Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94197
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor歐昱辰zh_TW
dc.contributor.advisorYu-Chen Ouen
dc.contributor.author王盈文zh_TW
dc.contributor.authorYing-Wen Wangen
dc.date.accessioned2024-08-15T16:10:24Z-
dc.date.available2024-08-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation社團法人臺灣混凝土學會 (2017)。預鑄混凝土工程設計規範與解說。臺北市,臺灣。
社團法人臺灣混凝土學會 (2023)。預鑄混凝土工程設計規範與解說。臺北市,臺灣。
吳子良,黃世建 (2022)。預鑄工法大小梁部分剛性接合之設計。結構工程期刊,第37卷,第1期,第96-107頁。臺北市,臺灣。
王威發 (2023)。預鑄混凝土工程設計規範修訂探討。國立臺灣大學土木工程學研究所,臺北市,台灣。
NZCS and NZSEE Study Group. (1999). Guidelines for Structural use of Structural Precast Concrete in Buildings, Second edition, Centre for Advanced Engineering, University of Canterbury.
NZS3101 (2006). Concrete Structure Standard, Standards New Zealand, Wellington.
內政部營建署 (2021)。混凝土結構設計規範。民國110年3月2日修訂公布,臺北市,台灣。
內政部營建署 (2023)。建築物混凝土結構設計規範。民國112年8月10日修訂公布,臺北市,台灣。
內政部營建署 (2010)。鋼構造建築物鋼結構設計技術規範:鋼結構極限設計法規範及解說。民國99年9月16日修訂公布。臺北市,臺灣。
Mattock, A. H., & Hawkins, N. M. (1972). Shear transfer in reinforced concrete—Recent research. PCI Journal, 17(2), 55-75.
Mattock, A. H. (1974). Shear transfer in concrete having reinforcement at an angle to the shear plane. Special Publication, 42, 17-42.
Mattock, A. H., Li, W. K., & Wang, T. C. (1976). Shear transfer in lightweight reinforced concrete. PCI journal, 21(1), 20-39.
ACI Committee 318 (2002). Building Code Requirement for Structural Concrete (ACI 318-02) and Commentary (ACI 318R 02). American Concrete Institute, Farmington Hills, MI.
Portland Cement Association (2002). Notes on ACI 318-02 Building Code Requirements for Structural Concrete with Design Applications. Skokie, Illinois.
Kriz, L. B., & Raths, C. H. (1963). Connections in Precast Concrete Structures Bearing Strength of Column Heads.
Kanno, R. (1993). Strength, deformation, seismic resistance of joints between steel beams and reinforced concrete columns. Structural Engineering Report, 93(6).
Arthur H. Nilson. (1987). Design of Prestressed Concrete, Second edition, Structural Engineering, Cornell University
Fenwick R.C, Dely R, Davidson B. J. (1999). Ductility Demand for Uni-directional and Reversing Plastic Hinges in Ductile Moment Resisting Frames, Bulletin of NZ National Society for Earthquake Engineering 32(1):March, pp1-12.
Canadian Standards Association (2004). Design of Concrete Structures, CSA A23.3-04. Mississauga, ON, Canada.
Baek, K. R. (2017). Response of reinforced concrete beams with indirect loading. McGill University, Canada.
AISC (2016). Specification for Structural Steel Buildings, ANSI/AISC 360-16. American Institute of Steel Construction, Chicago, IL.
AISC (2006). Design Guide 1: Base Plate and Anchor Rod Design (Second Edition), American Institute of Steel Construction, Chicago, IL.
Bull, D. K., & Matthews, J. G. (2003). Proof of concept tests for hollow-core floor unit connections. University of Canterbury, Christchurch.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94197-
dc.description.abstract本研究旨在以實驗探討預鑄混凝土工程設計規範與解說(2023)中合成預鑄構材接合之力學行為,並提出一套較合理之接合部剪力強度計算方式。合成預鑄構材接合分為KT板與梁接合、小梁與大梁接合兩種形式,兩者同樣在上覆板以鋼筋連接至支承構材,但前者KT板會直接坐落於大梁混凝土保護層,後者小梁會在末端預埋剪力接合器再跨坐至大梁預埋之承壓板上;前者參閱文獻得知其混凝土承壓強度十分足夠,因此無須擔心;後者接合方式特殊而少有相關文獻可供參考,尚存疑點包括:小梁與板的上層筋是否可兼作剪力摩擦鋼筋、箍筋形式是否可以協助錨定上層筋、以剪力接合器跨坐至承壓板可以發揮多少混凝土承壓強度等,因而亟需設計試驗驗證與釐清。
本試驗共設計八組試體,試體參數包括小梁斷面形式(T形斷面或矩形斷面)、小梁上層主筋支數(2支或3支)、小梁箍筋形式(點焊鋼線網或180度彎鉤)、混凝土承壓面積(小承壓板或大承壓板)。試驗結果顯示,混凝土承壓與剪力摩擦都可以發揮比混凝土結構設計規範(2023)所規定之公式計算值高的強度,然而進一步分析發現,小梁端部負彎矩對接合部強度有正向助益,若小梁為簡支(亦即端部無彎矩),接合部的強度可能會低於本次試驗結果。另,各參數對於接合部的影響大致可歸納如下:增加小梁上層主筋支數未必能線性增加接合部強度、板筋同樣可作為剪力摩擦鋼筋並有效提升接合部強度、180度彎鉤確實有助於錨定小梁上層主筋並提升接合部韌性。
根據試驗結果,本研究提出合成預鑄構材接合之強度計算方式與細部設計建議,整理於第六章。強度計算方面,本研究建議接合部剪力強度可將剪力摩擦強度與下部強度相加計算,其中下部強度為剪力接合器強度與混凝土承壓強度取小者,套用規範公式計算可足夠保守,混凝土承壓面積甚至可一定程度放大;細部設計方面,本研究整理與合成預鑄構材接合相關之細部設計方法與規定,包括伸展長度、支承長度、承吊鋼筋、剪力釘配置、承壓板厚度等,供查閱者作為設計指引。以上研究成果與建議希冀可提供預鑄設計規範未來修訂方向之參考。
zh_TW
dc.description.abstractThis study aims to experimentally investigate the structural behavior of composite precast component connection as outlined in the "Design Specifications and Commentary for Precast Concrete Engineering (2023)" and to propose a more reasonable method for calculating the shear strength of the connetion. The composite precast component connection are categorized into two types,which are KT slab to beam, beam to girder. In both types, the upper slab is connected to the supporting components with reinforcement bars. However, in the KT slab type, the slab rests directly on the concrete cover of the girder, while in the beam type, shear connectors (which is a steel plate) are embedded at the end of the beam to span across the bearing plate embedded in the girder. According to the literature, the concrete bearing strength in the KT slab type is sufficient and not a concern. However, the unique jointing method of the beam type lacks sufficient literature references, raising several questions: Can the upper longtitude reinforcement of beam and slab also serve as shear friction reinforcement? Can stirrups effectively anchor the upper reinforcement? How much concrete bearing strength can be achieved by spanning across the bearing plate with shear connectors? Therefore, experimental validation and clarification are urgently needed.
The experiment designed eight specimens, with parameters including the cross-sectional shape of the beam (T-shaped or rectangular), the number of upper longtitude reinforcement in the beam (2 or 3), the type of stirrups in the beam (welded wire fabrics or 180-degree hooks), and the concrete bearing area (small or large bearing plate). The results show that both concrete compressive strength and shear friction can achieve higher strengths than those calculated using the formulas specified in "Design Specifications for Concrete Structures (2023)". However, further analysis reveals that the negative moment at the end of beam has a positive effect on connection strength; if the end of beam is simply supported (i.e., without moment at the ends), the connection strength may be lower than the results of this experiment. Additionally, the influence of each parameter on the joint can be summarized as follows: Increasing the number of upper longtitude reinforcement in the beam does not linearly increase the connection strength, upper longtitude reinforcement of slab can also serve as shear friction reinforcement and effectively enhance joint strength, and 180-degree hooks can effectively anchor the upper reinforcement of the beam and improve joint ductility.
Based on the experimental results, this study proposes a method for calculating the strength of composite precast component connection and provides detailed design recommendations, compiled in Chapter 6. For strength calculation, it is recommended that the joint shear strength be calculated by adding the shear friction strength and lower strength (the smaller of shear connector strength and concrete bearing strength) of connection, all of which can be conservatively calculated using formulas of the specification, with some allowance for enlarging the concrete bearing area. For detailed design, the study organizes methods and regulations related to composite precast component connection, including development length, supporting length, hanger reinforcement, shear stud configuration, and bearing plate thickness, providing a design guide for practitioners. The results and recommendations of this study are expected to offer a reference for future revisions of precast design codes.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:10:24Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:10:24Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 i
摘要 ii
Abstract iii
目次 v
圖次 x
表次 xiv
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 1
1.3 研究方法 2
第二章 文獻回顧 3
2.1 預鑄構材接合之發展沿革 3
2.1.1 預鑄混凝土工程設計規範與解說(2017) [1] 3
2.1.2 預鑄混凝土工程設計規範與解說(2023) [2] 3
2.2 預鑄構材接合之強度評估 5
2.2.1 吳子良(2022)──部分剛性預鑄構材接合強度計算[3] 5
2.2.2 王威發(2023)──合成預鑄構材接合強度計算[4] 9
2.3 接合部剪力強度相關文獻 17
2.3.1 剪力摩擦強度 17
2.3.2 混凝土承壓 19
2.4 其他相關文獻 25
2.4.1 支承長度 25
2.4.2 承吊鋼筋 30
2.4.3 剪力釘配置 33
2.4.4 承壓板厚度 33
2.4.5 試驗方法 35
第三章 試體設計 39
3.1 試體設計 39
3.1.1 尚存疑惑釐清 39
3.1.2 試體參數 41
3.1.3 試體資訊 42
3.1.4 試體材料強度 47
3.2 強度檢核 47
3.2.1 強度計算方式 47
3.2.2 強度計算結果 53
3.3 其他檢核 55
3.3.1 伸展長度 55
3.3.2 支承長度 56
3.3.3 承吊鋼筋 56
3.4 試體製作 56
第四章 試驗計畫 62
4.1 材料試驗 62
4.1.1 混凝土抗壓試驗 62
4.1.2 水泥砂漿抗壓試驗 63
4.1.3 鋼筋拉伸試驗 66
4.1.4 鋼材試片拉伸試驗 68
4.1.5 剪力釘拉伸試驗 70
4.2 試驗規劃 71
4.2.1 試驗配置 71
4.2.2 試驗加載方法 78
4.2.3 量測系統規劃 78
4.2.4 光學空間座標監測系統規劃(NDI) 79
4.2.5 應變計規劃 82
第五章 試驗結果與分析 85
5.1 試驗過程 85
5.1.1 試體5P_S與6P_S 85
5.1.2 試體7P_L與8P_L 88
5.1.3 試體3F_R3W 90
5.1.4 試體4F_R3H 94
5.1.5 試體1F_T2W 98
5.1.6 試體2F_T3W 102
5.2 試驗結果分析 106
5.2.1 P試體 106
5.2.2 F試體 114
第六章 合成預鑄構材接合設計建議 134
6.1 前言 134
6.2 強度計算 134
6.2.1 施工階段 134
6.2.2 使用階段 135
6.3 其他檢核 142
6.3.1 伸展長度 142
6.3.2 支承長度 142
6.3.3 承吊鋼筋 143
6.3.4 剪力接合器之剪力釘配置 144
6.3.5 承壓板厚度 144
第七章 結論與建議 147
7.1 試驗結果與分析 147
7.2 接合部剪力強度計算建議 149
7.3 未來研究方向建議 150
參考文獻 151
附錄A.1試體與夾具設計圖 153
附錄A.2實驗配置圖 183
附錄A.3 NDI規劃 188
附錄A.4 應變計規劃 191
附錄B.1鋼構夾具超音波檢測報告 200
附錄B.2剪力釘拉伸試驗報告 208
附錄C.1 試體1F試驗照片 212
1F梁頂、梁底 213
1F梁側 221
附錄C.2 試體2F試驗照片 229
2F梁頂、梁底 230
2F梁側 238
附錄C.3 試體3F試驗照片 245
3F梁頂、梁底 246
3F梁側 253
附錄C.4 試體4F試驗照片 260
4F梁頂、梁底 261
4F梁側 270
附錄C.5 試體5P、6P試驗照片 279
5P、6P內側 280
5P、6P拆開後 286
附錄C.6 試體7P、8P試驗照片 287
7P、8P內側 288
7P、8P拆開後 294
附錄D.1 試體1F應變計資料 295
小梁應變計 296
大梁應變計 297
板應變計 298
附錄D.2 試體2F應變計資料 299
小梁應變計 300
大梁應變計 301
板應變計 302
附錄D.3 試體3F應變計資料 303
小梁應變計 304
大梁應變計 305
附錄D.4 試體4F應變計資料 306
小梁應變計 307
大梁應變計 308
附錄D.5 試體5P、6P應變計資料 309
大梁應變計 310
附錄D.6 試體7P、8P應變計資料 311
大梁應變計 312
-
dc.language.isozh_TW-
dc.subject合成預鑄構材接合zh_TW
dc.subject剪力摩擦zh_TW
dc.subject點焊鋼線網zh_TW
dc.subject伸展長度zh_TW
dc.subject混凝土承壓zh_TW
dc.subject剪力接合器zh_TW
dc.subject承壓板zh_TW
dc.subjectDevelopment Lengthen
dc.subjectBearing Plateen
dc.subjectShear Connectoren
dc.subjectComposite Precast Component Connectionen
dc.subjectShear Frictionen
dc.subjectWelded Wire Fabricsen
dc.subjectConcrete Bearingen
dc.title預鑄小梁與版接合部性能試驗研究zh_TW
dc.titleConnection Behavior of Precast Concrete Beams and Slabsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃世建;鄭敏元;王瑞禎zh_TW
dc.contributor.oralexamcommitteeShyh-Jiann Hwang;Min-Yuan Cheng;Ruei-Jhen Wangen
dc.subject.keyword合成預鑄構材接合,剪力摩擦,點焊鋼線網,伸展長度,混凝土承壓,剪力接合器,承壓板,zh_TW
dc.subject.keywordComposite Precast Component Connection,Shear Friction,Welded Wire Fabrics,Development Length,Concrete Bearing,Shear Connector,Bearing Plate,en
dc.relation.page312-
dc.identifier.doi10.6342/NTU202403630-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-10-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
46.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved