請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94189完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳士元 | zh_TW |
| dc.contributor.advisor | Shih-Yuan Chen | en |
| dc.contributor.author | 陳秉嘉 | zh_TW |
| dc.contributor.author | Ping-Chia Chen | en |
| dc.date.accessioned | 2024-08-14T17:09:40Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | [1] Y. Liu et al., “Reconfigurable intelligent surfaces: Principles and opportunities,” IEEE communications surveys & tutorials, vol. 23, no. 3, pp. 1546-1577, 2021.
[2] J. Xu, Y. Liu, X. Mu, and O. A. Dobre, “STAR-RISs: Simultaneous transmitting and reflecting reconfigurable intelligent surfaces,” IEEE Communications Letters, vol. 25, no. 9, pp. 3134-3138, 2021. [3] S. Liu and Q. Chen, “A wideband, multifunctional reflect-transmit-array antenna with polarization-dependent operation,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 3, pp. 1383-1392, Mar. 2020. [4] W. Song et al., “A single-layer reflect-transmit-array antenna with polarization-dependent operation,” IEEE Access, vol. 9, pp. 167928-167935, 2021. [5] F. Yang, R. Deng, S. Xu, and M. Li, “Design and experiment of a near-zero-thickness high-gain transmit-reflect-array antenna using anisotropic metasurface,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 6, pp. 2853-2861, June 2018. [6] T. Cai, G.-M. Wang, X.-L. Fu, J.-G. Liang, and Y.-Q. Zhuang, “High-efficiency metasurface with polarization-dependent transmission and reflection properties for both reflectarray and transmitarray,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 6, pp. 3219-3224, June 2018. [7] L.-X. Wu, K. Chen, T. Jiang, J. Zhao, and Y. Feng, “Circular-polarization-selective metasurface and its applications to transmit-reflect-array antenna and bidirectional antenna,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 11, pp. 10207-10217, Nov. 2022. [8] Y. Liu, J. R. Kelly, M. Holm, S. Gopal, S. R. Aghdam, and Y. Liu, “1-Bit Reconfigurable Transmitted/Reflected Array (TRA) for 5G/6G Wireless Communication,” The 18th European Conference on Antennas and Propagation (EuCAP), 2024. [9] M. Wang, S. Xu, F. Yang, and M. Li, “A 1-bit bidirectional reconfigurable transmit-reflect-array using a single-layer slot element with PIN diodes,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 9, pp. 6205-6210, Sep. 2019. [10] M. Xiang, Y. Xiao, J. Deng, S. Xu, and F. Yang, “Simultaneous Transmitting and Reflecting Reconfigurable Array (STAR-RA) with Independent Beams,” IEEE Transactions on Antennas and Propagation, Oct. 2023. [11] H. Yu, P. Li, J. Su, Z. Li, S. Xu, and F. Yang, “Reconfigurable bidirectional beam-steering aperture with transmitarray, reflectarray, and transmit-reflect-array modes switching,” IEEE Transactions on Antennas and Propagation, vol. 71, no. 1, pp. 581-595, Jan. 2022. [12] W. Li, Y. Wang, S. Sun, and X. Shi, “An FSS-backed reflection/transmission reconfigurable array antenna,” IEEE Access, vol. 8, pp. 23904-23911, 2020. [13] S. L. Liu, X. Q. Lin, Y. H. Yan, and Y. L. Fan, “Generation of a high-gain bidirectional transmit-reflect-array antenna with asymmetric beams using sparse-array method,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 9, pp. 6087-6092, Sep. 2021. [14] J. Y. Lau and S. V. Hum, “A planar reconfigurable aperture with lens and reflectarray modes of operation,” IEEE Transactions on Microwave Theory and Techniques, vol. 58, no. 12, pp. 3547-3555, Dec. 2010. [15] Y.-L. Li, S.-W. Wu, and S.-Y. Chen, “Simplified Transmitarray Unit Cell for 1-Bit Beam-Steering Operation,” 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, pp. 461-462, 2020. [16] Y. Heng et al., “Six key challenges for beam management in 5.5 G and 6G systems,” IEEE Communications Magazine, vol. 59, no. 7, pp. 74-79, 2021. [17] “User equipment (ue) radio transmission and reception; part 2: Range 2 standalone (release 15),” document TS38.101-2 v15.0.0, 2018. [18] Z. Xiao, T. He, P. Xia, and X.-G. Xia, “Hierarchical codebook design for beamforming training in millimeter-wave communication,” IEEE Transactions on Wireless Communications, vol. 15, no. 5, pp. 3380-3392, May 2016. [19] Z. Xiao, H. Dong, L. Bai, P. Xia, and X.-G. Xia, “Enhanced channel estimation and codebook design for millimeter-wave communication,” IEEE Transactions on Vehicular Technology, vol. 67, no. 10, pp. 9393-9405, Oct. 2018. [20] J. Zhang, Y. Huang, Q. Shi, J. Wang, and L. Yang, “Codebook design for beam alignment in millimeter wave communication systems,” IEEE Transactions on Communications, vol. 65, no. 11, pp. 4980-4995, Nov. 2017. [21] S. Mabrouki, I. Dayoub, Q. Li, and M. Berbineau, “Codebook designs for millimeter-wave communication systems in both low-and high-mobility: Achievements and challenges,” IEEE Access, vol. 10, pp. 25786-25810, 2022. [22] J. Mo et al., “Beam codebook design for 5G mmWave terminals,” IEEE Access, vol. 7, pp. 98387-98404, 2019. [23] T. Chen, H. Kim, and Y. Yang, “Energy efficiency metrics for green wireless communications,” 2010 International Conference on Wireless Communications & Signal Processing (WCSP), 2010. [24] J. Mo et al., “Sub-chain beam for mmWave devices: A trade-off between power saving and beam correspondence,” The 55th Asilomar Conference on Signals, Systems, and Computers, 2021. [25] A. Clemente, L. Dussopt, R. Sauleau, P. Potier, and P. Pouliguen, “1-Bit reconfigurable unit cell based on PIN diodes for transmit-array applications in X-Band,” IEEE Transactions on Antennas and Propagation, vol. 60, no. 5, pp. 2260-2269, May 2012. [26] A. H. Abdelrahman, F. Yang, A. Z. Elsherbeni, P. Nayeri, and C. A. Balanis, “Analysis and design of transmitarray antennas,” Jul. 2017. [27] L. E. Gurrieri, C. Squires, S. Noghanian, and T. Willink, “High resolution spatiotemporal characterization of electric field polarization for indoor wireless environments,” Canadian Conference on Electrical and Computer Engineering, pp. 1462-1465, 2006. [28] [Online]. Available: https://www.mouser.tw/datasheet/2/249/MA4AGP907__ MA4AGFCP910-1922050.pdf. [29] [Online]. Available: https://www.mouser.tw/datasheet/2/447/KEM_C1030_CB R_SMD-3316575.pdf. [30] N. Virushabadoss, F. Abbas, and R. M. Henderson, “Optimization of Aperture Efficiency of Reflectarray Antennas,” IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, pp. 1300-1301, July 2022. [31] [Online].Available: https://www.nsi-mi.com/-/media/project/oneweb /oneweb/ nsi/files/datasheets/antennas/nsi-mi-ant-sgh-standard-gain-horns-v17.pdf?revision=986a62d4-a0f7-43b2-98c0-3d1cc6c440f2. [32] [Online]. Available: https://www.ainfoinc.com/antenna-products/horn-antennas /dual-polarization-horn-antennas/broadband-dual-polarization-horn-antenna/lb-sj-180400l-kf-broadband-dual-polarization-horn-antenna-18-40-ghz-8db-gain-2-92mm-female. [33] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang, “Semidefinite relaxation of quadratic optimization problems,” IEEE Signal Processing Magazine, vol. 27, no. 3, pp. 20-34, 2010. [34] G. Cui, X. Yu, G. Foglia, Y. Huang, and J. Li, “Quadratic optimization with similarity constraint for unimodular sequence synthesis,” IEEE Transactions on Signal Processing, vol. 65, no. 18, pp. 4756-4769, 2017. [35] R. Swinbank and R. James Purser, “Fibonacci grids: A novel approach to global modelling,” Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric sciences, applied meteorology and physical oceanography, vol. 132, no. 619, pp. 1769-1793, 2006. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94189 | - |
| dc.description.abstract | 在未來B5G/6G的無線通訊系統中,波束成型技術至關重要。本論文中提出了兩項關於波束控制的新穎技術,其一為可同時穿透與反射的可重構式智慧表面,其二為毫米波多天線模組之碼簿設計演算法。
首先是可同時穿透與反射的可重構式智慧表面,其目的為改善一般可重構式智慧反射面的顯著缺點,將信號之覆蓋範圍延伸至智慧表面後方,以提供全方面的使用者服務。本論文結合穿透陣列及反射陣列的設計概念,提出了可同時反射及穿透之陣列單元。透過在自由空間中的量測架設對陣列單元進行驗證,其在28 GHz下的反射損失和插入損失分別為0.43 dB和1.26 dB,與模擬結果大致吻合,經過驗證該陣列單元可達到同時反射及透射之一位元相位切換且可獨立調整。接著,我們提出一種直流偏壓走線的設計來控制調控相位的二極體,透過模擬得到此種走線方式在波束掃描時將造成反射波束約1 dB的增益下降,而其穿透波束增益則降低約3 dB。而在驗證其波束掃描效能時,受限於製作成本,本論文僅以金屬帶線的有無來代替二極體的兩種操作狀態,以實現基於一位元相位切換之穿透及反射波束掃描,我們實作出具有400個陣列單元可同時穿透與反射的智慧表面,並在微波暗室中進行量測。反射波束和穿透波束的模擬增益值分別為24.2 dBi和22.3 dBi,而量測結果分別為18.08 dBi及20.04 dBi,其模擬波束在±45°的掃描角度範圍對應的損耗分別為2.5 dB和2.9 dB,而量測結果則為0.6 dB和5.0 dB,前述結果證實了我們所提出的基於一位元相位切換可同時穿透與反射之可重構式智慧表面的可行性。 第二部分為毫米波多天線模組之波束碼簿設計演算法。在多天線行動裝置中通常需要設計波束碼簿來優化裝置收發訊號的覆蓋範圍,然而波束碼簿的設計複雜度相當高,無法直接以窮舉法得到最佳化的結果,因此需要一套有效率的碼簿設計演算法,而在現代行動裝置密集度及通訊需求大幅提高的情況下,省電成為一項重要的指標,本論文中透過改善前人的演算法來優化全鏈碼簿及各種子鏈碼簿,接著我們提出一個基於動態規劃的演算法來結合全鏈碼簿及子鏈碼簿以達到省電及覆蓋效能的最佳平衡。我們的演算法可基於給定的省電效率下,得到最少的效能損失,相反地,也可在基於給定效能損失的可接受範圍下達到最佳的省電效率。與第三方演算法的結果比較,在給定相同的省電效率下,所提出之演算法可減少10%-19%的效能損失,而給定相同可接受效能損失的情況下,所提出之演算法可提升5%-17%的省電效率。此外,我們將所提出之演算法推廣至可適用於多頻率點,在實驗結果可發現如我們在低頻段與高頻段各選三個頻率點後,可得在給定省電效率下較第三方演算法可減少8%-30%的效能損失,以及在可接受的效能損失情況下8%-30%省電效率提升,而此演算法也可針對任意所關注之效能定義去做修改並達到最佳化設計,對於未來的實際應用層面更具優勢。 | zh_TW |
| dc.description.abstract | In the future B5G/6G communication systems, beamforming techniques will play a critical role. In this thesis, we propose two novel techniques regarding future beamforming applications: a simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS) and the beam codebook design for millimeter-wave (mmW) multi-antenna modules.
First, the goal of STAR-RIS is to overcome the main limitation of conventional reconfigurable intelligent surfaces (RISs). STAR-RIS can extend the coverage of signals to its backside to provide a more comprehensive service from all directions. In this thesis, we combine the design concepts of transmitarray and reflectarray and propose a novel unit cell of STAR-RIS. With the validation of the unit cell by over-the-air measurement, the reflection loss and transmission loss are 0.43 dB and 1.26 dB, respectively, which agree with our simulation results. By the measurement, we also verify the ability to achieve independent one-bit reconfigurability for the reflection and transmission phases. Then, we design the DC bias routing to control the on/off states of PIN diodes to realize the one-bit phase shifts in the unit cell. In beam steering applications, this DC bias routing design causes a less-than-1-dB reduction in gain for the reflected beam and a 3-dB reduction in gain for the transmitted beam in simulation. Due to the relatively high fabrication and bill-of-materials (BoM) costs, the two operating states of the PIN diodes are replaced by the presence or absence of a short metallic strip connecting the soldering pads to verify the beam steering performance of a 20x20 STAR-RIS without using PIN diodes. In our simulations, the peak gains of the reflected beam and transmitted beam are 24.2 dBi and 22.3 dBi, respectively, and the corresponding scanning losses when the main beam scans to 45 degrees are 2.5 dB for the reflected beam and 2.9 dB for the transmitted beam. Meanwhile, in our measurements, the peak gains are 18.08 dBi and 20.04 dBi for the broadside reflected beam and transmitted beam, respectively. Also, the corresponding scanning losses when the beam scans to ±45° are 0.6 dB for the reflected beam and 5.0 dB for the transmitted beam. These results demonstrate the feasibility of the STAR-RIS based on the proposed one-bit phase-agile unit cell. The second part is the beam codebook design for millimeter-wave multi-antenna modules. In mobile devices equipped with multi-antenna modules, design of the beam codebook is essential to optimize the coverage gain of transmitted/received signals. However, the complexity of beam codebook design is extremely high so that exhaustive search for the optimal solution is unattainable. Therefore, an efficient and effective algorithm is needed to address this problem. Aside from the algorithm performance, power saving is another indicator for beam codebook design in the higher demand of communications and higher density of devices. In this thesis, we first improve the performance of previous algorithms to obtain the optimal solutions for full-chain and sub-chain codebooks. Then, we propose an algorithm based on dynamic programming to achieve a better trade-off between coverage performance and power saving by the composition of full-chain and sub-chain codebooks. This proposed algorithm can achieve the least performance degradation based on a given power-saving ratio. Conversely, it can also achieve the optimal power-saving ratio given an acceptable range of performance degradation. In comparison to the third-party algorithm, the proposed algorithm achieves about 10%-19% less performance degradation than the benchmark algorithm under the same power-saving ratio. On the other hand, it achieves about 5%-17% higher power-saving ratio under the same acceptable performance degradation. Moreover, the proposed algorithm is adaptable to scenarios involving multiple frequency points. In experiments, three frequency points are selected spanning low and high bands. Results demonstrate that the proposed algorithm achieves 8%-30% less performance degradation while meeting specified power-saving ratios, and it also achieves 8%-30% higher power-saving ratios within acceptable gain reduction thresholds compared to the third-party algorithm. Additionally, our proposed algorithm is capable of optimizing the beam codebooks under various constraints, which represents a significant advantage for future practical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T17:09:40Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T17:09:40Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iv CONTENTS vii LIST OF FIGURES x LIST OF TABLES xv Chapter 1 Introduction 1 1.1 Background 1 1.1.1 Background: STAR-RISs 1 1.1.2 Background: mmWave Beam Codebook Design 4 1.2 Motivation 6 1.2.1 Motivation: STAR-RISs 6 1.2.2 Motivation: mmWave Beam Codebook Design 7 1.3 Contribution 7 1.3.1 Contribution: STAR-RISs 7 1.3.2 Contribution: mmWave Beam Codebook Design 8 1.4 Content Overview 9 Chapter 2 1-Bit Phase-Agile STAR-RIS Unit Cell 10 2.1 Proposed Unit Cell Design 11 2.1.1 Reflecting Structure of Unit Cell 11 2.1.2 Transmitting Structure of Unit Cell 11 2.1.3 Simultaneously Transmitting and Reflecting Structure 11 2.2 Reconfigurability and Functionality of The Proposed Unit Cell 13 2.2.1 Operating mechanisms of 1-bit reflection and transmission phase reconfigurability 13 2.2.2 Functionality and applications of the proposed unit cell 16 2.3 Simulation Results and Comparison with Other Works 17 Chapter 3 STAR-RIS: Beam Steering Array Design 22 3.1 Modified Unit Cell for DC Routing 22 3.2 Array and DC Bias Routing Design 25 3.2.1 F/D Ratio and Phase Distribution Optimization 25 3.2.2 Proposed DC Routing Design 27 3.3 Verification of DC Bias Routing Design 30 Chapter 4 Experiment Setup and Measurement Results 39 4.1 Unit Cell Verification Using Over-the-air Measurement Technique 39 4.1.1 Setup of Over-the-air Measurement Technique 39 4.1.2 Measurement Results 43 4.2 Beam Steering Array Measurement 44 4.2.1 Setup of Beam Steering Array 44 4.2.2 Measurement Results in Anechoic Chamber 48 4.2.3 Comparison with Other Works 57 Chapter 5 mmWave Multi-Antenna Device Beam Codebook Design 60 5.1 Beam Codebook Design Algorithm 60 5.1.1 Model-based and Data-driven Algorithm 60 5.1.2 Full-chain and Sub-chain Codebook Design 62 5.2 Proposed Dynamic Programming-based Optimization Algorithm 69 5.2.1 Achieve the Least Gain Reduction Given Power Saving Ratio 70 5.2.2 Achieve the Best Power Saving Ratio Given Acceptable Gain Reduction 72 5.2.3 mmWave Wideband and Multiple Antenna Module Beam Codebook Design 74 Chapter 6 Beam Codebook Design Results Based on Simulated E-field Data 76 6.1 Simulation Setup and Optimized Codebook Results 76 6.1.1 Setup of Simulation Environment 76 6.1.2 Experiment Results – Full-Chain and Sub-Chain Codebook 77 6.1.3 Experiment Results – Comparison with Sub-Chain Codebook 78 6.1.4 Experimental Results – Comparison with the third-party algorithm 82 6.1.5 Experiment Results – Wideband Beam Codebook Design 85 Chapter 7 Conclusion and Future Works 89 7.1 Conclusion 89 7.2 Future work 90 Bibliography 93 | - |
| dc.language.iso | en | - |
| dc.subject | 穿透陣列 | zh_TW |
| dc.subject | 可重構式智慧表面 | zh_TW |
| dc.subject | 反射陣列 | zh_TW |
| dc.subject | 動態規劃 | zh_TW |
| dc.subject | 波束掃描 | zh_TW |
| dc.subject | 波束碼簿 | zh_TW |
| dc.subject | 毫米波多天線模組 | zh_TW |
| dc.subject | reconfigurable intelligent surfaces | en |
| dc.subject | beam codebook | en |
| dc.subject | beam steering | en |
| dc.subject | dynamic programming | en |
| dc.subject | millimeter-wave multi-antenna modules | en |
| dc.subject | reflectarrays | en |
| dc.subject | transmitarrays | en |
| dc.title | 可同時穿透與反射的可重構式智慧表面及毫米波多天線模組之波束碼簿設計 | zh_TW |
| dc.title | Simultaneously Transmitting and Reflecting Reconfigurable Intelligent Surface and Beam Codebook Design for Millimeter-Wave Multi-Antenna Modules | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 陳念偉;歐陽良昱;廖文照 | zh_TW |
| dc.contributor.oralexamcommittee | Nan-Wei Chen;Liang-Yu Ou Yang;Wen-Jiao Liao | en |
| dc.subject.keyword | 波束碼簿,波束掃描,動態規劃,毫米波多天線模組,可重構式智慧表面,反射陣列,穿透陣列, | zh_TW |
| dc.subject.keyword | beam codebook,beam steering,dynamic programming,millimeter-wave multi-antenna modules,reconfigurable intelligent surfaces,reflectarrays,transmitarrays, | en |
| dc.relation.page | 95 | - |
| dc.identifier.doi | 10.6342/NTU202401487 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電信工程學研究所 | - |
| dc.date.embargo-lift | 2026-07-01 | - |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2026-07-01 | 7.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
