Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 大氣科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94190
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳俊傑zh_TW
dc.contributor.advisorChun-Chieh Wuen
dc.contributor.author廖先嶸zh_TW
dc.contributor.authorShian-Rong Liaoen
dc.date.accessioned2024-08-15T16:07:46Z-
dc.date.available2024-09-16-
dc.date.copyright2024-08-15-
dc.date.issued2024-
dc.date.submitted2024-08-07-
dc.identifier.citation王時鼎,1970:台灣區域冬半年連續三至六天惡劣天氣型研究。氣象學報,16,18-31頁。
李正紀及廖宇慶,2005:使用 VAD 方法及雷達回波資料估計大氣垂直渦度剖線。大氣科學,33,301-320頁。
林又青、何瑞益、王俞婷、傅鏸漩、梁庭語、施虹如 李威霖、陳珮琦、林聖琪、呂喬茵、朱崇銳、李士強 劉哲欣、張志新,2022:111 年度豪雨及颱風事件災情彙整報告。國家災害防救科技中心,81頁。
連國淵,2009:颱風路徑與結構同化研究-系集卡爾曼濾波器。國立台灣大學大氣科學研究所碩士論文,87頁。
鄧秀明及周仲島,1995:廣泛式速度方位顯示方法之誤差分析與其在梅雨鋒面雨帶的應用。大氣科學,23,123-145頁。
Arakane, S., H.-H. Hsu, C.-Y. Tu, H.-C. Liang, Z.-Y. Yan, and S.-J. Lin, 2019: Remote effect of a tropical cyclone in the Bay of Bengal on a heavy-rainfall event in subtropical East Asia. npj Climate Atmos. Sci., 2, 25.
Bell, M. M., M. Dixon, W.-C. Lee, B. Javornik, J. DeHart, T.-Y. Cha, and A. DesRosiers, 2022: nsf-lrose/lrose-topaz: Lrose-topaz stable final release 20220222 (lrose-topaz-2022022).
Bogner, P. B., G. M. Barnes, and J. L. Franklin, 2000: Conditional instability and shear for six hurricanes over the Atlantic Ocean. Wea. Forecasting, 15, 192-207.
Bosart, L. F., J. M. Cordeira, T. J. Galarneau Jr., B. J. Moore, and H. M. Archambault, 2012: An analysis of multiple predecessor rain events ahead of Tropical Cyclones Ike and Lowell: 10–15 September 2008. Mon. Wea. Rev., 140, 1081-1107.
Brandes, E. A., G. Zhang, and J. Vivekanandan, 2002: Experiments in rainfall estimation with a polarimetric radar in a subtropical environment. J. Appl. Meteor., 41, 674-685.
Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar. Principles and Applications. Cambridge University Press, 636 pp.
Chang, K.-F., C.-C. Wu, and K. Ito, 2023: On the rapid weakening of Typhoon Trami (2018): Strong sea surface temperature cooling associated with slow translation speed. Mon. Wea. Rev., 151, 227-251.
Chen, C.-S., Y.-L. Lin, H.-T. Zeng, C.-Y. Chen, and C.-L. Liu, 2013: Orographic effects on heavy rainfall events over northeastern Taiwan during the northeasterly monsoon season. Atmos. Res., 122, 310-335.
Chen, G. T.-J., C.-C. Wang, and A.-H. Wang, 2007: A case study of subtropical frontogenesis during a blocking event. Mon. Wea. Rev., 135, 2588-2609.
Chen, T.-C., and C.-C. Wu, 2016: The remote effect of Typhoon Megi (2010) on the heavy rainfall over northeastern Taiwan. Mon. Wea. Rev., 144, 3109-3131.
Chen, Y.-L., and C.-C. Wu, 2024: The Impact of Outer-Core Structure on Eye Formation and Intensification of Tropical Cyclones. (Submitted to Mon. Wea. Rev.)
Chen, G., and Coauthors, 2022: Variability of microphysical characteristics in the “21·7” Henan extremely heavy rainfall event. Sci. China Earth Sci., 65, 1861-1878.
Chen, Y. H., H.-C. Kuo, C.-C. Wang, and Y.-T. Yang, 2017: Influence of southwest monsoon flow and typhoon motion on Taiwan rainfall during the exit phase. Quart. J. Roy. Meteor. Soc., 143, 3014-3024.
Chung, M.-H., C.C. Wu, 2024: On Tropical Cyclone Genesis Types and Their Intensification Rate. (Submitted to Mon. Wea. Rev.)
Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 1029-1136.
Colomb, A., T. Kriat, and M. Leroux, 2019: On the rapid weakening of very intense Tropical Cyclone Hellen (2014). Mon. Wea. Rev., 147, 2717-2737.
Cote, M. R., 2007: Predecessor rain events in advance of tropical cyclones. Master's thesis, Dept. of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 200 pp.
Craft, D. L., 1998: Azimuth & Range Optimization of the Velocity Azimuth Display (VAD) Algorithm in the WSR-88D. Master's thesis, Air Force Institute of Technology, 144 pp.
Eliassen, A., 1962: On the vertical circulation in frontal zones. Geofys. Publ., 24, 147-160.
Fang, X., and Y.-H. Kuo, 2013: Improving ensemble-based quantitative precipitation forecasts for topography-enhanced typhoon heavy rainfall over Taiwan with a modified probability-matching technique. Mon. Wea. Rev., 141, 3908-3932.
──, Y.-H. Kuo, and A. Wang, 2011: The impacts of Taiwan topography on the predictability of Typhoon Morakot’s record-breaking rainfall: A high-resolution ensemble simulation. Wea. Forecasting, 26, 613-633.
Galarneau, T. J., L. F. Bosart, and R. S. Schumacher, 2010: Predecessor rain events ahead of tropical cyclones. Mon. Wea. Rev., 138, 3272-3297.
Hanley, D., J. Molinari, and D. Keyser, 2001: A composite study of the interactions between tropical cyclones and upper-tropospheric troughs. Mon. Wea. Rev., 129, 2570-2584.
Houze, R. A., Jr., 2010: Clouds in tropical cyclones. Mon. Wea. Rev., 138, 293-344.
Hsiao, L.-F., and Coauthors, 2013: Ensemble forecasting of typhoon rainfall and floods over a mountainous watershed in Taiwan. J. Hydrol., 506, 55-68.
Hsu, L.-H., Y.-C. Wu, C.-C. Chiang, J.-L. Chu, Y.-C. Yu, A.-H. Wang, B.J.-D. Jou, 2023: Analysis of the interdecadal and interannual variability of autumn extreme rainfall in taiwan using a deep-learning-based weather typing approach. Asia-Pac. J. Atmos. Sci. 59, 185-205.
Huang, Y.-H., M. T. Montgomery, and C.-C. Wu, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008) – Part II: Axisymmetric dynamical processes. J. Atmos. Sci., 69, 662-674.
──, C.-C. Wu, and M. T. Montgomery, 2018: Concentric eyewall formation in Typhoon Sinlaku (2008). Part III: Horizontal momentum budget analyses. J. Atmos. Sci., 75, 3541-3563.
Huang, Y.-C., and Y.-L. Lin, 2014: A study on the structure and precipitation of Morakot (2009) induced by the Central Mountain Range of Taiwan. Meteor. Atmos. Phys., 123, 115-141.
Hubbert, J. and V.N. Bringi, 1995: An Iterative Filtering Technique for the Analysis of Copolar Differential Phase and Dual-Frequency Radar Measurements. J. Atmos. Oceanic Technol., 12, 643-648.
Huffman, G.J., E.F. Stocker, D.T. Bolvin, E.J. Nelkin, and Jackson Tan, 2023: GPM IMERG Final Precipitation L3 Half Hourly 0.1 degree x 0.1 degree V07, Greenbelt, MD, Goddard Earth Sciences Data and Information Services Center (GES DISC).
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.
IPCC, 2014: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp.
──, 2021: Climate Change 2021: The Physical Science Basis. Cambridge University Press, 2391 pp.
Kain, John S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170-181.
Kanada, S., K. Tsuboki, H. Aiki, S. Tsujino, and I. Takayabu, 2017: Future enhancement of heavy rainfall events associated with a typhoon in midlatitude regions. SOLA, 13, 246-251.
Kawamura, R., and T. Ogasawara, 2006: On the role of typhoons in generating PJ teleconnection patterns over the western North Pacific in late summer. SOLA, 2, 37-40.
Knutson, T. R., J. J. Sirutis, M. Zhao, R. E. Tuleya, M. Bender, G. A. Vecchi, G. Villarini, and D. Chavas, 2015: Global projections of intense tropical cyclone activity for the late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. Climate, 28, 7203-7224.
──, and Coauthors, 2020: Tropical cyclones and climate change assessment: Part II. Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, 1987-2007.
Kodama, S., and M. Satoh, 2022: Statistical analysis of remote precipitation in Japan caused by typhoons in September. J. Meteor. Soc. Japan, 100, 893-911.
Komaromi, W. A., and J. D. Doyle, 2018: On the dynamics of tropical cyclone and trough interactions. J. Atmos. Sci., 75, 2687-2709.
Kumjian, M. R., 2013: Principles and applications of dual-polarization weather radar. Part I: Description of the polarimetric radar variables. J. Oper. Meteor., 1, 226-242.
Lackmann, G., 2002: Cold-frontal potential vorticity maxima, the low-level jet, and moisture transport in extratropical cyclones. Mon. Wea. Rev., 130, 59-74.
Lai, T.-L., J.-M. Chen, C.-H. Sui, M.-Y. Tsai, C.-F. Shih, W.-T. Li, 2021: Joint modulations of Taiwan rainfall by tropical cyclone, northeast monsoon, and intraseasonal oscillation in October. Terr. Atmos. Ocean. Sci. 32, 1163-1179.
Li, S., S. Jaroszynski, S. Pearse, L. Orf, and J. Clyne, 2019: VAPOR: A visualization package tailored to analyze simulation data in Earth system science. Atmosphere, 10, 488.
Lin, Y.-F., C.-C. Wu, T.-H. Yen, Y.-H. Huang, and G.-Y. Lien, 2020: Typhoon Fanapi (2010) and its interaction with Taiwan terrain – evaluation of the uncertainty in track, intensity and rainfall simulations. J. Meteor. Soc. Japan, 98, 93-113.
Lin, Y.-H., and C.-C. Wu, 2021: Remote rainfall of Typhoon Khanun (2017): Monsoon mode and topographic mode. Mon. Wea. Rev., 149, 733-752.
Liu, M., G. A. Vecchi, J. A. Smith, and H. Murakami, 2018: Projection of landfalling–tropical cyclone rainfall in the eastern United States under anthropogenic warming. J. Climate, 31, 7269-7286.
Lonfat, M., F. D. Marks Jr., and S. S. Chen, 2004: Precipitation distribution in tropical cyclones using the Tropical Rainfall Measuring Mission (TRMM) microwave imager: A global perspective. Mon. Wea. Rev., 132, 1645-1660.
Martin, J. E., 2006: Mid-Latitude Atmospheric Dynamics. Wiley, 336 pp.
Mohr, C. G., and R. L. Vaughan, 1979: An economical procedure for Cartesian interpolation and display of reflectivity factor data in three-dimensional space. J. Appl. Meteor., 18, 661-670.
Morrison, H., G. Thompson, V. Tatarskii, 2009: Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One– and Two–Moment Schemes. Mon. Wea. Rev., 137, 991-1007.
Nakanishi, M., and H. Niino, 2009: Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan, 87, 895-912.
Ninomiya, K., 1984: Characteristics of Baiu front as a predominant sub-tropical front in the summer northern hemisphere. J. Meteor. Soc. Japan, 62, 880-894.
Onderlinde, M. J., and Nolan, D. S., 2016: Tropical cyclone–relative environmental helicity and the pathways to intensification in shear. J. Atmos. Sci., 73, 869-890.
Rogers, R., Reasor, P., and Lorsolo, S., 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970-2991.
Schaefer, J. T., 1990: The critical success index as an indicator of warning skill. Wea. Forecasting, 5, 570-575.
Schumacher, R. S., and T. J. Galarneau Jr., 2012: Moisture transport into midlatitudes ahead of recurving tropical cyclones and its relevance in two predecessor rain events. Mon. Wea. Rev., 140, 1810-1827.
──, T. J. Galarneau Jr., and L. F. Bosart, 2011: Distant effects of a recurving tropical cyclone on rainfall in a midlatitude convective system: A high-impact predecessor rain event. Mon. Wea. Rev., 139, 650-667.
Tao, W.-K., and Coauthors, 2011: High-resolution numerical simulation of the extreme rainfall associated with Typhoon Morakot. Part I: Comparing the impact of microphysics and PBL parameterizations with observations. Terr. Atmos. Oceanic Sci., 22, 673-696.
Tewari, M., F. Chen, W. Wang, J. Dudhia, M. A. LeMone, K. Mitchell, M. Ek, G. Gayno, J. Wegiel, and R. H. Cuenca, 2004: Implementation and verification of the unified NOAH land surface model in the WRF model. 20th conference on weather analysis and forecasting/16th conference on numerical weather prediction, pp. 11-15.
Tu, C.-C., Y.-L. Chen, P.-L. Lin, and M.-Q. Huang, 2022: Analysis and simulations of a heavy rainfall event associated with the passage of a shallow front over Northern Taiwan on 2 June 2017. Mon. Wea. Rev., 150, 505-528.
Vivekanandan, J., D.S. Zrnic, S.M. Ellis, R. Oye, A.V. Ryzhkov and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Am. Meteorol. Soc., 80, 381-388.
Wang, M., K. Zhao, W.-C. Lee, and F. Zhang, 2018: Microphysical and kinematic structure of convective-scale elements in the inner rainband of Typhoon Matmo (2014) after landfall. J. Geophys. Res. Atmos., 123, 6549-6564.
Wang, Y., Y. Wang, and H. Fudeyasu, 2009: The role of Typhoon Songda (2004) in producing distantly located heavy rainfall in Japan. Mon. Wea. Rev., 137, 3699-3716.
Wang, C.-C., H.-C. Kuo, Y.-H. Chen, H.-L. Huang, C.-H. Chung, and K. Tsuboki, 2012: Effects of asymmetric latent heating on typhoon movement crossing Taiwan: The case of Morakot (2009) with extreme rainfall. J. Atmos. Sci., 69, 3172-3196.
Wang, Y., 2009: How do outer spiral rainbands affect tropical cyclone structure and intensity? J. Atmos. Sci., 66, 1250-1273.
Willoughby, H. E., F. D. Marks Jr., and R. J. Feinberg, 1984: Stationary and propagating convective bands in asymmetric hurricanes. J. Atmos. Sci., 41, 3189-3211.
Wright, D., T. R. Knutson, and J. A. Smith, 2015: Regional climate model projections of rainfall from U.S. landfalling tropical cyclones. Climate Dyn., 45, 3365-3379.
Wu, C.-C., and Y.-H. Kuo, 1999: Typhoons affecting Taiwan: Current understanding and future challenges. Bulletin of Amer. Meteor. Soc., 80, 67-80.
──, K. K. W. Cheung, and Y.-Y. Lo, 2009: Numerical study of the rainfall event due to interaction of Typhoon Babs (1998) and the northeasterly Monsoon. Mon. Wea. Rev., 137, 2049-2064.
──, T.-S. Huang, W.-P. Huang, and K.-H. Chou, 2003: A new look at the binary interaction: Potential vorticity diagnosis of the unusual southward movement of Tropical Storm Bopha (2000) and its interaction with Supertyphoon Saomai (2000). Mon. Wea. Rev., 131, 1289-1300.
──, Y.-H. Huang, and G.-Y. Lien, 2012: Concentric eyewall formation in Typhoon Sinlaku (2008) – Part I: Assimilation of T-PARC data based on the Ensemble Kalman Filter (EnKF). Mon. Wea. Rev., 140, 506-527.
──, S.-G. Chen, S.-C. Lin, T.-H. Yen, and T.-C. Chen, 2013: Uncertainty and predictability of tropical cyclone rainfall based on ensemble simulations of Typhoon Sinlaku (2008). Mon. Wea. Rev., 141, 3517-3538.
Wu, M., C.-C. Wu, T.-H. Yen., and Y. Luo, 2017: Synoptic analysis of extreme hourly precipitation in Taiwan during 2003-12. Mon. Wea. Rev., 145, 5123-5140.
Xu, H., Y. Duan, and X. Xu, 2022: Indirect effects of binary typhoons on an extreme rainfall event in Henan Province, China from 19 to 21 July 2021: 1. Ensemble-based analysis. J. Geophys. Res. Atmos., 127, e2021JD036265.
Yen, T.-H., C.-C. Wu, and G.-Y. Lien, 2011: Rainfall simulations of Typhoon Morakot with controlled translation speed based on EnKF data assimilation. Terr. Atmos. Ocean. Sci., 22, 647-660.
Yoshida, N., R. Kawamura, T. Kawano, T. Mochizuki and S. Iizuka, 2023: Remote dynamic and thermodynamic effects of typhoons on Meiyu–Baiu precipitation in Japan assessed with bogus typhoon experiments. Weather Clim. Extrem., 41, 100578.
Yu, C.- K., and C.- L. Tsai, 2017: Structural changes of an outer tropical cyclone rainband encountering the topography of northern Taiwan. Quart. J. Roy. Meteor. Soc., 143, 1107-1122.
──, C.- Y. Lin, L.- W. Cheng, J.- S. Luo, C.- C. Wu and Y. Chen, 2018: The degree of prevalence of similarity between outer tropical cyclone rainbands and squall lines. Sci. Rep., 8, 8247.
──, and L.-W. Cheng, 2014: Dual-Doppler-derived profiles of the southwesterly flow associated with southwest and ordinary typhoons off the southwestern coast of Taiwan. J. Atmos. Sci., 71, 3202-3222.
Yu, Y., T. Gao, L. Xie, R.-H. Zhang, W. Zhang, H. Xu, F. Cao, B. Chen, 2022: Tropical cyclone over the western Pacific triggers the record-breaking ‘21/7’ extreme rainfall in Henan, central-eastern China. Environmental Research Letters, 17, 124003.
Zhang, X., Q. Xiao, and P. J. Fitzpatrick, 2007: The impact of multisatellite data on the initialization and simulation of Hurricane Lili’s (2002) rapid weakening phase. Mon. Wea. Rev., 135, 526-548.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94190-
dc.description.abstract熱帶氣旋(Tropical cyclones, TCs)相關的降水可以分為兩種類型:直接降水和遠距降水,前者主要是由TC內核主環流所主導,而後者則是透過TC外圍環流與環境流場(如冷鋒或季風)交互作用所產生。遠距降水對預報與防災更具挑戰性,其所帶來的經濟損失與社會衝擊亦經常被低估。2022年10月中旬,與尼莎颱風相關的遠距降水事件具有三個不同於過往TC遠距降水文獻的特徵。首先,降水熱區位於大台北都會區(Greater Taipei Area, GTA)而非宜蘭,且12小時累積雨量超過300毫米。再者,與大陸冷高壓相關的冷鋒鋒面在事件發生時尚未抵達北台灣。最後,當時綜觀系統顯示有一獨立於尼莎颱風環流的次大水氣輸送位於季風槽(Monsoon trough)邊緣,且輸送方向指向北台灣。
在本研究中,我們使用五分山雷達的雙偏極參數與徑向風場分析該事件降水的時空分佈與特徵;此外,也利用Advanced Research WRF模式進行系集模擬和敏感性實驗,前者探討在與前人研究不同的特徵下,GTA發生遠距降水的關鍵因素,後者旨在探討TC的壯度(Strength)對本次遠距降水事件的影響。依五分山雷達資料分析結果將當天早上與下午分別定義為雨帶時期(Rainband stage, R-stage)與輻合時期(Convergence stage, C-stage),經雙偏極變數和徑向風場分析後,顯示兩時期造成強降水的機制明顯不同,前期為颱風外圍雨帶,後期為GTA東側的輻合機制。針對C-stage輻合所致的強降水進行系集模擬,結果顯示,台灣北部附近的鋒生(Frontogenesis)為GTA出現強降水的關鍵,當台灣海峽低層的東北風和水氣梯度越強時,GTA的降水越多,同時在台灣北部以東的海域,季風槽邊緣處獨立於颱風環流的深厚水氣輸送亦為強降水發生的另一重要原因。最後我們以敏感性實驗探討TC壯度對北台灣附近鋒生強度的影響,結果發現當TC壯度越大時,季風槽邊緣的氣壓梯度越大,增強東南東風,更強的東南東風挾帶暖濕空氣在GTA遇到近地層東北風,造成更強的水氣通量輻合,進而增強舉生運動以及降水強度;此外,對流非絕熱過程增強的低層位渦(Potential vorticity)亦可能進一步加強鋒生,再次增強降水,形成正回饋作用。綜合研究結果顯示,即便北台灣附近的水氣通量並非直接來自颱風環流,颱風加強之季風槽邊緣東風分量仍可與台灣海峽東北風於北台灣造成劇烈遠距降水。
zh_TW
dc.description.abstractRemote precipitation associated with tropical cyclones (TCs) is one of the challenging weather events. Such events are caused by interactions between TC outer circulation and environmental factors such as cold frontal systems or monsoon flow. The remote precipitation event related to Typhoon Nesat (2022) is characterized by notable differences (e.g., rainfall hotspots, Siberian high and secondary moisture transport) from other cases previously discussed in literature. Based on the above unique features, the objective of this study is to investigate the mechanisms that lead to torrential and persistent rainfall in Greater Taipei Area (GTA). We use dual-polarization variables from the Wu Fan-San radar (RCWF) to analyze precipitation pattern and temporal distribution. Weather Research and Forecasting (WRF) model is also utilized in ensemble simulations and sensitivity experiments to explore the mechanisms contributing to heavy rainfall and the influence of TC strength on southeasterly flow in monsoon trough (MT).
The RCWF analysis reveals significant differences in both dual-polarization variables and the wind field between the rainband stage (R-stage) and convergence stage (C-stage). Profiles of ZH, ZDR, KDP, ρhv ¬¬¬¬and hydrometeor identification demonstrate that convection during the R-stage was deeper and contained larger particles than the C-stage. However, high concentrations of small particles at lower-altitude and the enhanced convergence observed in the wind field analysis also resulted in significant precipitation during the C-stage. The WRF ensemble simulations show that the frontogenesis near northern Taiwan is crucial for determining whether GTA experiences heavy rainfall. The stronger the northeast winds and moisture gradient in the Taiwan Strait, the heavier the rainfall in the GTA. Over the ocean east of northern Taiwan, both the intensity and vertical extent of moisture transport along the edge of the MT are positively correlated with rainfall in the GTA. Meanwhile, the secondary moisture transport separate from the circulation of Nesat is a distinctive feature compared to previous studies. Understanding the frontogenesis which the warm and humid southeasterly flow converges with northeast winds is a crucial mechanism for lifting. In light of this, we conducted sensitivity experiments to investigate the impact of TC strength on the frontal structure. The results reveal TC with larger strength increases the pressure gradient along the edge of the MT, leading to the intensification of southeasterly flow. Stronger southeasterly flow encountering northeast winds in northern Taiwan results in more intense water vapor convergence, leading to more severe precipitation. Moreover, potential vorticity contributed by diabatic processes may also enhance frontogenesis.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-15T16:07:45Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-15T16:07:46Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
目次 IV
圖次 VI
表次 XIII
第一章 前言 1
1.1. 文獻回顧 1
1.1.1. 颱風相關降水 1
1.1.2. 遠距降水 3
1.1.3. 台灣的颱風遠距降水 5
1.2. 劇烈降水事件背景介紹 6
1.2.1. 尼莎颱風及綜觀天氣系統 6
1.2.2. 降水時空分布 7
1.3. 研究動機 8
第二章 研究資料與方法 10
2.1. 雙偏極雷達分析 10
2.1.1. 雷達資料時空範圍與後處理 10
2.1.2. 降水粒子判別方法 11
2.1.3. 速度相位顯示方法 12
2.2. 數值模擬系集分析 13
2.2.1. 系集產生方式 13
2.2.2. 模式設定 13
2.2.3. 定量降水校驗方法 14
2.2.4. 氣流線回推方法 15
2.3. 颱風壯度敏感性實驗 15
2.3.1. 颱風環流與環境流場分離方式 15
2.3.2. 颱風壯度調整方法 16
第三章 研究結果(一) – 雙偏極雷達觀測分析 18
3.1. 雙偏極參數分析 18
3.1.1. 各變數特徵與時變 18
3.1.2. 降水粒子判別分析 19
3.2. 風場分析 19
3.2.1. 徑向風場分析 19
3.2.2. 速度方位顯示分析 19
第四章 研究結果(二) - 數值模式系集分析 21
4.1. 系集模擬之路徑與強度 21
4.2. 系集成員降雨模擬結果 21
4.3. 各變數與降水強度於空間上的相關性分布 22
4.4. 分群剖面分析 23
4.5. 分群氣流線回推 25
第五章 研究結果(三) - 颱風壯度敏感性實驗 27
5.1. 各實驗之路徑、強度與降水模擬結果 27
5.2. 氣壓梯度、水氣通量輻合與鋒生強度之比較 27
5.3. 水氣通量剖面與貢獻來源分析 28
5.4. 位渦與水氣收支 29
第六章 總結及未來展望 31
6.1. 總結與討論 31
6.2. 未來展望 33
參考文獻 34
附表 43
附圖 45
-
dc.language.isozh_TW-
dc.title尼莎颱風(2022)之大台北地區遠距降水事件探討:雷達雙偏極參數分析、系集模擬與敏感性實驗zh_TW
dc.titleTorrential Remote Precipitation of Typhoon Nesat(2022)over Greater Taipei Area: Dual-polarization Radar Analysis, Ensemble Simulations and Sensitivity Experimentsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee游政谷;連國淵zh_TW
dc.contributor.oralexamcommitteeCheng-Ku Yu;Guo-Yuan Lienen
dc.subject.keyword颱風遠距影響,降水,雷達雙偏極參數分析,系集模擬,敏感性實驗,颱風壯度,zh_TW
dc.subject.keywordTC remote effect,Precipitation,Dual-polarization radar analysis,Ensemble simulations,TC strength,en
dc.relation.page90-
dc.identifier.doi10.6342/NTU202403892-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-11-
dc.contributor.author-college理學院-
dc.contributor.author-dept大氣科學系-
顯示於系所單位:大氣科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf55.86 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved