,也需要額外空間進行存放,在使用一定年限後的廢棄問題也是難以解決的,因此嘗試尋找其他方式進行電力儲存就成為人類面對的課題之一。
水泥是人類使用最多的原料之一,一般來說硬固後的水泥電阻極高,然而若是將碳黑、碳纖維等材料添加於水泥中,能使水泥的電阻大幅降低,作為導電介質使用。
因此本研究將探討將導電水泥基材料與儲能元件的原理進行結合的可行性,並且研究並開發儲能元件的配比、製程與實驗方式。本研究進行了兩個主要的研究方向,分別為水泥基電池與水泥基電容。在水泥基電池的部分以鎳鐵電池作為原理,結合導電水泥砂漿,開發以水泥作為導電介質的可充電電池;而在水泥基電容的部分,則是以電雙層電容作為原理,以加入碳黑、碳纖維、活性碳的導電水泥漿與電解液進行製造。
水泥基電池在進行實驗過後,發現其儲能效果不符預期,且電池構造複雜難以提升製作效率及穩定性,因此在本研究的後半段將研究重心轉往構造簡易的水泥基電容,針對電解液種類、濃度、電容尺寸、磨粉與否、碳材料添加比例進行研究,釐清上述參數與水泥基電容性能的相關性,作為未來的水泥基電容設計及研究方向之參考。
zh_TW
dc.description.abstractTo achieve the goal of carbon neutrality by 2050, it is necessary to increase the proportion of renewable energy in power generation. However, due to the instability of renewable energy in power generation, Energy Storage Systems(ESS) need to be installed in the power system to store electricity during periods of low demand and release it during periods of high demand. This allows for a reduction in the share of non-renewable energy in power generation. Traditional ESS frequently use batteries as storage components, which are not only expensive but also require additional space for storage, and their disposal after a certain lifespan poses challenges. Therefore, finding alternative methods for electricity storage has become one of the key issues.
Cement is one of the most widely used materials. Generally, hardened cement is a poor conductor of electricity. However, by adding materials such as carbon black or carbon fibers to cement, its resistance can be significantly reduced, enabling it to be used as a conductive medium.
This study explores the feasibility of combining conductive cement with the theory of energy storage components, and investigates the formulation, process, and experimental methods for developing these energy storage devices. The research focuses on two main directions: cement-based batteries and cement-based capacitors. For cement-based batteries, nickel-iron batteries are used as the theory, combined with conductive cement mortar to develop a rechargeable battery. For cement-based capacitors, electric double layer capacitors are used as the theory, with conductive cement paste containing carbon black, carbon fibers, and activated carbon, along with electrolytes, being used for manufacturing.
Experimental results for the cement-based battery revealed that its energy storage performance was not as expected, and the complex structure of the battery made it difficult to improve manufacturing efficiency and stability. Therefore, the latter part of this research shifts focus on the simpler-structured cement-based capacitors. The study investigates the relationship between electrolytes types and concentrations, capacitor sizes, grinding or not, and the proportion of added carbon materials. From their effects on the performance of cement-based capacitors, it can provide a reference for future cement-based capacitor design and research directions.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:12:36Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:12:36Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
謝辭 I
摘要 III
Abstract IV
目次 VI
圖次 XI
表次 XVI
第一章、緒論 1
1.1 研究動機與目的 1
1.2 研究範圍與內容 2
1.3 研究流程圖 4
第二章、文獻回顧 5
2.1 水泥基材料電學性質 5
2.1.1 水泥基材料導電機理 5
2.1.2 水泥基材料電阻率量測方式 6
2.2 組成材料 8
2.2.1 碳黑 8
2.2.1.1 概述 8
2.2.1.2 碳黑含量對水泥基材料電阻率之影響 10
2.2.1.3 碳黑形狀對水泥基材料電阻率之影響 12
2.2.1.4 碳黑對水泥基材料工作性之影響 14
2.2.2 活性碳 15
2.2.3 碳纖維 16
2.2.3.1 概述 16
2.2.3.2 碳纖維含量對水泥基材料電阻率之影響 17
2.2.3.3 碳纖維長度對水泥基材料電阻率之影響 19
2.2.3.4 碳纖維對水泥基材料工作性之影響 20
2.2.3.5 碳纖維與碳黑的交互機制 20
2.2.4 甲基纖維素 21
2.2.4.1 概述 21
2.2.4.2 分散機理 22
2.3 可充電電池 23
2.3.1 概述 23
2.3.2 水泥基電池 24
2.4 超級電容 26
2.4.1 基本原理 26
2.4.2 水泥基電容 27
第三章、實驗計畫 34
3.1 水泥基電池 34
3.1.1 實驗內容 34
3.1.2 實驗材料 34
3.1.3 實驗儀器設備 39
3.1.4 實驗設計 40
3.1.4.1 電池配比 40
3.1.4.2 試體製作 42
3.1.4.3 測量設備製作 44
3.1.5 實驗項目 45
3.2 水泥基電容 47
3.2.1 實驗內容 47
3.2.2 實驗材料 48
3.2.3 實驗儀器設備 51
3.2.4 實驗設計 51
3.2.4.1 導電水泥漿配比 51
3.2.4.2 試體製作 55
3.2.5 循環伏安法 56
3.2.5.1 實驗原理 56
3.2.5.2 實驗設定 58
3.2.6 恆流充放電法 60
3.2.6.1 實驗原理 60
3.2.6.2 實驗設定 62
第四章、實驗結果 65
4.1 水泥基電池 65
4.1.1 7天齡期 65
4.1.2 28天齡期 66
4.2 水泥基電容 68
4.2.1 第一階段試驗:電解液成分與濃度、電容厚度探討 68
4.2.1.1 電容重量 68
4.2.1.2 比電容值 69
4.2.1.3 能量密度 72
4.2.1.4 功率密度 76
4.2.2 第二階段試驗:電容配比探討 77
4.2.2.1 電容重量 77
4.2.2.2 比電容值 78
4.2.2.3 能量密度 82
4.2.2.4 功率密度 86
第五章、分析與討論 89
5.1 水泥基電池 89
5.1.1 試體製作方法比較 89
5.1.2 齡期與能量密度的關係 91
5.1.3 水泥基電池研發可行性討論 92
5.2 水泥基電容 92
5.2.1 影響水泥基電容性能的試體參數 92
5.2.1.1 電容厚度 92
5.2.1.2 電解液濃度 93
5.2.1.3 電解液種類 95
5.2.1.4 活性碳添加 96
5.2.1.5 水灰比 96
5.2.1.6 碳纖維添加 97
5.2.1.7 磨粉與否 98
5.2.2 試驗方法對水泥基電容性能之影響 98
第六章、結論與建議 100
6.1 結論 100
6.2 建議 101
參考文獻 103
附錄A. 水泥基電容第一階段試驗循環伏安圖 105
附錄B. 水泥基電容第一階段試驗恆流充放電圖 111
附錄C. 水泥基電容第一階段試驗電容重量量測結果 117
附錄D. 水泥基電容第一階段試驗電容值回歸圖 118
附錄E. 水泥基電容第一階段試驗比電容值計算結果 126
附錄F. 水泥基電容第一階段試驗能量密度計算結果 127
附錄G. 水泥基電容第一階段試驗功率密度計算結果 128
附錄H. 水泥基電容第二階段試驗循環伏安圖 129
附錄I. 水泥基電容第二階段試驗恆流充放電圖 141
附錄J. 水泥基電容第二階段試驗電容重量量測結果 152
附錄K. 水泥基電容第二階段試驗電容值回歸圖 153
附錄L. 水泥基電容第二階段試驗比電容值計算結果 168
附錄M. 水泥基電容第二階段試驗能量密度計算結果 170
附錄N. 水泥基電容第二階段試驗功率密度計算結果 172
-
dc.language.isozh_TW-
dc.subject可充電電池zh_TW
dc.subject比電容值zh_TW
dc.subject能量密度zh_TW
dc.subject碳材料zh_TW
dc.subject導電水泥基材料zh_TW
dc.subject超級電容zh_TW
dc.subjectcarbon materialsen
dc.subjectspecific capacitanceen
dc.subjectsupercapacitoren
dc.subjectrechargeable batteryen
dc.subjectenergy densityen
dc.subjectconductive cement-based materialsen
dc.title水泥基電池電容儲能元件研發之先導性研究zh_TW
dc.titleFeasibility Study on the Development of Cement-based Battery and Capacitor Energy Storage Devicesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹穎雯;胡瑋秀;鄭如忠zh_TW
dc.contributor.oralexamcommitteeYin-Wen Chan;Wei-Hsiu Hu;Ru-Jong Jengen
dc.subject.keyword可充電電池,超級電容,導電水泥基材料,碳材料,能量密度,比電容值,zh_TW
dc.subject.keywordrechargeable battery,supercapacitor,conductive cement-based materials,carbon materials,energy density,specific capacitance,en
dc.relation.page173-
dc.identifier.doi10.6342/NTU202403439-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved