請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94200完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張麗冠 | zh_TW |
| dc.contributor.advisor | Li-Kwan Chang | en |
| dc.contributor.author | 胡家瑜 | zh_TW |
| dc.contributor.author | Jia-Yu Hu | en |
| dc.date.accessioned | 2024-08-15T16:11:22Z | - |
| dc.date.available | 2024-08-16 | - |
| dc.date.copyright | 2024-08-15 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | Adamson, A. L., Darr, D., Holley-Guthrie, E., Johnson, R. A., Mauser, A., Swenson, J., & Kenney, S. (2000, Feb). Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol, 74(3), 1224-1233.
Al Ojaimi, M., Salah, A., & El-Hattab, A. W. (2022, Sep 16). Mitochondrial Fission and Fusion: Molecular Mechanisms, Biological Functions, and Related Disorders. Membranes (Basel), 12(9). Almasan, A., Yin, Y., Kelly, R. E., Lee, E. Y., Bradley, A., Li, W., Bertino, J. R., & Wahl, G. M. (1995, Jun 6). Deficiency of retinoblastoma protein leads to inappropriate S-phase entry, activation of E2F-responsive genes, and apoptosis. Proc Natl Acad Sci U S A, 92(12), 5436-5440. Baer, R., Bankier, A., Biggin, M., Deininger, P., Farrell, P., Gibson, T., Hatfull, G., Hudson, G., Satchwell, S., & Seguin, C. (1984). DNA sequence and expression of the B95-8 Epstein—Barr virus genome. Nature, 310(5974), 207-211. Barbier, V., Lang, D., Valois, S., Rothman, A. L., & Medin, C. L. (2017, Jan). Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission. Virology, 500, 149-160. Bertani, G. (1951, Sep). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. J Bacteriol, 62(3), 293-300. Boya, P., Pauleau, A. L., Poncet, D., Gonzalez-Polo, R. A., Zamzami, N., & Kroemer, G. (2004, Dec 6). Viral proteins targeting mitochondria: controlling cell death. Biochim Biophys Acta, 1659(2-3), 178-189. Bu, G.-L., Xie, C., Kang, Y.-F., Zeng, M.-S., & Sun, C. (2022). How EBV infects: the tropism and underlying molecular mechanism for viral infection. Viruses, 14(11), 2372. Burke, A., Yen, T., Shekitka, K., & Sobin, L. (1990). Lymphoepithelial carcinoma of the stomach with Epstein-Barr virus demonstrated by polymerase chain reaction. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc, 3(3), 377-380. Burkitt, D. (1958). A sarcoma involving the jaws in African children. British journal of surgery, 46(197), 218-223. Burkitt, D. (1962). A children's cancer dependent on climatic factors. Calderwood, M. A., Holthaus, A. M., & Johannsen, E. (2008, Sep). The Epstein-Barr virus LF2 protein inhibits viral replication. J Virol, 82(17), 8509-8519. Calderwood, M. A., Venkatesan, K., Xing, L., Chase, M. R., Vazquez, A., Holthaus, A. M., Ewence, A. E., Li, N., Hirozane-Kishikawa, T., Hill, D. E., Vidal, M., Kieff, E., & Johannsen, E. (2007, May 1). Epstein-Barr virus and virus human protein interaction maps. Proc Natl Acad Sci U S A, 104(18), 7606-7611. Campbell, E. M., Dodding, M. P., Yap, M. W., Wu, X., Gallois-Montbrun, S., Malim, M. H., Stoye, J. P., & Hope, T. J. (2007, Jun). TRIM5 alpha cytoplasmic bodies are highly dynamic structures. Mol Biol Cell, 18(6), 2102-2111. Castanier, C., Garcin, D., Vazquez, A., & Arnoult, D. (2010, Feb). Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep, 11(2), 133-138. Chang, C. R., & Blackstone, C. (2010, Jul). Dynamic regulation of mitochondrial fission through modification of the dynamin-related protein Drp1. Ann N Y Acad Sci, 1201, 34-39. Chang, L.-K., & Liu, S.-T. (2000). Activation of the BRLF1 promoter and lytic cycle of Epstein–Barr virus by histone acetylation. Nucleic acids research, 28(20), 3918-3925. Chang, L. K., Chuang, J. Y., Nakao, M., & Liu, S. T. (2010, Aug). MCAF1 and synergistic activation of the transcription of Epstein-Barr virus lytic genes by Rta and Zta. Nucleic Acids Res, 38(14), 4687-4700. Chang, L. K., Chung, J. Y., Hong, Y. R., Ichimura, T., Nakao, M., & Liu, S. T. (2005). Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res, 33(20), 6528-6539. Chang, L. K., Lee, Y. H., Cheng, T. S., Hong, Y. R., Lu, P. J., Wang, J. J., Wang, W. H., Kuo, C. W., Li, S. S., & Liu, S. T. (2004, Sep 10). Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem, 279(37), 38803-38812. Chang, L. K., Liu, S. T., Kuo, C. W., Wang, W. H., Chuang, J. Y., Bianchi, E., & Hong, Y. R. (2008, May 30). Enhancement of transactivation activity of Rta of Epstein-Barr virus by RanBPM. J Mol Biol, 379(2), 231-242. Chen, L. W., Chang, P. J., Delecluse, H. J., & Miller, G. (2005, Aug). Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J Virol, 79(15), 9635-9650. Chen, W., Zhao, H., & Li, Y. (2023, Sep 6). Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther, 8(1), 333. Cheng, X., Kanki, T., Fukuoh, A., Ohgaki, K., Takeya, R., Aoki, Y., Hamasaki, N., & Kang, D. (2005, Dec). PDIP38 associates with proteins constituting the mitochondrial DNA nucleoid. J Biochem, 138(6), 673-678. Chesnokova, L. S., Ahuja, M. K., & Hutt-Fletcher, L. M. (2014). Epstein-Barr virus glycoprotein gB and gHgL can mediate fusion and entry in trans, and heat can act as a partial surrogate for gHgL and trigger a conformational change in gB. Journal of Virology, 88(21), 12193-12201. Chesnokova, L. S., Nishimura, S. L., & Hutt-Fletcher, L. M. (2009). Fusion of epithelial cells by Epstein–Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins αvβ6 or αvβ8. Proceedings of the National Academy of Sciences, 106(48), 20464-20469. Chiramel, A. I., Meyerson, N. R., McNally, K. L., Broeckel, R. M., Montoya, V. R., Méndez-Solís, O., Robertson, S. J., Sturdevant, G. L., Lubick, K. J., Nair, V., Youseff, B. H., Ireland, R. M., Bosio, C. M., Kim, K., Luban, J., Hirsch, V. M., Taylor, R. T., Bouamr, F., Sawyer, S. L., & Best, S. M. (2019, Jun 11). TRIM5α Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation. Cell Rep, 27(11), 3269-3283.e3266. Chiu, Y.-F., Sugden, B., Chang, P.-J., Chen, L.-W., Lin, Y.-J., Lan, Y.-C., Lai, C.-H., Liou, J.-Y., Liu, S.-T., & Hung, C.-H. (2012). Characterization and intracellular trafficking of Epstein-Barr virus BBLF1, a protein involved in virion maturation. Journal of Virology, 86(18), 9647-9655. Chua, H. H., Lee, H. H., Chang, S. S., Lu, C. C., Yeh, T. H., Hsu, T. Y., Cheng, T. H., Cheng, J. T., Chen, M. R., & Tsai, C. H. (2007, Mar). Role of the TSG101 gene in Epstein-Barr virus late gene transcription. J Virol, 81(5), 2459-2471. Cloherty, A. P. M., Rader, A. G., Compeer, B., & Ribeiro, C. M. S. (2021, Feb 19). Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses, 13(2). Cohen, S. N., Chang, A. C., & Hsu, L. (1972, Aug). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A, 69(8), 2110-2114. Crawford, D. H. (2001). Biology and disease associations of Epstein–Barr virus. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356(1408), 461-473. Dambaugh, T., Beisel, C., Hummel, M., King, W., Fennewald, S., Cheung, A., Heller, M., Raab-Traub, N., & Kieff, E. (1980). Epstein-Barr virus (B95-8) DNA VII: molecular cloning and detailed mapping. Proceedings of the National Academy of Sciences, 77(5), 2999-3003. Darr, C. D., Mauser, A., & Kenney, S. (2001, Jul). Epstein-Barr virus immediate-early protein BRLF1 induces the lytic form of viral replication through a mechanism involving phosphatidylinositol-3 kinase activation. J Virol, 75(13), 6135-6142. Delecluse, H. J., Hilsendegen, T., Pich, D., Zeidler, R., & Hammerschmidt, W. (1998, Jul 7). Propagation and recovery of intact, infectious Epstein-Barr virus from prokaryotic to human cells. Proc Natl Acad Sci U S A, 95(14), 8245-8250. Denison, S. R., Wang, F., Becker, N. A., Schüle, B., Kock, N., Phillips, L. A., Klein, C., & Smith, D. I. (2003, Nov 13). Alterations in the common fragile site gene Parkin in ovarian and other cancers. Oncogene, 22(51), 8370-8378. Diaz-Griffero, F., Gallo, D. E., Hope, T. J., & Sodroski, J. (2011, May 15). Trafficking of some old world primate TRIM5α proteins through the nucleus. Retrovirology, 8, 38. Diaz-Griffero, F., Qin, X. R., Hayashi, F., Kigawa, T., Finzi, A., Sarnak, Z., Lienlaf, M., Yokoyama, S., & Sodroski, J. (2009, Oct). A B-box 2 surface patch important for TRIM5alpha self-association, capsid binding avidity, and retrovirus restriction. J Virol, 83(20), 10737-10751. Dolyniuk, M., Pritchett, R., & Kieff, E. (1976). Proteins of Epstein-Barr virus. I. Analysis of the polypeptides of purified enveloped Epstein-Barr virus. Journal of Virology, 17(3), 935-949. Dorothea, M., Xie, J., Yiu, S. P. T., & Chiang, A. K. S. (2023, Apr 2). Contribution of Epstein-Barr Virus Lytic Proteins to Cancer Hallmarks and Implications from Other Oncoviruses. Cancers (Basel), 15(7). Endo, T., & Kohda, D. (2002, Sep 2). Functions of outer membrane receptors in mitochondrial protein import. Biochim Biophys Acta, 1592(1), 3-14. Epstein, M. A., Achong, B. G., & Barr, Y. M. (1964). Virus particles in cultured lymphoblasts from Burkitt's lymphoma. The Lancet, 283(7335), 702-703. Figueroa-Romero, C., Iñiguez-Lluhí, J. A., Stadler, J., Chang, C. R., Arnoult, D., Keller, P. J., Hong, Y., Blackstone, C., & Feldman, E. L. (2009, Nov). SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple nonconsensus sites within the B domain and is linked to its activity cycle. Faseb j, 23(11), 3917-3927. Fingeroth, J. D., Weis, J. J., Tedder, T. F., Strominger, J. L., Biro, P. A., & Fearon, D. T. (1984). Epstein-Barr virus receptor of human B lymphocytes is the C3d receptor CR2. Proceedings of the National Academy of Sciences, 81(14), 4510-4514. Fixman, E. D., Hayward, G., & Hayward, S. (1992). trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. Journal of Virology, 66(8), 5030-5039. Fletcher, A. J., Vaysburd, M., Maslen, S., Zeng, J., Skehel, J. M., Towers, G. J., & James, L. C. (2018, Dec 12). Trivalent RING Assembly on Retroviral Capsids Activates TRIM5 Ubiquitination and Innate Immune Signaling. Cell Host Microbe, 24(6), 761-775.e766. Gahn, T. A., & Schildkraut, C. L. (1989). The Epstein-Barr virus origin of plasmid replication, oriP, contains both the initiation and termination sites of DNA replication. Cell, 58(3), 527-535. Georgakopoulos, N. D., Wells, G., & Campanella, M. (2017, Jan 19). The pharmacological regulation of cellular mitophagy. Nat Chem Biol, 13(2), 136-146. Gou, H., Zhao, M., Xu, H., Yuan, J., He, W., Zhu, M., Ding, H., Yi, L., & Chen, J. (2017, Jun 13). CSFV induced mitochondrial fission and mitophagy to inhibit apoptosis. Oncotarget, 8(24), 39382-39400. Gruffat, H., & Sergeant, A. (1994, Apr 11). Characterization of the DNA-binding site repertoire for the Epstein-Barr virus transcription factor R. Nucleic Acids Res, 22(7), 1172-1178. Gutsch, D. E., Marcu, K. B., & Kenney, S. C. (1994, Sep). The Epstein-Barr virus BRLF1 gene product transactivates the murine and human c-myc promoters. Cell Mol Biol (Noisy-le-grand), 40(6), 747-760. Hardwick, J. M., Lieberman, P. M., & Hayward, S. D. (1988). A new Epstein-Barr virus transactivator, R, induces expression of a cytoplasmic early antigen. Journal of Virology, 62(7), 2274-2284. Hausen, H. Z., O'NEILL, F. J., Freese, U. K., & HECKER, E. (1978). Persisting oncogenic herpesvirus induced by the tumour promoter TPA. Nature, 272(5651), 373-375. Heilmann, A. M., Calderwood, M. A., Portal, D., Lu, Y., & Johannsen, E. (2012, May). Genome-wide analysis of Epstein-Barr virus Rta DNA binding. J Virol, 86(9), 5151-5164. Henle, G., & Henle, W. (1966). Immunofluorescence in cells derived from Burkitt's lymphoma. Journal of bacteriology, 91(3), 1248-1256. Henle, G., Henle, W., & Diehl, V. (1968). Relation of Burkitt's tumor-associated herpes-ytpe virus to infectious mononucleosis. Proceedings of the National Academy of Sciences, 59(1), 94-101. Henle, W., Hummeler, K., & Henle, G. (1966). Antibody coating and agglutination of virus particles separated from the EB3 line of Burkitt lymphoma cells. Journal of bacteriology, 92(1), 269-271. Hinuma, Y., Konn, M., Yamaguchi, J., Wudarski, D. J., Blakeslee, J. R., Jr., & Grace, J. T., Jr. (1967, Oct). Immunofluorescence and herpes-type virus particles in the P3HR-1 Burkitt lymphoma cell line. J Virol, 1(5), 1045-1051. Ho, C. H., Hsu, C. F., Fong, P. F., Tai, S. K., Hsieh, S. L., & Chen, C. J. (2007, May). Epstein-Barr virus transcription activator Rta upregulates decoy receptor 3 expression by binding to its promoter. J Virol, 81(9), 4837-4847. Houen, G., & Trier, N. H. (2021). Epstein-Barr virus and systemic autoimmune diseases. Frontiers in immunology, 11, 587380. Hsu, T. Y., Chang, Y., Wang, P. W., Liu, M. Y., Chen, M. R., Chen, J. Y., & Tsai, C. H. (2005, Feb). Reactivation of Epstein-Barr virus can be triggered by an Rta protein mutated at the nuclear localization signal. J Gen Virol, 86(Pt 2), 317-322. Huang, H. H., Chen, C. S., Wang, W. H., Hsu, S. W., Tsai, H. H., Liu, S. T., & Chang, L. K. (2016). TRIM5α Promotes Ubiquitination of Rta from Epstein-Barr Virus to Attenuate Lytic Progression. Front Microbiol, 7, 2129. Huang, H. H., Wang, W. H., Feng, T. H., & Chang, L. K. (2020, Mar 12). Rta is an Epstein-Barr virus tegument protein that improves the stability of capsid protein BORF1. Biochem Biophys Res Commun, 523(3), 773-779. Huang, S. Y., Hsieh, M. J., Chen, C. Y., Chen, Y. J., Chen, J. Y., Chen, M. R., Tsai, C. H., Lin, S. F., & Hsu, T. Y. (2012, Jan). Epstein-Barr virus Rta-mediated transactivation of p21 and 14-3-3σ arrests cells at the G1/S transition by reducing cyclin E/CDK2 activity. J Gen Virol, 93(Pt 1), 139-149. Hung, C. H., Chen, L. W., Wang, W. H., Chang, P. J., Chiu, Y. F., Hung, C. C., Lin, Y. J., Liou, J. Y., Tsai, W. J., Hung, C. L., & Liu, S. T. (2014, Oct). Regulation of autophagic activation by Rta of Epstein-Barr virus via the extracellular signal-regulated kinase pathway. J Virol, 88(20), 12133-12145. Jacotot, E., Ravagnan, L., Loeffler, M., Ferri, K. F., Vieira, H. L., Zamzami, N., Costantini, P., Druillennec, S., Hoebeke, J., Briand, J. P., Irinopoulou, T., Daugas, E., Susin, S. A., Cointe, D., Xie, Z. H., Reed, J. C., Roques, B. P., & Kroemer, G. (2000, Jan 3). The HIV-1 viral protein R induces apoptosis via a direct effect on the mitochondrial permeability transition pore. J Exp Med, 191(1), 33-46. Jassey, A., Liu, C. H., Changou, C. A., Richardson, C. D., Hsu, H. Y., & Lin, L. T. (2019, Mar 29). Hepatitis C Virus Non-Structural Protein 5A (NS5A) Disrupts Mitochondrial Dynamics and Induces Mitophagy. Cells, 8(4). Javanbakht, H., Diaz-Griffero, F., Stremlau, M., Si, Z., & Sodroski, J. (2005, Jul 22). The contribution of RING and B-box 2 domains to retroviral restriction mediated by monkey TRIM5alpha. J Biol Chem, 280(29), 26933-26940. Javanbakht, H., Yuan, W., Yeung, D. F., Song, B., Diaz-Griffero, F., Li, Y., Li, X., Stremlau, M., & Sodroski, J. (2006, Sep 15). Characterization of TRIM5alpha trimerization and its contribution to human immunodeficiency virus capsid binding. Virology, 353(1), 234-246. Johannsen, E., Luftig, M., Chase, M. R., Weicksel, S., Cahir-McFarland, E., Illanes, D., Sarracino, D., & Kieff, E. (2004). Proteins of purified Epstein-Barr virus. Proceedings of the National Academy of Sciences, 101(46), 16286-16291. Jones, H. W., Jr. (1997, Jun). Record of the first physician to see Henrietta Lacks at the Johns Hopkins Hospital: history of the beginning of the HeLa cell line. Am J Obstet Gynecol, 176(6), S227-228. Kenney, S. C. (2007). Reactivation and lytic replication of EBV. In A. Arvin, G. Campadelli-Fiume, E. Mocarski, P. S. Moore, B. Roizman, R. Whitley, & K. Yamanishi (Eds.), Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press Copyright © Cambridge University Press 2007. Khammissa, R. A. G., Fourie, J., Chandran, R., Lemmer, J., & Feller, L. (2016). Epstein‐Barr Virus and Its Association with Oral Hairy Leukoplakia: A Short Review. International Journal of Dentistry, 2016(1), 4941783. Kim, S. J., Khan, M., Quan, J., Till, A., Subramani, S., & Siddiqui, A. (2013). Hepatitis B virus disrupts mitochondrial dynamics: induces fission and mitophagy to attenuate apoptosis. PLoS Pathog, 9(12), e1003722. Kim, S. J., Syed, G. H., Khan, M., Chiu, W. W., Sohail, M. A., Gish, R. G., & Siddiqui, A. (2014, Apr 29). Hepatitis C virus triggers mitochondrial fission and attenuates apoptosis to promote viral persistence. Proc Natl Acad Sci U S A, 111(17), 6413-6418. Kintner, C. R., & Sugden, B. (1979). The structure of the termini of the DNA of Epstein-Barr virus. Cell, 17(3), 661-671. LaJeunesse, D. R., Brooks, K., & Adamson, A. L. (2005, Jul 29). Epstein-Barr virus immediate-early proteins BZLF1 and BRLF1 alter mitochondrial morphology during lytic replication. Biochem Biophys Res Commun, 333(2), 438-442. Lazarou, M., Sliter, D. A., Kane, L. A., Sarraf, S. A., Wang, C., Burman, J. L., Sideris, D. P., Fogel, A. I., & Youle, R. J. (2015, Aug 20). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature, 524(7565), 309-314. Lee, Y. H., Chiu, Y. F., Wang, W. H., Chang, L. K., & Liu, S. T. (2008, Oct). Activation of the ERK signal transduction pathway by Epstein-Barr virus immediate-early protein Rta. J Gen Virol, 89(Pt 10), 2437-2446. Lefèbvre, L., Ciminale, V., Vanderplasschen, A., D'Agostino, D., Burny, A., Willems, L., & Kettmann, R. (2002, Aug). Subcellular localization of the bovine leukemia virus R3 and G4 accessory proteins. J Virol, 76(15), 7843-7854. Leight, E. R., & Sugden, B. (2000). EBNA‐1: a protein pivotal to latent infection by Epstein–Barr virus. Reviews in medical virology, 10(2), 83-100. Li, H. B., Wang, R. X., Jiang, H. B., Zhang, E. D., Tan, J. Q., Xu, H. Z., Zhou, R. R., & Xia, X. B. (2016, Nov). Mitochondrial Ribosomal Protein L10 Associates with Cyclin B1/Cdk1 Activity and Mitochondrial Function. DNA Cell Biol, 35(11), 680-690. Li, Q., Spriggs, M. K., Kovats, S., Turk, S. M., Comeau, M. R., Nepom, B., & Hutt-Fletcher, L. M. (1997). Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. Journal of Virology, 71(6), 4657-4662. Li, S., Wang, J., Zhou, A., Khan, F. A., Hu, L., & Zhang, S. (2016, Aug 30). Porcine reproductive and respiratory syndrome virus triggers mitochondrial fission and mitophagy to attenuate apoptosis. Oncotarget, 7(35), 56002-56012. Li, X., Wu, K., Zeng, S., Zhao, F., Fan, J., Li, Z., Yi, L., Ding, H., Zhao, M., Fan, S., & Chen, J. (2021, Apr 20). Viral Infection Modulates Mitochondrial Function. Int J Mol Sci, 22(8). Li, Y., Wu, K., Zeng, S., Zou, L., Li, X., Xu, C., Li, B., Liu, X., Li, Z., Zhu, W., Fan, S., & Chen, J. (2022, Feb 17). The Role of Mitophagy in Viral Infection. Cells, 11(4). Lienlaf, M., Hayashi, F., Di Nunzio, F., Tochio, N., Kigawa, T., Yokoyama, S., & Diaz-Griffero, F. (2011, Sep). Contribution of E3-ubiquitin ligase activity to HIV-1 restriction by TRIM5alpha(rh): structure of the RING domain of TRIM5alpha. J Virol, 85(17), 8725-8737. Lin, L. T., Lu, Y. S., Huang, H. H., Chen, H., Hsu, S. W., & Chang, L. K. (2022, Dec 5). Regulation of Epstein-Barr Virus Minor Capsid Protein BORF1 by TRIM5α. Int J Mol Sci, 23(23). Lin, T. Y., Chu, Y. Y., Yang, Y. C., Hsu, S. W., Liu, S. T., & Chang, L. K. (2014). MCAF1 and Rta-activated BZLF1 transcription in Epstein-Barr virus. PLoS One, 9(3), e90698. Lindahl, T., Adams, A., Bjursell, G., Bornkamm, G. W., Kaschka-Dierich, C., & Jehn, U. (1976). Covalently closed circular duplex DNA of Epstein-Barr virus in a human lymphoid cell line. Journal of molecular biology, 102(3), 511-530. Luka, J., Kallin, B., & Klein, G. (1979). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology, 94(1), 228-231. Luka, J., Kallin, B., & Klein, G. (1979, Apr 15). Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology, 94(1), 228-231. Lukic, Z., Goff, S. P., Campbell, E. M., & Arriagada, G. (2013, Feb 1). Role of SUMO-1 and SUMO interacting motifs in rhesus TRIM5α-mediated restriction. Retrovirology, 10, 10. Münz, C. (2019). Latency and lytic replication in Epstein–Barr virus-associated oncogenesis. Nature Reviews Microbiology, 17(11), 691-700. Möhl, B. S., Chen, J., Park, S. J., Jardetzky, T. S., & Longnecker, R. (2017). Epstein-Barr virus fusion with epithelial cells triggered by gB is restricted by a gL glycosylation site. Journal of Virology, 91(23), 10.1128/jvi. 01255-01217. Mandell, M. A., Jain, A., Arko-Mensah, J., Chauhan, S., Kimura, T., Dinkins, C., Silvestri, G., Münch, J., Kirchhoff, F., Simonsen, A., Wei, Y., Levine, B., Johansen, T., & Deretic, V. (2014, Aug 25). TRIM proteins regulate autophagy and can target autophagic substrates by direct recognition. Dev Cell, 30(4), 394-409. Manet, E., Gruffat, H., Trescol-Biemont, M. C., Moreno, N., Chambard, P., Giot, J. F., & Sergeant, A. (1989, Jun). Epstein-Barr virus bicistronic mRNAs generated by facultative splicing code for two transcriptional trans-activators. Embo j, 8(6), 1819-1826. Manet, E., Rigolet, A., Gruffat, H., Giot, J. F., & Sergeant, A. (1991, May 25). Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic Acids Res, 19(10), 2661-2667. McShane, M. P., & Longnecker, R. (2004). Cell-surface expression of a mutated Epstein–Barr virus glycoprotein B allows fusion independent of other viral proteins. Proceedings of the National Academy of Sciences, 101(50), 17474-17479. Miller, N., & Hutt-Fletcher, L. M. (1992). Epstein-Barr virus enters B cells and epithelial cells by different routes. Journal of Virology, 66(6), 3409-3414. Mische, C. C., Javanbakht, H., Song, B., Diaz-Griffero, F., Stremlau, M., Strack, B., Si, Z., & Sodroski, J. (2005, Nov). Retroviral restriction factor TRIM5alpha is a trimer. J Virol, 79(22), 14446-14450. Morales-Sánchez, A., & Fuentes-Panana, E. M. (2018, Mar 30). The Immunomodulatory Capacity of an Epstein-Barr Virus Abortive Lytic Cycle: Potential Contribution to Viral Tumorigenesis. Cancers (Basel), 10(4). Mukherjee, A., Patra, U., Bhowmick, R., & Chawla-Sarkar, M. (2018, Jun). Rotaviral nonstructural protein 4 triggers dynamin-related protein 1-dependent mitochondrial fragmentation during infection. Cell Microbiol, 20(6), e12831. Neupert, W. (1997). Protein import into mitochondria. Annu Rev Biochem, 66, 863-917. Nonoyama, M., Huang, C., Pagano, J., Klein, G., & Singh, S. (1973). DNA of Epstein-Barr virus detected in tissue of Burkitt's lymphoma and nasopharyngeal carcinoma. Proceedings of the National Academy of Sciences, 70(11), 3265-3268. Oh, S. J., Yu, J. W., Ahn, J. H., Choi, S. T., Park, H., Yun, J., & Shin, O. S. (2024, Jan 6). Varicella zoster virus glycoprotein E facilitates PINK1/Parkin-mediated mitophagy to evade STING and MAVS-mediated antiviral innate immunity. Cell Death Dis, 15(1), 16. Otera, H., Ishihara, N., & Mihara, K. (2013, May). New insights into the function and regulation of mitochondrial fission. Biochim Biophys Acta, 1833(5), 1256-1268. Palikaras, K., Lionaki, E., & Tavernarakis, N. (2018, Sep). Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat Cell Biol, 20(9), 1013-1022. Perron, M. J., Stremlau, M., Song, B., Ulm, W., Mulligan, R. C., & Sodroski, J. (2004, Aug 10). TRIM5alpha mediates the postentry block to N-tropic murine leukemia viruses in human cells. Proc Natl Acad Sci U S A, 101(32), 11827-11832. Pertel, T., Hausmann, S., Morger, D., Züger, S., Guerra, J., Lascano, J., Reinhard, C., Santoni, F. A., Uchil, P. D., Chatel, L., Bisiaux, A., Albert, M. L., Strambio-De-Castillia, C., Mothes, W., Pizzato, M., Grütter, M. G., & Luban, J. (2011, Apr 21). TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature, 472(7343), 361-365. Pfüller, R., & Hammerschmidt, W. (1996, Jun). Plasmid-like replicative intermediates of the Epstein-Barr virus lytic origin of DNA replication. J Virol, 70(6), 3423-3431. Ragoczy, T., & Miller, G. (2001, Jun). Autostimulation of the Epstein-Barr virus BRLF1 promoter is mediated through consensus Sp1 and Sp3 binding sites. J Virol, 75(11), 5240-5251. Ren, Z., Zhang, X., Ding, T., Zhong, Z., Hu, H., Xu, Z., & Deng, J. (2020). Mitochondrial Dynamics Imbalance: A Strategy for Promoting Viral Infection. Front Microbiol, 11, 1992. Reymond, A., Meroni, G., Fantozzi, A., Merla, G., Cairo, S., Luzi, L., Riganelli, D., Zanaria, E., Messali, S., Cainarca, S., Guffanti, A., Minucci, S., Pelicci, P. G., & Ballabio, A. (2001, May 1). The tripartite motif family identifies cell compartments. Embo j, 20(9), 2140-2151. Robinson, A. R., Kwek, S. S., Hagemeier, S. R., Wille, C. K., & Kenney, S. C. (2011, Sep). Cellular transcription factor Oct-1 interacts with the Epstein-Barr virus BRLF1 protein to promote disruption of viral latency. J Virol, 85(17), 8940-8953. Robinson, W. H., & Steinman, L. (2022). Epstein-Barr virus and multiple sclerosis. Science, 375(6578), 264-265. Saha, B., & Mandell, M. A. (2023, Jan). The retroviral restriction factor TRIM5/TRIM5α regulates mitochondrial quality control. Autophagy, 19(1), 372-373. Saha, B., Olsvik, H., Williams, G. L., Oh, S., Evjen, G., Sjøttem, E., & Mandell, M. A. (2024, Jun 25). TBK1 is ubiquitinated by TRIM5α to assemble mitophagy machinery. Cell Rep, 43(6), 114294. Saha, B., Salemi, M., Williams, G. L., Oh, S., Paffett, M. L., Phinney, B., & Mandell, M. A. (2022, May 10). Interactomic analysis reveals a homeostatic role for the HIV restriction factor TRIM5α in mitophagy. Cell Rep, 39(6), 110797. Sheridan, C., Delivani, P., Cullen, S. P., & Martin, S. J. (2008, Aug 22). Bax- or Bak-induced mitochondrial fission can be uncoupled from cytochrome C release. Mol Cell, 31(4), 570-585. Shi, C. S., Qi, H. Y., Boularan, C., Huang, N. N., Abu-Asab, M., Shelhamer, J. H., & Kehrl, J. H. (2014, Sep 15). SARS-coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J Immunol, 193(6), 3080-3089. Skalsky, R. L., & Cullen, B. R. (2015). EBV noncoding RNAs. Epstein Barr virus volume 2: one herpes virus: many diseases, 181-217. Somalo-Barranco, G., Pagano Zottola, A. C., Abdulrahman, A. O., El Zein, R. M., Cannich, A., Muñoz, L., Serra, C., Oishi, A., Marsicano, G., Masri, B., Bellocchio, L., Llebaria, A., & Jockers, R. (2023, Aug 17). Mitochondria-targeted melatonin photorelease supports the presence of melatonin MT1 receptors in mitochondria inhibiting respiration. Cell Chem Biol, 30(8), 920-932.e927. Stremlau, M., Owens, C. M., Perron, M. J., Kiessling, M., Autissier, P., & Sodroski, J. (2004, Feb 26). The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature, 427(6977), 848-853. Tanner, J., Weis, J., Fearon, D., Whang, Y., & Kieff, E. (1987). Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell, 50(2), 203-213. Thorley-Lawson, D. A. (2001). Epstein-Barr virus: exploiting the immune system. Nature Reviews Immunology, 1(1), 75-82. Thorley-Lawson, D. A., & Gross, A. (2004). Persistence of the Epstein–Barr virus and the origins of associated lymphomas. New England Journal of Medicine, 350(13), 1328-1337. Tilokani, L., Nagashima, S., Paupe, V., & Prudent, J. (2018, Jul 20). Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem, 62(3), 341-360. Tsai, K., Thikmyanova, N., Wojcechowskyj, J. A., Delecluse, H.-J., & Lieberman, P. M. (2011). EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription. PLoS pathogens, 7(11), e1002376. Tsurumi, T., Fujita, M., & Kudoh, A. (2005, Jan-Feb). Latent and lytic Epstein-Barr virus replication strategies. Rev Med Virol, 15(1), 3-15. Tugizov, S. M., Berline, J. W., & Palefsky, J. M. (2003). Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nature medicine, 9(3), 307-314. van der Bliek, A. M., Shen, Q., & Kawajiri, S. (2013, Jun 1). Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol, 5(6). van Gent, M., Braem, S. G., de Jong, A., Delagic, N., Peeters, J. G., Boer, I. G., Moynagh, P. N., Kremmer, E., Wiertz, E. J., & Ovaa, H. (2014). Epstein-Barr virus large tegument protein BPLF1 contributes to innate immune evasion through interference with toll-like receptor signaling. PLoS pathogens, 10(2), e1003960. Vilmen, G., Glon, D., Siracusano, G., Lussignol, M., Shao, Z., Hernandez, E., Perdiz, D., Quignon, F., Mouna, L., Poüs, C., Gruffat, H., Maréchal, V., & Esclatine, A. (2021, Jun). BHRF1, a BCL2 viral homolog, disturbs mitochondrial dynamics and stimulates mitophagy to dampen type I IFN induction. Autophagy, 17(6), 1296-1315. Wang, R., Zhu, Y., Ren, C., Yang, S., Tian, S., Chen, H., Jin, M., & Zhou, H. (2021, Feb). Influenza A virus protein PB1-F2 impairs innate immunity by inducing mitophagy. Autophagy, 17(2), 496-511. Wang, X., & Hutt-Fletcher, L. M. (1998). Epstein-Barr virus lacking glycoprotein gp42 can bind to B cells but is not able to infect. Journal of Virology, 72(1), 158-163. Wattenberg, B., & Lithgow, T. (2001, Jan). Targeting of C-terminal (tail)-anchored proteins: understanding how cytoplasmic activities are anchored to intracellular membranes. Traffic, 2(1), 66-71. Weiss, L. M., Movahed, L. A., Warnke, R. A., & Sklar, J. (1989). Detection of Epstein–Barr viral genomes in Reed–Sternberg cells of Hodgkin's disease. New England Journal of Medicine, 320(8), 502-506. Xu, X., Zhu, N., Zheng, J., Peng, Y., Zeng, M. S., Deng, K., Duan, C., & Yuan, Y. (2024, Jan). EBV abortive lytic cycle promotes nasopharyngeal carcinoma progression through recruiting monocytes and regulating their directed differentiation. PLoS Pathog, 20(1), e1011934. Yamada, H., Chounan, R., Higashi, Y., Kurihara, N., & Kido, H. (2004, Dec 17). Mitochondrial targeting sequence of the influenza A virus PB1-F2 protein and its function in mitochondria. FEBS Lett, 578(3), 331-336. Yang, Y. C., Feng, T. H., Chen, T. Y., Huang, H. H., Hung, C. C., Liu, S. T., & Chang, L. K. (2015, Aug). RanBPM regulates Zta-mediated transcriptional activity in Epstein-Barr virus. J Gen Virol, 96(8), 2336-2348. Yang, Y. C., Yoshikai, Y., Hsu, S. W., Saitoh, H., & Chang, L. K. (2013, May 3). Role of RNF4 in the ubiquitination of Rta of Epstein-Barr virus. J Biol Chem, 288(18), 12866-12879. Youle, R. J., & van der Bliek, A. M. (2012, Aug 31). Mitochondrial fission, fusion, and stress. Science, 337(6098), 1062-1065. Young, L. S., Arrand, J. R., & Murray, P. G. (2007). EBV gene expression and regulation. In A. Arvin, G. Campadelli-Fiume, E. Mocarski, P. S. Moore, B. Roizman, R. Whitley, & K. Yamanishi (Eds.), Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press Copyright © Cambridge University Press 2007. Young, L. S., & Rickinson, A. B. (2004). Epstein–Barr virus: 40 years on. Nature Reviews Cancer, 4(10), 757-768. Yu, T., Jhun, B. S., & Yoon, Y. (2011, Feb 1). High-glucose stimulation increases reactive oxygen species production through the calcium and mitogen-activated protein kinase-mediated activation of mitochondrial fission. Antioxid Redox Signal, 14(3), 425-437. Yudina, Z., Roa, A., Johnson, R., Biris, N., de Souza Aranha Vieira, D. A., Tsiperson, V., Reszka, N., Taylor, A. B., Hart, P. J., Demeler, B., Diaz-Griffero, F., & Ivanov, D. N. (2015, Aug 4). RING Dimerization Links Higher-Order Assembly of TRIM5α to Synthesis of K63-Linked Polyubiquitin. Cell Rep, 12(5), 788-797. Zacny, V. L., Wilson, J., & Pagano, J. S. (1998, Oct). The Epstein-Barr virus immediate-early gene product, BRLF1, interacts with the retinoblastoma protein during the viral lytic cycle. J Virol, 72(10), 8043-8051. Zaja, I., Bai, X., Liu, Y., Kikuchi, C., Dosenovic, S., Yan, Y., Canfield, S. G., & Bosnjak, Z. J. (2014, Oct 31). Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death. Biochem Biophys Res Commun, 453(4), 710-721. Zhao, Y., Lu, Y., Richardson, S., Sreekumar, M., Albarnaz, J. D., & Smith, G. L. (2023, Aug). TRIM5α restricts poxviruses and is antagonized by CypA and the viral protein C6. Nature, 620(7975), 873-880. Zhu, C. L., Yao, R. Q., Li, L. X., Li, P., Xie, J., Wang, J. F., & Deng, X. M. (2021). Mechanism of Mitophagy and Its Role in Sepsis Induced Organ Dysfunction: A Review. Front Cell Dev Biol, 9, 664896. Zhu, L. H., Gao, S., Jin, R., Zhuang, L. L., Jiang, L., Qiu, L. Z., Xu, H. G., & Zhou, G. P. (2014, Apr). Repression of interferon regulatory factor 3 by the Epstein-Barr virus immediate-early protein Rta is mediated through E2F1 in HeLa cells. Mol Med Rep, 9(4), 1453-1459. zur Hausen, H., O'Neill, F. J., Freese, U. K., & Hecker, E. (1978, Mar 23). Persisting oncogenic herpesvirus induced by the tumour promotor TPA. Nature, 272(5651), 373-375. 林杰昌. (2022). Regulation of the stability of Epstein-Barr virus BFRF3 by TRIM5α-mediated TRIMosome. 臺灣大學生化科技學系碩士論文 蔡曉涵. (2016). Role of Rta of Epstein-Barr virus in mitochondria. 臺灣大學生化科技學系碩士論文. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94200 | - |
| dc.description.abstract | EB 病毒 (Epstein-Barr virus, EBV),感染全球約90%以上的人口,與許多腫瘤及自體免疫疾病相關。Rta 是 EB 病毒在溶裂期的極早期表現的蛋白質,具有轉錄活化的能力,調控許多病毒與宿主的基因表現。先前我們發現反轉錄病毒的限制因子 TRIM5α 會與 Rta 結合並促進其泛素化,因此抑制EB 的病毒顆粒產生。近期研究顯示 TRIM5α 會參與粒線體自噬 (Mitophagy),以維持粒線體品質。而我們發現 Rta 也位在粒線體,因此本研究將探討 Rta 與TRIM5α 如何調控粒線體自噬。首先以粒線體分離和免疫螢光染色證明 Rta 位於粒線體外膜,並與 TOM20 及 TRIM5α 共定位在粒線體上。Rta 也會讓粒線體中磷酸化的 Drp1 增加,同時 LC3-I 轉換成 LC3-II 的量也會增加。接著以 shRNA 抑制 Drp1 表現後,LC3-II 的量下降,顯示 Rta 透過 Drp1 誘導粒線體自噬。分析 Rta 的粒線體導向序列 (Mitochondrial targeting sequences, MTS) 後,將 Rta的 N 端氨基酸突變,以免疫螢光染色分析,結果顯示Rta(MTS)突變株在粒線體的分布下降且 LC3B 與 TOM20 的共定位也會降低。另外,透過shRNA抑制TRIM5α表現,也觀察到在粒線體的Rta所誘導的LC3-II 的量會減少。最後,若是將HEK293(2089)細胞中Drp1的表現量抑制,EB 病毒的早期蛋白質 EA-D 的表現會減少,表示溶裂期受到抑制。綜合上述結果,本研究證實 Rta 是一個位在粒線體的病毒蛋白質,會經由 Drp1 誘發粒線體自噬,同時發現TRIM5α會參與Rta誘導的粒線體自噬,且EB 病毒會透過調控粒線體動態平衡來維持溶裂期。未來將進一步闡述EB 病毒的Rta和TRIM5α如何調節粒線體動態平衡的機制。 | zh_TW |
| dc.description.abstract | Epstein-Barr virus (EBV) infects over 90% population and is associated with many tumor and autoimmune diseases. Rta encoded by EBV is an immediate-early transcription factor, which activates the transcription of EBV lytic genes as well as cellular genes. Our earlier study found that a retrovirus restriction factor, TRIM5α interacts with Rta and promotes its ubiquitination, thus inhibiting EBV virions production. Recent studies indicated that TRIM5α regulates mitochondria quality control via mitophagy. We also found that Rta is localized at mitochondria. Therefore, this study aims to explore how Rta and TRIM5α regulate mitophagy. This study found by indirect immunofluorescence analysis that Rta colocalizes with TOM20 and TRIM5α at the outer membrane of mitochondria and enriches the levels of phosphorylated Drp1(S616) and accumulates the levels of LC3-II on mitochondria. Knockdown of the expression of Drp1 also decreases the levels of LC3-II. By analyzing the sequence of the possible mitochondrial targeting sequence (MTS) in Rta, we generated an Rta mutant, Rta(MTS), with mutated MTS at the N-terminal amino acid residues. Confocal microscopy analysis revealed that the mutation descreases the colocalization of Rta and TOM20; the colocalization of LC3B and TOM20 in Rta(MTS) is also reduced. Additionally, knockdown TRIM5α also decreases the amounts of LC3-II induced by Rta in mitochondria. Finally, the inhibition of Drp1 expression in HEK293(2089) cells reduces the levels of EA-D, indicating that the lytic phase is suppressed. Taken together, this study demonstrates that Rta is a viral protein localized in mitochondria, which induces mitophagy via Drp1 and thus influences EBV lytic cycle. TRIM5α also participates in Rta-induced mitophagy. The mechanism by which Rta and TRIM5α regulate mitochondrial dynamics will be further elucidated. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:11:22Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-15T16:11:22Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT iv 目次 v 表次 viii 圖次 ix 第一章 前言 1 1.1 EB 病毒 (Epstein-Barr virus, EBV) 1 1.1.1 EB 病毒的簡介 1 1.1.2 EB 病毒的感染和生活史 2 1.1.3 EB 病毒的極早期基因 4 1.2 Rta 蛋白質 4 1.2.1 Rta 的簡介 4 1.2.2 Rta 對病毒與宿主基因的調控 5 1.2.3 Rta 的轉譯後修飾 6 1.3 粒線體 6 1.3.1 粒線體動態平衡 (Mitochondrial dynamics) 6 1.3.2 粒線體自噬 (Mitophagy) 8 1.3.3 粒線體導向序列 (Mitochondrial targeting sequence, MTS) 8 1.3.4 病毒與粒線體動態平衡的調控 9 1.4 TRIM5α (Tripartite motif-containing protein 5 alpha) 10 1.4.1 TRIM5α 的簡介 10 1.4.2 TRIM5α 的抗病毒作用 11 1.4.3 TRIM5α 與粒線體的品質調節 12 1.5 研究動機 12 第二章 材料與方法 13 2.1 細胞株與細胞培養 13 2.2 菌株與細菌培養 13 2.3 質體 DNA 的萃取 13 2.4 質體與質體的建構 14 2.5 轉型作用 (Transformation) 14 2.6 轉染 (Transfection) 14 2.7 基因靜默分析 (shRNA knockdown) 15 2.8 粒線體分離 (Mitochondrial isolation) 15 2.9 西方墨點法 (Western blot, immunoblotting) 15 2.10 免疫螢光染色 (Immunofluorescence analysis) 16 第三章 結果 17 3.1 Rta 與 TRIM5α 位於粒線體的外膜上 17 3.2 Rta 增加 Drp1 的磷酸化並使其定位至粒線體 18 3.3 Rta 透過 Drp1 誘導粒線體自噬 18 3.4 Rta 的粒線體導向序列 (MTS) 分析以及 Rta(MTS) 突變株設計 19 3.5 Rta(MTS) 突變株在粒線體的定位減少 19 3.6 Rta(MTS) 突變株誘導粒線體自噬的能力降低 20 3.7 TRIM5α 會影響 Rta 誘導的粒線體自噬 20 3.8 Drp1 對 EB 病毒溶裂期的影響 21 第四章 討論 22 4.1 Rta 與 TRIM5α 位於粒線體的外膜上 22 4.2 Rta 會促進粒線體分裂 22 4.3 Rta 透過 Drp1 誘導粒線體自噬 22 4.4 Rta 的 MTS 與 Rta(MTS) 突變株的定位 23 4.5 MTS 的突變影響 Rta 誘導粒線體自噬的能力 23 4.6 TRIM5α 參與 Rta 誘導的粒線體自噬 24 4.7 粒線體自噬對 EB 病毒溶裂期的影響 24 參考文獻 26 第五章 圖表 43 附錄 68 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | EB 病毒 | zh_TW |
| dc.subject | 粒線體自噬 | zh_TW |
| dc.subject | TRIM5α | zh_TW |
| dc.subject | Rta | zh_TW |
| dc.subject | 粒線體 | zh_TW |
| dc.subject | Rta | en |
| dc.subject | Epstein-Barr virus | en |
| dc.subject | Mitophagy | en |
| dc.subject | Mitochondria | en |
| dc.subject | TRIM5α | en |
| dc.title | EB病毒Rta蛋白質對粒線體自噬的影響 | zh_TW |
| dc.title | Role of Epstein-Barr virus Rta on mitophagy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 劉世東;陳美如;邱亞芳;李家瑋 | zh_TW |
| dc.contributor.oralexamcommittee | Shih-Tung Liu;Mei-Ru Chen;Ya-Fang Chiu;Chia-Wei Lee | en |
| dc.subject.keyword | EB 病毒,Rta,TRIM5α,粒線體,粒線體自噬, | zh_TW |
| dc.subject.keyword | Epstein-Barr virus,Rta,TRIM5α,Mitochondria,Mitophagy, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU202403678 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生化科技學系 | - |
| dc.date.embargo-lift | 2029-08-06 | - |
| 顯示於系所單位: | 生化科技學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 10.01 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
