請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94195
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 常怡雍 | zh_TW |
dc.contributor.advisor | Yee-yung Charng | en |
dc.contributor.author | 李泓毅 | zh_TW |
dc.contributor.author | Hong-Yi Li | en |
dc.date.accessioned | 2024-08-15T16:09:40Z | - |
dc.date.available | 2024-08-16 | - |
dc.date.copyright | 2024-08-15 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-09 | - |
dc.identifier.citation | 1 IPCC. Sections. In: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change., 35-115 (IPCC, IPCC, Geneva, Switzerland., 2023).
2 Ray, D. K., Gerber, J. S., MacDonald, G. K. & West, P. C. Climate variation explains a third of global crop yield variability. Nature Communications 6, 5989 (2015). https://doi.org:10.1038/ncomms6989 3 Busch, W., Wunderlich, M. & Schöffl, F. Identification of novel heat shock factor‐dependent genes and biochemical pathways in Arabidopsis thaliana. The Plant Journal 41, 1-14 (2005). 4 Charng, Y. Y. et al. A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol 143, 251-262 (2007). https://doi.org:10.1104/pp.106.091322 5 Schramm, F. et al. A cascade of transcription factor DREB2A and heat stress transcription factor HsfA3 regulates the heat stress response of Arabidopsis. The Plant Journal 53, 264-274 (2008). 6 LIU, H. C., LIAO, H. T. & CHARNG, Y. Y. The role of class A1 heat shock factors (HSFA1s) in response to heat and other stresses in Arabidopsis. Plant, cell & environment 34, 738-751 (2011). 7 Charng, Y.-y., Mitra, S. & Yu, S.-J. Maintenance of abiotic stress memory in plants: Lessons learned from heat acclimation. The Plant Cell 35, 187-200 (2022). https://doi.org:10.1093/plcell/koac313 8 Molinier, J., Ries, G., Zipfel, C. & Hohn, B. Transgeneration memory of stress in plants. Nature 442, 1046-1049 (2006). 9 Bruce, T. J., Matthes, M. C., Napier, J. A. & Pickett, J. A. Stressful “memories” of plants: evidence and possible mechanisms. Plant science 173, 603-608 (2007). 10 Hilker, M. & Schmülling, T. Vol. 42 753-761 (Wiley Online Library, 2019). 11 Thomashow, M. F. PLANT COLD ACCLIMATION: Freezing Tolerance Genes and Regulatory Mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50, 571-599 (1999). https://doi.org:10.1146/annurev.arplant.50.1.571 12 Hilker, M. et al. Priming and memory of stress responses in organisms lacking a nervous system. Biological Reviews 91, 1118-1133 (2016). 13 Conrath, U., Pieterse, C. M. & Mauch-Mani, B. Priming in plant–pathogen interactions. Trends in plant science 7, 210-216 (2002). 14 Mauch-Mani, B., Baccelli, I., Luna, E. & Flors, V. Defense priming: an adaptive part of induced resistance. Annual review of plant biology 68, 485-512 (2017). 15 Charng, Y. Y., Liu, H. C., Liu, N. Y., Hsu, F. C. & Ko, S. S. Arabidopsis Hsa32, a novel heat shock protein, is essential for acquired thermotolerance during long recovery after acclimation. Plant Physiol 140, 1297-1305 (2006). https://doi.org:10.1104/pp.105.074898 16 Liu, N.-y., Ko, S.-s., Yeh, K.-C. & Charng, Y.-y. Isolation and characterization of tomato Hsa32 encoding a novel heat-shock protein. Plant Science 170, 976-985 (2006). https://doi.org:https://doi.org/10.1016/j.plantsci.2006.01.008 17 Wu, T.-Y. et al. Interplay between Heat Shock Proteins HSP101 and HSA32 Prolongs Heat Acclimation Memory Posttranscriptionally in Arabidopsis. Plant Physiology 161, 2075-2084 (2013). https://doi.org:10.1104/pp.112.212589 18 Graham, D. E., Xu, H. & White, R. H. Identification of coenzyme M biosynthetic phosphosulfolactate synthase: a new family of sulfonate-biosynthesizing enzymes. Journal of Biological Chemistry 277, 13421-13429 (2002). 19 Liu, N.-Y., Hsieh, W.-J., Liu, H.-C. & Charng, Y.-Y. Hsa32, a phosphosulfolactate synthase-related heat-shock protein, is not involved in sulfolipid biosynthesis in Arabidopsis. Botanical Studies 47, 389-394 (2006). 20 Wilmanns, M., Hyde, C. C., Davies, D. R., Kirschner, K. & Jansonius, J. N. Structural conservation in parallel beta/alpha-barrel enzymes that catalyze three sequential reactions in the pathway of tryptophan biosynthesis. Biochemistry 30, 9161-9169 (1991). https://doi.org:10.1021/bi00102a006 21 Kadumuri, R. V. & Vadrevu, R. Diversity in αβ and βα Loop Connections in TIM Barrel Proteins: Implications for Stability and Design of the Fold. Interdiscip Sci 10, 805-812 (2018). https://doi.org:10.1007/s12539-017-0250-7 22 Hegyi, H. & Gerstein, M. The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. J Mol Biol 288, 147-164 (1999). https://doi.org:10.1006/jmbi.1999.2661 23 Schirmer, E. C., Glover, J. R., Singer, M. A. & Lindquist, S. HSP100/Clp proteins: a common mechanism explains diverse functions. Trends in biochemical sciences 21, 289-296 (1996). 24 Katayama, Y. et al. The two-component, ATP-dependent Clp protease of Escherichia coli. Purification, cloning, and mutational analysis of the ATP-binding component. Journal of Biological Chemistry 263, 15226-15236 (1988). https://doi.org:https://doi.org/10.1016/S0021-9258(18)68168-2 25 Weber-Ban, E. U., Reid, B. G., Miranker, A. D. & Horwich, A. L. Global unfolding of a substrate protein by the Hsp100 chaperone ClpA. Nature 401, 90-93 (1999). https://doi.org:10.1038/43481 26 Kim, Y.-I., Burton, R. E., Burton, B. M., Sauer, R. T. & Baker, T. A. Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. Molecular cell 5, 639-648 (2000). 27 Lee, S. et al. The Structure of ClpB: A Molecular Chaperone that Rescues Proteins from an Aggregated State. Cell 115, 229-240 (2003). https://doi.org:https://doi.org/10.1016/S0092-8674(03)00807-9 28 Goloubinoff, P., Mogk, A., Zvi, A. P. B., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proceedings of the National Academy of Sciences 96, 13732-13737 (1999). 29 Ortega, J., Singh, S. K., Ishikawa, T., Maurizi, M. R. & Steven, A. C. Visualization of substrate binding and translocation by the ATP-dependent protease, ClpXP. Molecular cell 6, 1515-1521 (2000). 30 Ishikawa, T. et al. Translocation pathway of protein substrates in ClpAP protease. Proceedings of the National Academy of Sciences 98, 4328-4333 (2001). 31 Lee, G. J., Roseman, A. M., Saibil, H. R. & Vierling, E. A small heat shock protein stably binds heat‐denatured model substrates and can maintain a substrate in a folding‐competent state. The EMBO journal (1997). 32 McLoughlin, F. et al. Class I and II Small Heat Shock Proteins Together with HSP101 Protect Protein Translation Factors during Heat Stress Plant Physiology 172, 1221-1236 (2016). https://doi.org:10.1104/pp.16.00536 33 Queitsch, C., Hong, S.-W., Vierling, E. & Lindquist, S. Heat Shock Protein 101 Plays a Crucial Role in Thermotolerance in Arabidopsis. The Plant Cell 12, 479-492 (2000). https://doi.org:10.1105/tpc.12.4.479 34 McLoughlin, F., Kim, M., Marshall, R. S., Vierstra, R. D. & Vierling, E. HSP101 Interacts with the Proteasome and Promotes the Clearance of Ubiquitylated Protein Aggregates. Plant Physiology 180, 1829-1847 (2019). https://doi.org:10.1104/pp.19.00263 35 MITRA, S. Stabilization of HSA32 by HSP101 in maintaining acquired thermotolerance in Arabidopsis. (2024). 36 Lin, M.-y. et al. A positive feedback loop between HEAT SHOCK PROTEIN101 and HEAT STRESS-ASSOCIATED 32-KD PROTEIN modulates long-term acquired thermotolerance illustrating diverse heat stress responses in rice varieties. Plant physiology 164, 2045-2053 (2014). 37 Reissmann, S., Parnot, C., Booth, C. R., Chiu, W. & Frydman, J. Essential function of the built-in lid in the allosteric regulation of eukaryotic and archaeal chaperonins. Nat Struct Mol Biol 14, 432-440 (2007). https://doi.org:10.1038/nsmb1236 38 Muñoz, I. G. et al. Crystal structure of the open conformation of the mammalian chaperonin CCT in complex with tubulin. Nat Struct Mol Biol 18, 14-19 (2011). https://doi.org:10.1038/nsmb.1971 39 Douglas, N. R. et al. Dual action of ATP hydrolysis couples lid closure to substrate release into the group II chaperonin chamber. Cell 144, 240-252 (2011). https://doi.org:10.1016/j.cell.2010.12.017 40 Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature, 1-3 (2024). 41 Meng, E. C. et al. UCSF ChimeraX: Tools for structure building and analysis. Protein Sci 32, e4792 (2023). https://doi.org:10.1002/pro.4792 42 Baek, M., Park, T., Heo, L., Park, C. & Seok, C. GalaxyHomomer: a web server for protein homo-oligomer structure prediction from a monomer sequence or structure. Nucleic Acids Research 45, W320-W324 (2017). https://doi.org:10.1093/nar/gkx246 43 Conchillo-Solé, O. et al. AGGRESCAN: a server for the prediction and evaluation of" hot spots" of aggregation in polypeptides. BMC bioinformatics 8, 1-17 (2007). 44 Bárcenas, O. et al. Aggrescan4D: structure-informed analysis of pH-dependent protein aggregation. Nucleic Acids Research, gkae382 (2024). 45 Sormanni, P., Aprile, F. A. & Vendruscolo, M. The CamSol method of rational design of protein mutants with enhanced solubility. Journal of molecular biology 427, 478-490 (2015). 46 Sormanni, P., Amery, L., Ekizoglou, S., Vendruscolo, M. & Popovic, B. Rapid and accurate in silico solubility screening of a monoclonal antibody library. Scientific Reports 7, 8200 (2017). https://doi.org:10.1038/s41598-017-07800-w 47 Linding, R., Schymkowitz, J., Rousseau, F., Diella, F. & Serrano, L. A comparative study of the relationship between protein structure and beta-aggregation in globular and intrinsically disordered proteins. J Mol Biol 342, 345-353 (2004). https://doi.org:10.1016/j.jmb.2004.06.088 48 Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J. & Serrano, L. Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22, 1302-1306 (2004). https://doi.org:10.1038/nbt1012 49 Rousseau, F., Schymkowitz, J. & Serrano, L. Protein aggregation and amyloidosis: confusion of the kinds? Curr Opin Struct Biol 16, 118-126 (2006). https://doi.org:10.1016/j.sbi.2006.01.011 50 Beerten, J. et al. WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics 31, 1698-1700 (2015). 51 Goldschmidt, L., Teng, P. K., Riek, R. & Eisenberg, D. Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci U S A 107, 3487-3492 (2010). https://doi.org:10.1073/pnas.0915166107 52 Walsh, I., Seno, F., Tosatto, S. C. & Trovato, A. PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Res 42, W301-307 (2014). https://doi.org:10.1093/nar/gku399 53 Tegel, H., Tourle, S., Ottosson, J. & Persson, A. Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta(DE3). Protein Expr Purif 69, 159-167 (2010). https://doi.org:10.1016/j.pep.2009.08.017 54 Christianson, T. W., Sikorski, R. S., Dante, M., Shero, J. H. & Hieter, P. Multifunctional yeast high-copy-number shuttle vectors. Gene 110, 119-122 (1992). https://doi.org:10.1016/0378-1119(92)90454-w 55 Bitter, G. A. & Egan, K. M. Expression of interferon-gamma from hybrid yeast GPD promoters containing upstream regulatory sequences from the GAL1-GAL10 intergenic region. Gene 69, 193-207 (1988). https://doi.org:10.1016/0378-1119(88)90430-1 56 Jones, E. W. Proteinase mutants of Saccharomyces cerevisiae. Genetics 85, 23-33 (1977). https://doi.org:10.1093/genetics/85.1.23 57 Zubenko, G. S., Mitchell, A. P. & Jones, E. W. Mapping of the proteinase b structural gene PRB1, in Saccharomyces cerevisiae and identification of nonsense alleles within the locus. Genetics 96, 137-146 (1980). https://doi.org:10.1093/genetics/96.1.137 58 Brachmann, C. B. et al. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115-132 (1998). https://doi.org:10.1002/(sici)1097-0061(19980130)14:2<115::Aid-yea204>3.0.Co;2-2 59 Zhou, K. et al. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. BMC Mol Biol 12, 18 (2011). https://doi.org:10.1186/1471-2199-12-18 60 Baneyx, F. Recombinant protein expression in Escherichia coli. Current opinion in biotechnology 10, 411-421 (1999). 61 Graumann, K. & Premstaller, A. Manufacturing of recombinant therapeutic proteins in microbial systems. Biotechnol J 1, 164-186 (2006). https://doi.org:10.1002/biot.200500051 62 Komatsu, K., Driscoll, W. J., Koh, Y. C. & Strott, C. A. A P-loop related motif (GxxGxxK) highly conserved in sulfotransferases is required for binding the activated sulfate donor. Biochem Biophys Res Commun 204, 1178-1185 (1994). https://doi.org:10.1006/bbrc.1994.2587 63 Urfer, R. & Kirschner, K. The importance of surface loops for stabilizing an eightfold beta alpha barrel protein. Protein Sci 1, 31-45 (1992). https://doi.org:10.1002/pro.5560010105 64 Norledge, B. V. et al. Modeling, mutagenesis, and structural studies on the fully conserved phosphate-binding loop (loop 8) of triosephosphate isomerase: toward a new substrate specificity. Proteins 42, 383-389 (2001). https://doi.org:10.1002/1097-0134(20010215)42:3<383::aid-prot80>3.0.co;2-g 65 Scott, M. P. Development: the natural history of genes. Cell 100, 27-40 (2000). https://doi.org:10.1016/s0092-8674(00)81681-5 66 Riechmann, J. L. et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. science 290, 2105-2110 (2000). 67 Branco-Price, C., Kawaguchi, R., Ferreira, R. B. & Bailey-Serres, J. Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Annals of botany 96, 647-660 (2005). 68 Branco‐Price, C., Kaiser, K. A., Jang, C. J., Larive, C. K. & Bailey‐Serres, J. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. The Plant Journal 56, 743-755 (2008). 69 Yangueez, E., Castro-Sanz, A. B., Fernandez-Bautista, N., Oliveros, J. C. & Castellano, M. M. Analysis of genome-wide changes in the translatome of Arabidopsis seedlings subjected to heat stress. PloS one 8, e71425 (2013). 70 Georgescauld, F. et al. GroEL/ES chaperonin modulates the mechanism and accelerates the rate of TIM-barrel domain folding. Cell 157, 922-934 (2014). https://doi.org:10.1016/j.cell.2014.03.038 71 Wu, Y., Kondrashkina, E., Kayatekin, C., Matthews, C. R. & Bilsel, O. Microsecond acquisition of heterogeneous structure in the folding of a TIM barrel protein. Proc Natl Acad Sci U S A 105, 13367-13372 (2008). https://doi.org:10.1073/pnas.0802788105 72 Kerner, M. J. et al. Proteome-wide analysis of chaperonin-dependent protein folding in Escherichia coli. Cell 122, 209-220 (2005). https://doi.org:10.1016/j.cell.2005.05.028 73 Baneyx, F. & Mujacic, M. Recombinant protein folding and misfolding in Escherichia coli. Nature Biotechnology 22, 1399-1408 (2004). https://doi.org:10.1038/nbt1029 74 Singh, A., Upadhyay, V. & Panda, A. K. Solubilization and refolding of inclusion body proteins. Insoluble proteins: methods and protocols, 283-291 (2015). 75 Baghban, R. et al. Yeast expression systems: overview and recent advances. Molecular biotechnology 61, 365-384 (2019). 76 Liu, H. C. et al. Distinct heat shock factors and chromatin modifications mediate the organ-autonomous transcriptional memory of heat stress. Plant J 95, 401-413 (2018). https://doi.org:10.1111/tpj.13958 77 Chi, W. T., Fung, R. W., Liu, H. C., Hsu, C. C. & Charng, Y. Y. Temperature-induced lipocalin is required for basal and acquired thermotolerance in Arabidopsis. Plant Cell Environ 32, 917-927 (2009). https://doi.org:10.1111/j.1365-3040.2009.01972.x | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94195 | - |
dc.description.abstract | Heat-Stress-Associated 32 kDa Protein (HSA32)透過抑制 Heat Shock Protein 101 (HSP101)的降解,參與了阿拉伯芥和水稻之熱順應記憶(HAM,heat acclimation memory),同時,HSP101 防止 HSA32 被快速降解。然而,HSP101 是如何調控 HSA32 的蛋白質穩定性與兩者之間的交互作用機制尚不清楚。為了暸解 HSA32 的 穩定性和其蛋白質功能之分子機制,我嘗試用生物化學實驗方法來探討阿拉伯芥 HSA32 的蛋白質特性。首先,透過大腸桿菌蛋白質表達系統表現阿拉伯芥 HSA32, 發現 HSA32 在大腸桿菌中形成不可溶的沈澱,且與 HSP101 共同表現時,只略微 增加了 HSA32 的溶解度,因此推論單獨 HSP101 並無法在大腸桿菌中顯著影響 HSA32 的溶解性,且透過大腸桿菌蛋白質表達系統純化 HSA32 目前面臨困難。接 著,我嘗試用酵母菌表現系統,但在純化 HSA32 上依然面臨困難。因此,我透過 使用膠體過濾層析(SEC)和蔗糖梯度離心法直接分離阿拉伯芥蛋白粗抽取,發現 HSA32 會形成高密度的大分子聚集體,無論有無 HSP101 存在,HSA32 的分佈均 未有顯著不同。並且,透過穿隧式電子顯微鏡觀察免疫金染色的阿拉伯芥切片發現, 熱處理後 HSA32-GFP 會在細胞質中聚集。研究結果雖然無法推斷 HSA32 的蛋白 結構與功能,且無法直接證明 HSA32 與 HSP101 間的交互機制,但提出了 HSA32 是一個易聚集的蛋白,此特性可能在植物生理功能中扮演重要角色。 | zh_TW |
dc.description.abstract | Heat-Stress-Associated 32 kDa Protein (HSA32) is involved in plant heat acclimation memory (HAM) in Arabidopsis and rice by suppressing the degradation of Heat Shock Protein 101 (HSP101). Conversely, HSP101 prevents the rapid degradation of HSA32. To elucidate the molecular mechanisms underlying the stability and function of HSA32, I utilized biochemical approaches to characterize the protein properties of HSA32. Here, I demonstrate that Arabidopsis HSA32 forms insoluble aggregates with a slight increase in solubility when co-expressed with HSP101 in Escherichia coli. Overexpression of His- tagged HSA32 in Saccharomyces cerevisiae does not result in visible His signal when analyzed by immunoblotting, highlighting the challenges encountered in using these heterologous expression systems to characterize the protein properties of HSA32. Fractionation of Arabidopsis crude extract using size-exclusion chromatography (SEC) and sucrose gradient centrifugation, followed by immunoblot analysis, demonstrates that HSA32 forms macromolecular assemblies. However, whether in the presence or absence of HSP101, the distribution of HSA32 shows no significant difference, possibly due to the disruption of native interactions following cell breakage. Immunogold-labeling TEM revealed that HSA32 forms protein condensates in response to HS in transgenic plants.
Together, my study shows that HSA32 is an aggregation-prone protein that forms aggregates upon cell breakage, and forms protein condensates following HS in vivo. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:09:40Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-15T16:09:40Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Contents v Chapter 1. Introduction 1 1.1 Heat tolerance in plants 1 1.2 Heat acclimation memory 2 1.3 Heat-Stress-Associated 32-kD Protein 3 1.4 Role of Heat Shock Protein 101 in thermotolerance 4 1.5 Molecular mechanism of HAM mediated by HSA32 and HSP101 6 1.6 Aims of the studies 7 Chapter 2. Materials and Methods 8 2.1 In silico predictions 8 2.2 Plant materials and heat treatment 9 2.3 Purification of HSA32 in denaturing condition 9 2.4 High-throughput mini dialysis 10 2.5 Co-expression of HSA32 with HSP101 in E. coli 11 2.6 Fractionation of soluble and insoluble protein from E. coli 11 2.7 Cloning, protein expression and purification using Saccharomyces cerevisiae 12 2.8 Protein extraction from Arabidopsis 13 2.9 Size-exclusion chromatography 14 2.10 Sucrose density gradient sedimentation 15 2.11 SDS-PAGE and immunoblotting 15 2.12 RNA extraction and quantitative reverse transcription PCR 16 2.13 Transmission electron microscopy and immunogold labeling 17 Chapter 3. Results 18 3.1 HSA32 is predicted to be a TIM barrel protein containing several short aggregation-prone regions 18 3.2 HSA32 is predicted to hold trimeric structure 19 3.3 HSA32 mainly forms amorphous, insoluble aggregates after purification from E. coli… 20 3.4 The solubility of HSA32 slightly increases when co-expressed with HSP101 in E. coli 21 3.5 HSA32 post-transcriptional stabilization of HSP101 in E. coli 22 3.6 Challenges in purifying HSA32 from S. cerevisiae due to undetectable His tag and ineffective nickel affinity column 23 3.7 HSA32 consistently appears in high molecular weight fractions regardless of heat stress or the presence of HSP101 in Arabidopsis crude extract 23 3.8 HSA32 forms protein condensates in vivo 25 Chapter 4. Discussion 27 4.1 Aggregation properties of HSA32 27 4.1.1 HSA32 is a TIM-barrel fold protein 27 4.1.2 HSA32 is an aggregation-prone protein with several APRs 28 4.1.3 HSA32 failed to refold to native structures in vitro 29 4.1.4 Currently, purifying HSA32 from yeast poses challenges 31 4.2 Interaction between HSA32 and HSP101 may be weak or indirect 32 4.2.1 No significant resolubilization of HSA32 was observed despite co-expression with HSP101 in E. coli 32 4.2.2 Co-expression of HSA32 leads to an accumulation of HSP101 protein levels…. 33 4.2.3 HSP101 may exhibit a disaggregase activity that effectively disassociates protein condensates of HSA32 33 4.3 The aggregation of HSA32 observed in plant crude extract may be attributed to non-specific interactions 34 4.4 HSA32 forms protein condensates in response to HS in vivo 35 4.5 Conclusion 36 References 37 Figures 45 Figure 1. Schematic model of HSA32 involvement in heat acclimation memory 45 Figure 2. HSA32 is a TIM-barrel protein 46 Figure 3. HSA32 is predicted to have several aggregation prone regions at unstructured regions 48 Figure 4. Trimeric HSA32 have highest structure similarity score in homomer prediction 49 Figure 5. HSA32 forms insoluble aggregates and failed to resolubilize after dialysis in vitro.. 50 Figure 7. HSP101 slightly increases the solubility of HSA32. In turn, HSA32 post-transcriptionally promotes the accumulation of HSP101 53 Figure 8. Loss-of-function mutations of HSA32 fail to promote the accumulation of HSP101 54 Figure 9. His tag at C terminus of HSA32 were cleaved when overexpress in S. cerevisiae 55 Figure 10. SEC fractionation of Arabidopsis crude extracts shows that the distribution of HSA32 is not significantly different with or without the presence of HSP101 56 Figure 11. Western blot analysis of sucrose gradient fractions of HSA32 demonstrates no significant difference in the presence or absence of HSP101 58 Figure 12. Membrane-less protein condensates were identified by TEM of immunogold labeled transgenic Arabidopsis seedlings 60 Appendix 62 Supplementary Table 1. List of primer 62 Supplementary Table 2. List of antibodies 63 Supplementary figure 1. Aggregation prone regions of HSA32 65 Supplementary figure 2. Identification of self-assembly hotspots of HSA32 66 Supplementary figure 3. Chromatogram of size-exclusion chromatography 67 | - |
dc.language.iso | en | - |
dc.title | 阿拉伯芥 HSA32 之生化性質分析 | zh_TW |
dc.title | Biochemical Characterization of Arabidopsis HSA32 | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蕭傳鐙;楊健志;葉靖輝 | zh_TW |
dc.contributor.oralexamcommittee | Chwan-Deng Hsiao;Chien-Chih Yang;Ching-Hui Yeh | en |
dc.subject.keyword | 阿拉伯芥,HSA32,HSP101,熱逆境,熱順應記憶,易聚集蛋白, | zh_TW |
dc.subject.keyword | Arabidopsis,HSA32,HSP101,heat stress,heat acclimation memory,aggregation-prone protein, | en |
dc.relation.page | 68 | - |
dc.identifier.doi | 10.6342/NTU202403618 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-12 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生化科技學系 | - |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 7.52 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。