請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94202完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃念祖 | zh_TW |
| dc.contributor.advisor | Nien-Tsu Huang | en |
| dc.contributor.author | 顧啟耀 | zh_TW |
| dc.contributor.author | Chi-Yao Ku | en |
| dc.date.accessioned | 2024-08-15T16:11:59Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | [1] J. B. Phyo et al., "Label-Free SERS Analysis of Urine Using a 3D-Stacked AgNW-Glass Fiber Filter Sensor for the Diagnosis of Pancreatic Cancer and Prostate Cancer," Analytical Chemistry, vol. 93, no. 8, pp. 3778-3785, 2021/03/02 2021, doi: 10.1021/acs.analchem.0c04200.
[2] W. Wang, S. Kang, and P. J. Vikesland, "Surface-Enhanced Raman Spectroscopy of Bacterial Metabolites for Bacterial Growth Monitoring and Diagnosis of Viral Infection," Environmental Science & Technology, vol. 55, no. 13, pp. 9119-9128, 2021/07/06 2021, doi: 10.1021/acs.est.1c02552. [3] A. Haddad, M. A. Comanescu, O. Green, T. A. Kubic, and J. R. Lombardi, "Detection and Quantitation of Trace Fentanyl in Heroin by Surface-Enhanced Raman Spectroscopy," Analytical Chemistry, vol. 90, no. 21, pp. 12678-12685, 2018/11/06 2018, doi: 10.1021/acs.analchem.8b02909. [4] L. He, T. Chen, and T. P. Labuza, "Recovery and quantitative detection of thiabendazole on apples using a surface swab capture method followed by surface-enhanced Raman spectroscopy," Food Chemistry, vol. 148, pp. 42-46, 2014/04/01/ 2014, doi: https://doi.org/10.1016/j.foodchem.2013.10.023. [5] N. Choi et al., "Integrated SERS-Based Microdroplet Platform for the Automated Immunoassay of F1 Antigens in Yersinia pestis," Analytical Chemistry, vol. 89, no. 16, pp. 8413-8420, 2017/08/15 2017, doi: 10.1021/acs.analchem.7b01822. [6] S. Azimi and A. Docoslis, "LESS is more: Achieving sensitive protein detection by combining electric field effects and surface-enhanced Raman scattering," Sensors and Actuators B: Chemical, vol. 393, p. 134250, 2023/10/15/ 2023, doi: https://doi.org/10.1016/j.snb.2023.134250. [7] R. Panneerselvam, H. Sadat, E.-M. Höhn, A. K. Das, H. Noothalapati, and D. Belder, "Microfluidics and surface-enhanced Raman spectroscopy, a win-win combination?," Lab on a chip, 2022. [8] M. Becker, C. Budich, V. Deckert, and D. Janasek, "Isotachophoretic free-flow electrophoretic focusing and SERS detection of myoglobin inside a miniaturized device," Analyst, 10.1039/B816717F vol. 134, no. 1, pp. 38-40, 2009, doi: 10.1039/B816717F. [9] W. R. Premasiri, J. C. Lee, A. Sauer-Budge, R. Théberge, C. E. Costello, and L. D. Ziegler, "The biochemical origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS," Analytical and Bioanalytical Chemistry, vol. 408, no. 17, pp. 4631-4647, 2016/07/01 2016, doi: 10.1007/s00216-016-9540-x. [10] B. Krafft, A. Tycova, R. D. Urban, C. Dusny, and D. Belder, "Microfluidic device for concentration and SERS-based detection of bacteria in drinking water," ELECTROPHORESIS, vol. 42, no. 1-2, pp. 86-94, 2021/01/01 2021, doi: https://doi.org/10.1002/elps.202000048. [11] A. Walter, A. März, W. Schumacher, P. Rösch, and J. Popp, "Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device," Lab on a Chip, 10.1039/C0LC00536C vol. 11, no. 6, pp. 1013-1021, 2011, doi: 10.1039/C0LC00536C. [12] J. Zhuang et al., "SERS-based CRISPR/Cas assay on microfluidic paper analytical devices for supersensitive detection of pathogenic bacteria in foods," Biosensors and Bioelectronics, vol. 207, p. 114167, 2022/07/01/ 2022, doi: https://doi.org/10.1016/j.bios.2022.114167. [13] K.-W. Chang, H.-W. Cheng, J. Shiue, J.-K. Wang, Y.-L. Wang, and N.-T. Huang, "Antibiotic Susceptibility Test with Surface-Enhanced Raman Scattering in a Microfluidic System," Analytical Chemistry, vol. 91, no. 17, pp. 10988-10995, 2019/09/03 2019, doi: 10.1021/acs.analchem.9b01027. [14] C. C. Liao, H. K. Huang, Y. Z. Chen, and N. T. Huang, "The Microfluidic Microwell Device Integrating Surface Enhanced Raman Scattering for Bacteria Enrichment and in Situ Antibiotic Susceptibility Test," in 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS), 18-22 Jan. 2020 2020, pp. 1048-1051, doi: 10.1109/MEMS46641.2020.9056435. [15] S.-J. Lin et al., "An antibiotic concentration gradient microfluidic device integrating surface-enhanced Raman spectroscopy for multiplex antimicrobial susceptibility testing," Lab on a Chip, 10.1039/D2LC00012A vol. 22, no. 9, pp. 1805-1814, 2022, doi: 10.1039/D2LC00012A. [16] A. Mühlig et al., "LOC-SERS: A Promising Closed System for the Identification of Mycobacteria," Analytical Chemistry, vol. 88, no. 16, pp. 7998-8004, 2016/08/16 2016, doi: 10.1021/acs.analchem.6b01152. [17] Y. Liu, G. Su, W. Wang, H. Wei, and L. Dang, "A novel multifunctional SERS microfluidic sensor based on ZnO/Ag nanoflower arrays for label-free ultrasensitive detection of bacteria," Analytical Methods, 10.1039/D4AY00018H 2024, doi: 10.1039/D4AY00018H. [18] H. Hong, J. M. Song, and E. Yeom, "Quantitative study for control of air–liquid segmented flow in a 3D-printed chip using a vacuum-driven system," Scientific Reports, vol. 12, no. 1, p. 8986, 2022/05/28 2022, doi: 10.1038/s41598-022-13165-6. [19] Y. Song, M. Baudoin, P. Manneville, and C. N. Baroud, "The air–liquid flow in a microfluidic airway tree," Medical Engineering & Physics, vol. 33, no. 7, pp. 849-856, 2011/09/01/ 2011, doi: https://doi.org/10.1016/j.medengphy.2010.10.001. [20] D. Huh et al., "Use of Air-Liquid Two-Phase Flow in Hydrophobic Microfluidic Channels for Disposable Flow Cytometers," Biomedical Microdevices, vol. 4, no. 2, pp. 141-149, 2002/05/01 2002, doi: 10.1023/A:1014691416614. [21] Y. Kazoe, T. Matsuno, I. Yamashiro, K. Mawatari, and T. Kitamori, "Transport of a Micro Liquid Plug in a Gas-Phase Flow in a Microchannel," Micromachines, vol. 9, no. 9, doi: 10.3390/mi9090423. [22] T. Ishida, D. McLaughlin, Y. Tanaka, and T. Omata, "First-come-first-store microfluidic device of droplets using hydrophobic passive microvalves," Sensors and Actuators B: Chemical, vol. 254, pp. 1005-1010, 2018/01/01/ 2018, doi: https://doi.org/10.1016/j.snb.2017.07.154. [23] K. Kobayashi and H. Onoe, "Microfluidic-based flexible reflective multicolor display," Microsystems & Nanoengineering, vol. 4, no. 1, p. 17, 2018/07/16 2018, doi: 10.1038/s41378-018-0018-1. [24] S. Hao et al., "Progress in adsorptive membranes for separation – A review," Separation and Purification Technology, vol. 255, p. 117772, 01/15 2021, doi: 10.1016/j.seppur.2020.117772. [25] B. Daelemans et al., "Adsorptive separation using self-assembly on graphite: from nanoscale to bulk processes," Chemical Science, 10.1039/D2SC01354A vol. 13, no. 31, pp. 9035-9046, 2022, doi: 10.1039/D2SC01354A. [26] M. Pagliai, S. Caporali, M. Muniz-Miranda, G. Pratesi, and V. Schettino, "SERS, XPS, and DFT Study of Adenine Adsorption on Silver and Gold Surfaces," The Journal of Physical Chemistry Letters, vol. 3, no. 2, pp. 242-245, 2012/01/19 2012, doi: 10.1021/jz201526v. [27] K.-H. Cho, J. Choo, and S.-W. Joo, "Tautomerism of thymine on gold and silver nanoparticle surfaces: surface-enhanced Raman scattering and density functional theory calculation study," Journal of Molecular Structure, vol. 738, no. 1, pp. 9-14, 2005/03/14/ 2005, doi: https://doi.org/10.1016/j.molstruc.2004.11.001. [28] B. Giese and D. McNaughton, "Surface-Enhanced Raman Spectroscopic Study of Uracil. The Influence of the Surface Substrate, Surface Potential, and pH," The Journal of Physical Chemistry B, vol. 106, no. 6, pp. 1461-1470, 2002/02/01 2002, doi: 10.1021/jp011986h. [29] M. R. Bailey, R. S. Martin, and Z. D. Schultz, "Role of Surface Adsorption in the Surface-Enhanced Raman Scattering and Electrochemical Detection of Neurotransmitters," The Journal of Physical Chemistry C, vol. 120, no. 37, pp. 20624-20633, 2016/09/22 2016, doi: 10.1021/acs.jpcc.6b01196. [30] K. J. I. Ember et al., "Raman spectroscopy and regenerative medicine: a review," npj Regenerative Medicine, vol. 2, no. 1, p. 12, 2017/05/15 2017, doi: 10.1038/s41536-017-0014-3. [31] Z. Xu et al., "Topic Review: Application of Raman Spectroscopy Characterization in Micro/Nano-Machining," (in eng), Micromachines (Basel), vol. 9, no. 7, Jul 21 2018, doi: 10.3390/mi9070361. [32] S. D. George, "Surface-Enhanced Raman Scattering Substrates: Fabrication, Properties, and Applications," in Self-standing Substrates: Materials and Applications, Inamuddin, R. Boddula, and A. M. Asiri Eds. Cham: Springer International Publishing, 2020, pp. 83-118. [33] L. Zhang et al., "Liquid/air dynamic behaviors and regulation mechanisms for bioinspired surface," Applied Physics Reviews, vol. 9, no. 4, p. 041315, 2022, doi: 10.1063/5.0102883. [34] L. Ming, Z. Fusheng, Z. Jianbo, Q. Ji, L. Jing, and S. Wei-Chuan, "Microfluidic surface-enhanced Raman scattering sensor with monolithically integrated nanoporous gold disk arrays for rapid and label-free biomolecular detection," Journal of Biomedical Optics, vol. 19, no. 11, p. 111611, 7/1 2014, doi: 10.1117/1.JBO.19.11.111611. [35] H.-K. Lee, S.-I. Chang, and E. Yoon, "A Flexible Polymer Tactile Sensor: Fabrication and Modular Expandability for Large Area Deployment," Microelectromechanical Systems, Journal of, vol. 15, pp. 1681-1686, 01/01 2007, doi: 10.1109/JMEMS.2006.886021. [36] 趙伯宣, "微流道與微流井陣列之表面增強拉曼散射平台結合機器學習以進行抗生素輔助之快速細菌鑑別," 碩士, 生醫電子與資訊學研究所, 國立臺灣大學, 台北市, 2022. [Online]. Available: https://hdl.handle.net/11296/42gec4 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94202 | - |
| dc.description.abstract | 表面增強拉曼光譜(SERS)在這近50年間常被應用於細菌鑑別的檢測,這項技術在這個領域提供了各種生物分子組成資訊,像是腺嘌呤、次黃嘌呤、脲嘧啶與其他嘌呤的代謝產物,但相同或是類似結構的分子光譜會重疊在一起或者被親和力較大的分子所覆蓋,所以我們提供了一種吸附性分離的晶片,結合了表面增強拉曼光譜的量測技術與氣液微流道分離複雜溶液中的多重分子,當使用壓力幫浦提供穩定的脈衝流速的同時,液珠會流進微流道中的液珠停留區中等待特定的時間和表面增強拉曼光譜基板相互作用進行吸附性分離,由於親和力不同,含有多個分子的溶液可以依序被分離到不同的井中並使用表面增強拉曼光譜檢測。在初步結果中,我們設計了不同的流道寬度設計,發現0.4 mm的流道寬度設計能減少溶液殘留,也優化3分鐘的反應時間以及300 μm的流道寬度能觀察10-5到10-6 M濃度的腺嘌呤衰減曲線。將腺嘌呤以及脲嘧啶做不同比例混和之後,可觀察到脲嘧啶的訊號在一開始被腺嘌呤的訊號所屏蔽,但在使用微流道系統之後,脲嘧啶的訊號會被顯現出來,驗證了吸附性分離的能力。在主成分分析之中,與傳統方法做相比,不同細菌上清液可以被清晰的分群,展現它細菌鑑別的能力。因此這個微流道平台可用於鑑別不同菌種的細菌,提供對含有多重分析物溶液的見解,突破了傳統表面增強拉曼光譜檢測的限制。 | zh_TW |
| dc.description.abstract | Surface-enhanced Raman Spectroscopy (SERS) has been used to detect and recognize bacteria for five decades. This technique supplies information about the components of different biomolecules, such as adenine, hypoxanthine, uracil, and other purine derivatives. However, the SERS signals of compounds with similar structures would overlap together or be surpassed by the one with strong affinity. We proposed an adsorptive separation method that combines the SERS technique with air-liquid microfluidics to separate multiple molecules in complex solutions. Adsorptive separation occurred when the droplet flowed into different wells in the air-liquid microfluidics, while the pressure pump supplied the stable pressure and impulse wave of flow rate. Thus, the solution containing multiple molecules could sequentially be separated into different wells due to the different affinity. In the results, we designed channels with different widths and found that a channel width of 0.4 mm can save the volume loss. We also discovered that a reaction time of 3 minutes and a channel width of 300 μm allowed us to observe the attenuation curve of adenine concentrations from 10-5 to 10-6 M. After mixing adenine and uracil in different proportions, we observed that the signal of uracil was initially masked by the signal of adenine. However, using our microfluidic system, the signal of uracil could be revealed, confirming the capability of adsorptive separation. In the principal component analysis (PCA), different kinds of bacterial supernatants could be clustered clearly compared to the traditional method, showing the ability of bacteria identification. Therefore, this microfluidic platform helps us to distinguish the different species of bacteria, and it also can provide insights into the multiplex analytes contained solution, breaking the limitation of traditional SERS detection. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:11:59Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:11:59Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 摘要 ii Abstract iii Contents iv List of Figures vi List of Tables xi Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Literature Review 3 1.2.1 SERS in Microfluidic for Bacteria Identification 3 1.2.2 The Arts of Air-liquid Microfluidics 8 1.2.3 Adsorptive Separation and Bacterial Supernatant 15 1.3 Research Motivation 18 Chapter 2 Theory 19 2.1 Raman Scattering 19 2.2 SERS Theory 20 2.3 The Behavior of the Air-Liquid Interface 22 Chapter 3 Materials and Methods 24 3.1 Reagents 24 3.2 Bacteria Incubation and Supernatant Extraction 24 3.3 Device Design and Fabrication 25 3.3.1 Mold Fabrication 27 3.3.2 PDMS Chip Fabrication 27 3.4 Combination of SERS Substrate and PDMS Chip 28 3.5 Pressure Pumping System 29 3.6 The Optical and Fluorescent Microscope 31 3.7 SERS Measurement 31 3.7.1 SERS Substrate 31 3.7.2 Raman Microscope Setup 32 3.7.3 Data Processing 33 3.8 System Setup 33 Chapter 4 Results and Discussion 35 4.1 Mold Fabrication 35 4.2 Burst Pressure Experiment in Microfluidic Device 35 4.3 Optimization of Microfluidic Device Geometry 36 4.4 Adsorption of Single Analyte 40 4.4.1 Adsorption Time Evaluation 40 4.4.2 Channel Height Evaluation 42 4.4.3 Adsorption with Different Compounds 45 4.5 Competitive Adsorption of Two Analytes 48 4.6 Bacteria Identification by Microfluidic Device 50 4.7 Principal Component Analysis (PCA) 52 4.8 Machine Learning Method of Supporting Vector Machine (SVM) 53 Chapter 5 Conclusions 55 Chapter 6 Future Work 56 REFERENCE 58 | - |
| dc.language.iso | en | - |
| dc.subject | 表面增強拉曼光譜 | zh_TW |
| dc.subject | 氣液微流道 | zh_TW |
| dc.subject | 細菌鑑別 | zh_TW |
| dc.subject | Bacteria Identification | en |
| dc.subject | Air-liquid Microfluidics | en |
| dc.subject | SERS | en |
| dc.title | 整合氣液微流道與表面增強拉曼光譜基板進行吸附性代謝物分離之細菌鑑別 | zh_TW |
| dc.title | Integration of Air-liquid Microfluidics and SERS Substrate for Bacteria Identification Based on Adsorptive Separation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 王玉麟;王俊凱;蔣雅郁 | zh_TW |
| dc.contributor.oralexamcommittee | Yuh-Lin Wang;Juen-Kai Wang;Ya-Yu Chiang | en |
| dc.subject.keyword | 氣液微流道,表面增強拉曼光譜,細菌鑑別, | zh_TW |
| dc.subject.keyword | Air-liquid Microfluidics,SERS,Bacteria Identification, | en |
| dc.relation.page | 60 | - |
| dc.identifier.doi | 10.6342/NTU202403534 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | - |
| 顯示於系所單位: | 生醫電子與資訊學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 5.28 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
