Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94183
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林逸彬zh_TW
dc.contributor.advisorYi-Pin Linen
dc.contributor.author邱韋菱zh_TW
dc.contributor.authorWei-Ling Qiuen
dc.date.accessioned2024-08-14T17:07:34Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-14-
dc.date.issued2024-
dc.date.submitted2024-08-04-
dc.identifier.citationAlexopoulou, C., Petala, A., Frontistis, Z., Drivas, C., Kennou, S., Kondarides, D. I., & Mantzavinos, D. (2019). Copper phosphide and persulfate salt: A novel catalytic system for the degradation of aqueous phase micro-contaminants. Applied Catalysis B: Environmental, 244, 178-187.
Ali, J., Jiang, W., Shahzad, A., Ifthikar, J., Yang, X., Wu, B., Oyekunle, D. T., Jia, W., Chen, Z., & Zheng, L. (2021). Isolated copper ions and surface hydroxyl groups as a function of non-redox metals to modulate the reactivity and persulfate activation mechanism of spinel oxides. Chemical Engineering Journal, 425, 130679.
Anipsitakis, G. P., & Dionysiou, D. D. (2004a). Radical generation by the interaction of transition metals with common oxidants. Environmental science & technology, 38(13), 3705-3712.
Anipsitakis, G. P., & Dionysiou, D. D. (2004b). Transition metal/UV-based advanced oxidation technologies for water decontamination. Applied Catalysis B: Environmental, 54(3), 155-163.
Antizar-Ladislao, B., & Galil, N. (2004). Biosorption of phenol and chlorophenols by acclimated residential biomass under bioremediation conditions in a sandy aquifer. Water Research, 38(2), 267-276.
Bilski, P., Reszka, K., Bilska, M., & Chignell, C. (1996). Oxidation of the spin trap 5, 5-dimethyl-1-pyrroline N-oxide by singlet oxygen in aqueous solution. Journal of the American Chemical Society, 118(6), 1330-1338.
Budaev, S., Batoeva, A., & Tsybikova, B. (2015). Degradation of thiocyanate in aqueous solution by persulfate activated ferric ion. Minerals Engineering, 81, 88-95.
Chen, C.-Y., Cho, Y.-C., & Lin, Y.-P. (2021). Activation of peroxydisulfate by carbon nanotube for the degradation of 2, 4-dichlorophenol: Contributions of surface-bound radicals and direct electron transfer. Chemosphere, 283, 131282.
Chen, J., Fang, C., Xia, W., Huang, T., & Huang, C.-H. (2018). Selective transformation of β-lactam antibiotics by peroxymonosulfate: reaction kinetics and nonradical mechanism. Environmental science & technology, 52(3), 1461-1470.
Cho, Y.-C., Lin, R.-Y., & Lin, Y.-P. (2020). Degradation of 2, 4-dichlorophenol by CuO-activated peroxydisulfate: Importance of surface-bound radicals and reaction kinetics. Science of The Total Environment, 699, 134379.
Deng, Y., & Zhao, R. (2015). Advanced oxidation processes (AOPs) in wastewater treatment. Current Pollution Reports, 1, 167-176.
Dewil, R., Mantzavinos, D., Poulios, I., & Rodrigo, M. A. (2017). New perspectives for advanced oxidation processes. Journal of environmental management, 195, 93-99.
Ding, Y., Wang, X., Fu, L., Peng, X., Pan, C., Mao, Q., Wang, C., & Yan, J. (2021). Nonradicals induced degradation of organic pollutants by peroxydisulfate (PDS) and peroxymonosulfate (PMS): Recent advances and perspective. Science of The Total Environment, 765, 142794.
Ding, Y., Zhu, L., Wang, N., & Tang, H. (2013). Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate. Applied Catalysis B: Environmental, 129, 153-162.
Do, S.-H., Kwon, Y.-J., & Kong, S.-H. (2010). Effect of metal oxides on the reactivity of persulfate/Fe (II) in the remediation of diesel-contaminated soil and sand. Journal of hazardous materials, 182(1-3), 933-936.
Du, H., Luo, H., Jiang, M., Yan, X., Jiang, F., & Chen, H. (2023). A review of activating lattice oxygen of metal oxides for catalytic reactions: Reaction mechanisms, modulation strategies of activity and their practical applications. Applied Catalysis A: General, 119348.
Du, X., Zhang, Y., Hussain, I., Huang, S., & Huang, W. (2017). Insight into reactive oxygen species in persulfate activation with copper oxide: activated persulfate and trace radicals. Chemical Engineering Journal, 313, 1023-1032.
Duan, X., Su, C., Miao, J., Zhong, Y., Shao, Z., Wang, S., & Sun, H. (2018). Insights into perovskite-catalyzed peroxymonosulfate activation: maneuverable cobalt sites for promoted evolution of sulfate radicals. Applied Catalysis B: Environmental, 220, 626-634.
Duan, X., Sun, H., Shao, Z., & Wang, S. (2018). Nonradical reactions in environmental remediation processes: Uncertainty and challenges. Applied Catalysis B: Environmental, 224, 973-982.
Furman, O. S., Teel, A. L., & Watts, R. J. (2010). Mechanism of base activation of persulfate. Environmental science & technology, 44(16), 6423-6428.
Gao, H., Chen, J., Zhang, Y., & Zhou, X. (2016). Sulfate radicals induced degradation of Triclosan in thermally activated persulfate system. Chemical Engineering Journal, 306, 522-530.
Gao, Y.-q., Gao, N.-y., Deng, Y., Yang, Y.-q., & Ma, Y. (2012). Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal, 195, 248-253.
Gao, Y., Wang, Q., Ji, G., & Li, A. (2022). Degradation of antibiotic pollutants by persulfate activated with various carbon materials. Chemical Engineering Journal, 429, 132387.
Ghauch, A., Ayoub, G., & Naim, S. (2013). Degradation of sulfamethoxazole by persulfate assisted micrometric Fe0 in aqueous solution. Chemical Engineering Journal, 228, 1168-1181.
Giannakis, S., Lin, K.-Y. A., & Ghanbari, F. (2021). A review of the recent advances on the treatment of industrial wastewaters by Sulfate Radical-based Advanced Oxidation Processes (SR-AOPs). Chemical Engineering Journal, 406, 127083.
Guan, Y.-H., Ma, J., Li, X.-C., Fang, J.-Y., & Chen, L.-W. (2011). Influence of pH on the formation of sulfate and hydroxyl radicals in the UV/peroxymonosulfate system. Environmental science & technology, 45(21), 9308-9314.
Guan, Y.-H., Ma, J., Ren, Y.-M., Liu, Y.-L., Xiao, J.-Y., Lin, L.-q., & Zhang, C. (2013). Efficient degradation of atrazine by magnetic porous copper ferrite catalyzed peroxymonosulfate oxidation via the formation of hydroxyl and sulfate radicals. Water Research, 47(14), 5431-5438.
He, S., Chen, Y., Li, X., Zeng, L., & Zhu, M. (2022). Heterogeneous photocatalytic activation of persulfate for the removal of organic contaminants in water: a critical review. Acs Es&T Engineering, 2(4), 527-546.
Hu, L., Zhang, G., Wang, Q., Wang, X., & Wang, P. (2019). Effect of microwave heating on persulfate activation for rapid degradation and mineralization of p-nitrophenol. ACS Sustainable Chemistry & Engineering, 7(13), 11662-11671.
Huang, J., Dai, Y., Singewald, K., Liu, C.-C., Saxena, S., & Zhang, H. (2019). Effects of MnO2 of different structures on activation of peroxymonosulfate for bisphenol A degradation under acidic conditions. Chemical Engineering Journal, 370, 906-915.
Huang, J., & Zhang, H. (2019). Mn-based catalysts for sulfate radical-based advanced oxidation processes: A review. Environment international, 133, 105141.
Huang, Y., Tian, X., Nie, Y., Yang, C., & Wang, Y. (2018). Enhanced peroxymonosulfate activation for phenol degradation over MnO2 at pH 3.5–9.0 via Cu (II) substitution. Journal of hazardous materials, 360, 303-310.
Jawad, A., Zhan, K., Wang, H., Shahzad, A., Zeng, Z., Wang, J., Zhou, X., Ullah, H., Chen, Z., & Chen, Z. (2020). Tuning of persulfate activation from a free radical to a nonradical pathway through the incorporation of non-redox magnesium oxide. Environmental science & technology, 54(4), 2476-2488.
Jia, J., Zhang, S., Wang, P., & Wang, H. (2012). Degradation of high concentration 2, 4-dichlorophenol by simultaneous photocatalytic–enzymatic process using TiO2/UV and laccase. Journal of hazardous materials, 205, 150-155.
Lee, J., Von Gunten, U., & Kim, J.-H. (2020). Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environmental science & technology, 54(6), 3064-3081.
Li, C., Wu, J., Peng, W., Fang, Z., & Liu, J. (2019). Peroxymonosulfate activation for efficient sulfamethoxazole degradation by Fe3O4/β-FeOOH nanocomposites: Coexistence of radical and non-radical reactions. Chemical Engineering Journal, 356, 904-914.
Li, J., Ren, Y., Ji, F., & Lai, B. (2017). Heterogeneous catalytic oxidation for the degradation of p-nitrophenol in aqueous solution by persulfate activated with CuFe2O4 magnetic nano-particles. Chemical Engineering Journal, 324, 63-73.
Li, M., Zhang, H., Liu, Z., Su, Y., & Du, C. (2022). Surface lattice oxygen mobility inspired peroxymonosulfate activation over Mn2O3 exposing different crystal faces toward bisphenol A degradation. Chemical Engineering Journal, 450, 138147.
Liang, C., & Guo, Y.-y. (2010). Mass transfer and chemical oxidation of naphthalene particles with zerovalent iron activated persulfate. Environmental science & technology, 44(21), 8203-8208.
Liang, C., Huang, C.-F., Mohanty, N., & Kurakalva, R. M. (2008). A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere, 73(9), 1540-1543.
Liang, C., Lin, Y.-T., & Shih, W.-H. (2009). Treatment of trichloroethylene by adsorption and persulfate oxidation in batch studies. Industrial & Engineering Chemistry Research, 48(18), 8373-8380.
Liang, H.-y., Zhang, Y.-q., Huang, S.-b., & Hussain, I. (2013). Oxidative degradation of p-chloroaniline by copper oxidate activated persulfate. Chemical Engineering Journal, 218, 384-391.
Liu, B., Huang, B., Wang, Z., Tang, L., Ji, C., Zhao, C., Feng, L., & Feng, Y. (2023). Homogeneous/Heterogeneous Metal-Catalyzed Persulfate Oxidation Technology for Organic Pollutants Elimination: A Review. Journal of Environmental Chemical Engineering, 109586.
Liu, Q., Zheng, Z., Yang, X., Luo, X., Zhang, J., & Zheng, B. (2012). Effect of factors on decolorization of azo dye methyl orange by oxone/natural sunlight in aqueous solution. Environmental Science and Pollution Research, 19, 577-584.
Liu, Y., Guo, H., Zhang, Y., Tang, W., Cheng, X., & Li, W. (2018). Heterogeneous activation of peroxymonosulfate by sillenite Bi25FeO40: Singlet oxygen generation and degradation for aquatic levofloxacin. Chemical Engineering Journal, 343, 128-137.
Lominchar, M., Santos, A., De Miguel, E., & Romero, A. (2018). Remediation of aged diesel contaminated soil by alkaline activated persulfate. Science of The Total Environment, 622, 41-48.
Oh, W.-D., Dong, Z., & Lim, T.-T. (2016). Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Applied Catalysis B: Environmental, 194, 169-201.
Oh, W.-D., & Lim, T.-T. (2019). Design and application of heterogeneous catalysts as peroxydisulfate activator for organics removal: an overview. Chemical Engineering Journal, 358, 110-133.
Pan, X., Chen, J., Wu, N., Qi, Y., Xu, X., Ge, J., Wang, X., Li, C., Qu, R., & Sharma, V. K. (2018). Degradation of aqueous 2, 4, 4′-Trihydroxybenzophenone by persulfate activated with nitrogen doped carbonaceous materials and the formation of dimer products. Water Research, 143, 176-187.
Pera-Titus, M., Garcı́a-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219-256.
Qi, C., Liu, X., Lin, C., Zhang, X., Ma, J., Tan, H., & Ye, W. (2014). Degradation of sulfamethoxazole by microwave-activated persulfate: kinetics, mechanism and acute toxicity. Chemical Engineering Journal, 249, 6-14.
Qin, W., Fang, G., Wang, Y., & Zhou, D. (2018). Mechanistic understanding of polychlorinated biphenyls degradation by peroxymonosulfate activated with CuFe2O4 nanoparticles: Key role of superoxide radicals. Chemical Engineering Journal, 348, 526-534.
Ren, W., Cheng, C., Shao, P., Luo, X., Zhang, H., Wang, S., & Duan, X. (2021). Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environmental science & technology, 56(1), 78-97.
Santos, A., Fernandez, J., Rodriguez, S., Dominguez, C., Lominchar, M., Lorenzo, D., & Romero, A. (2018). Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Science of The Total Environment, 615, 1070-1077.
Sathishkumar, M., Binupriya, A., Kavitha, D., Selvakumar, R., Jayabalan, R., Choi, J., & Yun, S. (2009). Adsorption potential of maize cob carbon for 2, 4-dichlorophenol removal from aqueous solutions: equilibrium, kinetics and thermodynamics modeling. Chemical Engineering Journal, 147(2-3), 265-271.
Sun, C., Zhou, R., Jianan, E., Sun, J., & Ren, H. (2015). Magnetic CuO@ Fe 3 O 4 nanocomposite as a highly active heterogeneous catalyst of persulfate for 2, 4-dichlorophenol degradation in aqueous solution. Rsc Advances, 5(70), 57058-57066.
Tang, W. i., & Huang, C. (1996). 2, 4-dichlorophenol oxidation kinetics by Fenton's reagent. Environmental Technology, 17(12), 1371-1378.
Tian, K., Hu, L., Li, L., Zheng, Q., Xin, Y., & Zhang, G. (2022). Recent advances in persulfate-based advanced oxidation processes for organic wastewater treatment. Chinese Chemical Letters, 33(10), 4461-4477.
Tian, N., Tian, X., Nie, Y., Yang, C., Zhou, Z., & Li, Y. (2019). Enhanced 2, 4-dichlorophenol degradation at pH 3–11 by peroxymonosulfate via controlling the reactive oxygen species over Ce substituted 3D Mn2O3. Chemical Engineering Journal, 355, 448-456.
Waldemer, R. H., Tratnyek, P. G., Johnson, R. L., & Nurmi, J. T. (2007). Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environmental science & technology, 41(3), 1010-1015.
Wang, J., & Wang, S. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334, 1502-1517.
Wang, L., Xu, H., Jiang, N., Wang, Z., Jiang, J., & Zhang, T. (2020). Trace cupric species triggered decomposition of peroxymonosulfate and degradation of organic pollutants: Cu (III) being the primary and selective intermediate oxidant. Environmental science & technology, 54(7), 4686-4694.
Wang, Y., Indrawirawan, S., Duan, X., Sun, H., Ang, H. M., Tadé, M. O., & Wang, S. (2015). New insights into heterogeneous generation and evolution processes of sulfate radicals for phenol degradation over one-dimensional α-MnO2 nanostructures. Chemical Engineering Journal, 266, 12-20.
Wei, Y., Miao, J., Ge, J., Lang, J., Yu, C., Zhang, L., Alvarez, P. J., & Long, M. (2022). Ultrahigh peroxymonosulfate utilization efficiency over CuO nanosheets via heterogeneous Cu (III) formation and preferential electron transfer during degradation of phenols. Environmental science & technology, 56(12), 8984-8992.
Wu, X., & Kim, J.-H. (2022). Outlook on single atom catalysts for persulfate-based advanced oxidation. Acs Es&T Engineering, 2(10), 1776-1796.
Xia, X., Zhu, F., Li, J., Yang, H., Wei, L., Li, Q., Jiang, J., Zhang, G., & Zhao, Q. (2020). A review study on sulfate-radical-based advanced oxidation processes for domestic/industrial wastewater treatment: degradation, efficiency, and mechanism. Frontiers in chemistry, 8, 592056.
Xiao, R., Luo, Z., Wei, Z., Luo, S., Spinney, R., Yang, W., & Dionysiou, D. D. (2018). Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Current opinion in chemical engineering, 19, 51-58.
Xie, R., Jiang, Y., Armutlulu, A., Shen, Z., Lai, B., & Wang, H. (2021). One-step fabrication of oxygen vacancy-enriched Fe@ Ti/C composite for highly efficient degradation of organic pollutants through persulfate activation. Journal of colloid and interface science, 583, 394-403.
Yan, Y., Wei, Z., Duan, X., Long, M., Spinney, R., Dionysiou, D. D., Xiao, R., & Alvarez, P. J. (2023). Merits and limitations of radical vs. nonradical pathways in persulfate-based advanced oxidation processes. Environmental science & technology, 57(33), 12153-12179.
Yang, Q., Choi, H., Al-Abed, S. R., & Dionysiou, D. D. (2009). Iron–cobalt mixed oxide nanocatalysts: heterogeneous peroxymonosulfate activation, cobalt leaching, and ferromagnetic properties for environmental applications. Applied Catalysis B: Environmental, 88(3-4), 462-469.
Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., & Niu, R. (2010). Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. Journal of hazardous materials, 179(1-3), 552-558.
Yang, Y., Banerjee, G., Brudvig, G. W., Kim, J.-H., & Pignatello, J. J. (2018). Oxidation of organic compounds in water by unactivated peroxymonosulfate. Environmental science & technology, 52(10), 5911-5919.
Yin, R., Guo, W., Wang, H., Du, J., Zhou, X., Wu, Q., Zheng, H., Chang, J., & Ren, N. (2018). Enhanced peroxymonosulfate activation for sulfamethazine degradation by ultrasound irradiation: Performances and mechanisms. Chemical Engineering Journal, 335, 145-153.
Zhang, J., Chen, M., & Zhu, L. (2016). Activation of persulfate by Co 3 O 4 nanoparticles for orange G degradation. Rsc Advances, 6(1), 758-768.
Zhang, M., Chen, X., Zhou, H., Murugananthan, M., & Zhang, Y. (2015). Degradation of p-nitrophenol by heat and metal ions co-activated persulfate. Chemical Engineering Journal, 264, 39-47.
Zhang, T., Chen, Y., Wang, Y., Le Roux, J., Yang, Y., & Croué, J.-P. (2014). Efficient peroxydisulfate activation process not relying on sulfate radical generation for water pollutant degradation. Environmental science & technology, 48(10), 5868-5875.
Zhao, Y., An, H., Dong, G., Feng, J., Wei, T., Ren, Y., & Ma, J. (2020). Oxygen vacancies induced heterogeneous catalysis of peroxymonosulfate by Ni-doped AgFeO2 materials: evolution of reactive oxygen species and mechanism. Chemical Engineering Journal, 388, 124371.
Zheng, X., Niu, X., Zhang, D., Lv, M., Ye, X., Ma, J., Lin, Z., & Fu, M. (2022). Metal-based catalysts for persulfate and peroxymonosulfate activation in heterogeneous ways: A review. Chemical Engineering Journal, 429, 132323.
Zhou, P., Zhang, J., Zhang, Y., Zhang, G., Li, W., Wei, C., Liang, J., Liu, Y., & Shu, S. (2018). Degradation of 2, 4-dichlorophenol by activating persulfate and peroxomonosulfate using micron or nanoscale zero-valent copper. Journal of hazardous materials, 344, 1209-1219.
Zhou, X., Jawad, A., Luo, M., Luo, C., Zhang, T., Wang, H., Wang, J., Wang, S., Chen, Z., & Chen, Z. (2021). Regulating activation pathway of Cu/persulfate through the incorporation of unreducible metal oxides: Pivotal role of surface oxygen vacancies. Applied Catalysis B: Environmental, 286, 119914.
Zhou, Z., Liu, X., Sun, K., Lin, C., Ma, J., He, M., & Ouyang, W. (2019). Persulfate-based advanced oxidation processes (AOPs) for organic-contaminated soil remediation: A review. Chemical Engineering Journal, 372, 836-851.
Zhu, S., Li, X., Kang, J., Duan, X., & Wang, S. (2018). Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environmental science & technology, 53(1), 307-315.
Zhu, Z., Zhang, Q., Xu, M., Xue, Y., Zhang, T., & Hong, J. (2023). Highly active heterogeneous FeCo metallic oxides for peroxymonosulfate activation: The mechanism of oxygen vacancy enhancement. Journal of Environmental Chemical Engineering, 11(1), 109071.
Zhuang, G., Chen, Y., Zhuang, Z., Yu, Y., & Yu, J. (2020). Oxygen vacancies in metal oxides: recent progress towards advanced catalyst design. Sci. China Mater, 63(11), 2089-2118.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94183-
dc.description.abstract過硫酸鹽包含過單硫酸鹽 (PMS) 和過二硫酸鹽 (PDS) ,已被做為高級氧化程序 (advanced oxidation processes, AOPs) 之氧化劑。由於過硫酸鹽結構特性穩定,因此需透過活化產生自由基或其他反應性物質進行污染物的降解。文獻中已指出過硫酸鹽降解污染物的機制主要可以分為自由基途徑 (radical pathway) 及非自由基途徑 (non-radical pathway) 。本研究使用氧化銅 (CuO) 、氧化鎂 (MgO) 、四氧化三鐵 (Fe3O4) 、銅鐵複合氧化物 (CuFe2O4) 、鎂鐵複合氧化物 (MgFe2O4) 及銅鎂鐵複合氧化物 (CuβMgγFeφO) 活化過硫酸鹽去除水中之2,4-二氯酚,並探討在不同劑量下,2,4-二氯酚的降解效率以及系統中存在之活性物質。研究結果指出,使用CuβMgγFeφO (100 mg/L) 活化PMS (1000 μM) 時,可以在90分鐘內完全去除2,4-二氯酚 (50 μM) 。此反應的反應速率會隨著PMS的初始濃度及CuβMgγFeφO劑量的增加而加快。透過XPS表面分析、自由基捕捉實驗及電子自旋共振分析,發現硫酸根自由基 (sulfate radical, SO4•−) 和單線態氧 (singlet oxygen, 1O2) 及三價銅離子 (≡Cu3+–O–Cu3+≡) 存在於CuβMgγFeφO活化PMS降解2,4-二氯酚之系統中,其中以1O2為主要之反應性物質,因此可以判斷此降解機制主要藉由非自由基途徑進行。zh_TW
dc.description.abstractPersulfates, including peroxymonosulfate (PMS) and peroxydisulfate (PDS), have been used as the oxidants in the advanced oxidation processes (AOPs). Persulfates are stable in water and require activation to generate radicals or other reactive species for pollutant degradation. Persulfates degradation can be classified into radical and non-radical pathways. In this research, the removal efficiency of 2,4-dichlorophenol (2,4-DCP) by metal oxide-activated persulfates was investigated. Six metal oxides including CuO, MgO, Fe3O4, CuFe2O4, MgFe2O4, and CuβMgγFeφO were employed. The results showed that CuβMgγFeφO-activated PMS achieved the most effective degradation of 2,4-DCP. The degradation kinetics increased with the increasing initial PMS concentration and the dosage of CuβMgγFeφO. XPS surface analysis, radical quenching tests, and electron paramagnetic resonance (EPR) experiments indicated the presence of sulfate radical (SO4•−), singlet oxygen (1O2), and ≡Cu3+–O–Cu3+≡ in the system, in which 1O2 was identified as the primary reactive species for 2,4-DCP degradation. The results suggested that the activation of PMS by CuβMgγFeφO for the degradation of 2,4-DCP primarily proceeds as a non-radical process.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T17:07:34Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T17:07:34Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
摘要 iii
Abstract iv
Contents v
List of Figures vi
List of Tables x
Chapter 1 Introduction 1
1.1 Background 1
1.2 Research objectives 2
Chapter 2 Literature Review 3
2.1 Persulfate-based advanced oxidation processes 3
2.2 The mechanisms of removing organic pollutants by activated persulfates 4
2.3 Metal-based activators 9
2.4 2,4-dichlorophenol 10
Chapter 3 Materials and Method 11
3.1 Research framework 11
3.2 Chemicals and reagents 13
3.3 Preparation of metal oxides 13
3.4 Experimental procedures 14
3.5 Analytical methods 16
Chapter 4 Results and Discussion 18
4.1 Characterization of metal oxides 18
4.2 Degradation of 2,4-DCP by persulfates activated by metal oxides 24
4.3 Influences of solution compositions on the 2,4-DCP degradation by CuβMgγFeφO-activated PMS 33
4.4 Identification of reactive species and proposed mechanism in the degradation of 2,4-DCP by CuβMgγFeφO-activated PMS 41
4.4.1 Radical quenching test 41
4.4.2 EPR study 44
4.4.3 Proposed activation mechanism 47
Chapter 5 Conclusions and Recommendations 49
5.1 Conclusions 49
5.2 Recommendations 50
References 51
-
dc.language.isoen-
dc.title利用金屬氧化物活化過硫酸鹽降解2,4-二氯酚zh_TW
dc.titleDegradation of 2,4-dichlorophenol by metal oxide-activated persulfatesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee莊易學;潘述元zh_TW
dc.contributor.oralexamcommitteeYi-Hsueh Chuang;Shu-Yuan Panen
dc.subject.keyword高級氧化,過硫酸鹽,金屬氧化物,2,4-二氯酚,zh_TW
dc.subject.keywordAdvanced oxidation processes,Persulfates,Metal oxide,2,4-dichlorophenol,en
dc.relation.page58-
dc.identifier.doi10.6342/NTU202402819-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2029-08-01-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
2.06 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved