請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94182
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林逸彬 | zh_TW |
dc.contributor.advisor | Yi-pin Lin | en |
dc.contributor.author | 方璐穎 | zh_TW |
dc.contributor.author | Lu-ying Fang | en |
dc.date.accessioned | 2024-08-14T17:07:17Z | - |
dc.date.available | 2024-08-15 | - |
dc.date.copyright | 2024-08-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-05 | - |
dc.identifier.citation | Anipsitakis G.P., Dionysiou D.D. (2004) Radical generation by the interaction of transition metals with common oxidants. Environmental science & technology 38:3705-3712.
Armynah B., Atika, Djafar Z., Piarah W.H., Tahir D. (2018) Analysis of chemical and physical properties of biochar from rice husk biomass, Journal of Physics: Conference Series, IOP Publishing. pp. 012038. Cai S., Hu X., Lu D., Zhang L., Jiang C., Cai T. (2021) Ferrous-activated persulfate oxidation of triclosan in soil and groundwater: The roles of natural mineral and organic matter. Science of The Total Environment 762:143092. Cantrell K.B., Hunt P.G., Uchimiya M., Novak J.M., Ro K.S. (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource technology 107:419-428. Cha J.S., Park S.H., Jung S.-C., Ryu C., Jeon J.-K., Shin M.-C., Park Y.-K. (2016) Production and utilization of biochar: A review. Journal of Industrial and Engineering Chemistry 40:1-15. Chaliha S., Bhattacharyya K.G. (2009) Fe (III)-, Co (II)-and Ni (II)-impregnated MCM41 for wet oxidative destruction of 2, 4-dichlorophenol in water. Catalysis Today 141:225-233. Chen C.-Y., Cho Y.-C., Lin Y.-P. (2021) Activation of peroxydisulfate by carbon nanotube for the degradation of 2, 4-dichlorophenol: Contributions of surface-bound radicals and direct electron transfer. Chemosphere 283:131282. Chen X., Oh W.-D., Lim T.-T. (2018) Graphene-and CNTs-based carbocatalysts in persulfates activation: Material design and catalytic mechanisms. Chemical Engineering Journal 354:941-976. Chia C.H., Gong B., Joseph S.D., Marjo C.E., Munroe P., Rich A.M. (2012) Imaging of mineral-enriched biochar by FTIR, Raman and SEM–EDX. Vibrational Spectroscopy 62:248-257. Dou J., Tang Y., Lu Z., He G., Xu J., He Y. (2023) Neglected but efficient electron utilization driven by biochar-coactivated phenols and peroxydisulfate: Polyphenol accumulation rather than mineralization. Environmental Science & Technology 57:5703-5713. Duan X., Su C., Zhou L., Sun H., Suvorova A., Odedairo T., Zhu Z., Shao Z., Wang S. (2016) Surface controlled generation of reactive radicals from persulfate by carbocatalysis on nanodiamonds. Applied Catalysis B: Environmental 194:7-15. Fang G., Liu C., Gao J., Dionysiou D.D., Zhou D. (2015) Manipulation of persistent free radicals in biochar to activate persulfate for contaminant degradation. Environmental science & technology 49:5645-5653. Fiol N., Villaescusa I. (2009) Determination of sorbent point zero charge: usefulness in sorption studies. Environmental chemistry letters 7:79-84. Furman O.S., Teel A.L., Watts R.J. (2010) Mechanism of base activation of persulfate. Environmental science & technology 44:6423-6428. Ghanbari F., Moradi M. (2017) Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants. Chemical Engineering Journal 310:41-62. Karci A., Arslan-Alaton I., Olmez-Hanci T., Bekbölet M. (2012) Transformation of 2, 4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: oxidation products and toxicity evolution. Journal of Photochemistry and Photobiology A: Chemistry 230:65-73. Keiluweit M., Nico P.S., Johnson M.G., Kleber M. (2010) Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental science & technology 44:1247-1253. Kohantorabi M., Moussavi G., Giannakis S. (2021) A review of the innovations in metal-and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants. Chemical Engineering Journal 411:127957. Lee J., Von Gunten U., Kim J.-H. (2020) Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environmental science & technology 54:3064-3081. Leng L., Xiong Q., Yang L., Li H., Zhou Y., Zhang W., Jiang S., Li H., Huang H. (2021) An overview on engineering the surface area and porosity of biochar. Science of the total Environment 763:144204. Liang C., Huang C.-F., Mohanty N., Kurakalva R.M. (2008) A rapid spectrophotometric determination of persulfate anion in ISCO. Chemosphere 73:1540-1543. Liu T., Yao B., Luo Z., Li W., Li C., Ye Z., Gong X., Yang J., Zhou Y. (2022) Applications and influencing factors of the biochar-persulfate based advanced oxidation processes for the remediation of groundwater and soil contaminated with organic compounds. Science of The Total Environment 836:155421. Liu X.-M., Huan W.-W., Kang Y., Guo J.-Z., Wang Y.-X., Li F.-H., Li B. (2024) Effects of cation types in persulfate on physicochemical and adsorptive properties of biochar prepared from persulfate-pretreated bamboo. Bioresource Technology 393:130140. Mafa P.J., Mamba B.B., Kuvarega A.T. (2020) Photoelectrocatalytic evaluation of EG-CeO2 photoanode on degradation of 2, 4-dichlorophenol. Solar Energy Materials and Solar Cells 208:110416. Matzek L.W., Carter K.E. (2016) Activated persulfate for organic chemical degradation: a review. Chemosphere 151:178-188. Miao X., Chen X., Wu W., Lin D., Yang K. (2022) Intrinsic defects enhanced biochar/peroxydisulfate oxidation capacity through electron-transfer regime. Chemical Engineering Journal 438:135606. Mishra R.K., Kumar D.J.P., Narula A., Chistie S.M., Naik S.U. (2023) Production and beneficial impact of biochar for environmental application: A review on types of feedstocks, chemical compositions, operating parameters, techno-economic study, and life cycle assessment. Fuel 343:127968. Oh W.-D., Dong Z., Lim T.-T. (2016) Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Applied Catalysis B: Environmental 194:169-201. Ouyang D., Chen Y., Yan J., Qian L., Han L., Chen M. (2019) Activation mechanism of peroxymonosulfate by biochar for catalytic degradation of 1, 4-dioxane: Important role of biochar defect structures. Chemical Engineering Journal 370:614-624. Pi Z., Li X., Wang D., Xu Q., Tao Z., Huang X., Yao F., Wu Y., He L., Yang Q. (2019) Persulfate activation by oxidation biochar supported magnetite particles for tetracycline removal: Performance and degradation pathway. Journal of Cleaner Production 235:1103-1115. Ren W., Cheng C., Shao P., Luo X., Zhang H., Wang S., Duan X. (2021) Origins of electron-transfer regime in persulfate-based nonradical oxidation processes. Environmental Science & Technology 56:78-97. Ren W., Xiong L., Yuan X., Yu Z., Zhang H., Duan X., Wang S. (2019) Activation of peroxydisulfate on carbon nanotubes: electron-transfer mechanism. Environmental Science & Technology 53:14595-14603. Santos A., Fernandez J., Rodriguez S., Dominguez C., Lominchar M., Lorenzo D., Romero A. (2018) Abatement of chlorinated compounds in groundwater contaminated by HCH wastes using ISCO with alkali activated persulfate. Science of the Total Environment 615:1070-1077. Shiying Y., Ping W., Xin Y., Guang W., Zhang W., Liang S. (2009) A novel advanced oxidation process to degrade organic pollutants in wastewater: Microwave-activated persulfate oxidation. Journal of environmental sciences 21:1175-1180. Tao Y., Wei M., Xia D., Xu A., Li X. (2015) Polyimides as metal-free catalysts for organic dye degradation in the presence peroxymonosulfate under visible light irradiation. Rsc Advances 5:98231-98240. Wang B., Li Y.-n., Wang L. (2019) Metal-free activation of persulfates by corn stalk biochar for the degradation of antibiotic norfloxacin: activation factors and degradation mechanism. Chemosphere 237:124454. Wang J., Wang S. (2018) Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal 334:1502-1517. Wang J., Wang S. (2019) Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production 227:1002-1022. Wang J., Wang S. (2020) Reactive species in advanced oxidation processes: Formation, identification and reaction mechanism. Chemical Engineering Journal 401:126158. Yan Y., Wei Z., Duan X., Long M., Spinney R., Dionysiou D.D., Xiao R., Alvarez P.J. (2023) Merits and limitations of radical vs. nonradical pathways in persulfate-based advanced oxidation processes. Environmental Science & Technology 57:12153-12179. Yang Q., Chen Y., Duan X., Zhou S., Niu Y., Sun H., Zhi L., Wang S. (2020) Unzipping carbon nanotubes to nanoribbons for revealing the mechanism of nonradical oxidation by carbocatalysis. Applied Catalysis B: Environmental 276:119146. Yin R., Guo W., Wang H., Du J., Wu Q., Chang J.-S., Ren N. (2019) Singlet oxygen-dominated peroxydisulfate activation by sludge-derived biochar for sulfamethoxazole degradation through a nonradical oxidation pathway: Performance and mechanism. Chemical Engineering Journal 357:589-599. Yun E.-T., Lee J.H., Kim J., Park H.-D., Lee J. (2018) Identifying the nonradical mechanism in the peroxymonosulfate activation process: singlet oxygenation versus mediated electron transfer. Environmental science & technology 52:7032-7042. Zakaria M.R., Ahmad Farid M.A., Andou Y., Ramli I., Hassan M.A. (2023) Production of biochar and activated carbon from oil palm biomass: Current status, prospects, and challenges. Industrial Crops and Products 199:116767. DOI: https://doi.org/10.1016/j.indcrop.2023.116767. Zeng K., Minh D.P., Gauthier D., Weiss-Hortala E., Nzihou A., Flamant G. (2015) The effect of temperature and heating rate on char properties obtained from solar pyrolysis of beech wood. Bioresource technology 182:114-119. Zhang C., Zhang Z., Zhang L., Li Q., Li C., Chen G., Zhang S., Liu Q., Hu X. (2020) Evolution of the functionalities and structures of biochar in pyrolysis of poplar in a wide temperature range. Bioresource technology 304:123002. Zhang K., Sun P., Faye M.C.A., Zhang Y. (2018) Characterization of biochar derived from rice husks and its potential in chlorobenzene degradation. Carbon 130:730-740. Zhou Y., Lei Y., Kong Q., Lei X., Peng J., Xie Y., Cheng S., Gao Y., Qiu J., Yang X. (2023) Reactions of neonicotinoids with peroxydisulfate: The generation of neonicotinoid anion radicals and activation pathway to form sulfate radicals. Journal of Hazardous Materials 450:131081. Zhu K., Wang X., Geng M., Chen D., Lin H., Zhang H. (2019) Catalytic oxidation of clofibric acid by peroxydisulfate activated with wood-based biochar: Effect of biochar pyrolysis temperature, performance and mechanism. Chemical Engineering Journal 374:1253-1263. Zhu S., Huang X., Ma F., Wang L., Duan X., Wang S. (2018a) Catalytic removal of aqueous contaminants on N-doped graphitic biochars: inherent roles of adsorption and nonradical mechanisms. Environmental science & technology 52:8649-8658. Zhu S., Li X., Kang J., Duan X., Wang S. (2018b) Persulfate activation on crystallographic manganese oxides: mechanism of singlet oxygen evolution for nonradical selective degradation of aqueous contaminants. Environmental science & technology 53:307-315. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94182 | - |
dc.description.abstract | 過單硫酸鹽(PMS)和過二硫酸鹽(PDS)作為常用的氧化劑在地下水污染治理和現地化學氧化處理中得到了廣泛關注。PMS 和 PDS 在水中十分穩定,需要活化產生活性物質以用來降解有機污染物。然而,常見的活化方法如紫外線、微波、加熱以及金屬氧化物,雖然有效,但也面臨著高能耗、金屬溶出導致的二次污染以及高製造成本等問題,限制了這些方法在實際應用中的推廣。農業廢棄物製備的生物炭具有高產量及資源再利用的特點,被認為是一種可持續的碳質材料,可以作為PMS和PDS的活化劑。已有文獻報導,利用生物炭可以有效活化過硫酸鹽,提高有機污染物的降解效率。然而,目前關於生物炭活化過硫酸鹽的活化機制仍有待進一步澄清。本研究選擇用廢棄稻殼為原料分別在熱解溫度400℃、600℃、800℃的條件下製備生物炭(BC400、BC600、BC800)做為活化劑活化過硫酸鹽用以去除水中之 2,4-二氯酚污染物。
研究結果顯示生物炭可以直接吸附2,4-二氯酚,在生物炭活化過二硫酸鹽去除2,4-二氯酚的系統中, BC800對2,4-二氯酚的降解效果最為顯著, 在最佳參數條件下於反應90分鐘內達87%以上的去除。綜合自由基捕捉劑實驗及電子順磁共振分析結果, OH•在 BC800活化過二硫酸鹽降解2,4-DCP中具有關鍵的作用。通過Raman的分析結果,發現吸附在 BC800 表面的 PDS 活化產生的活性過氧化物中間體 S2O82–*,可能有助於 OH•的生成和2,4-DCP 的降解. | zh_TW |
dc.description.abstract | Peroxymonosulfate (PMS) and peroxydisulfate (PDS) have garnered widespread attention as common oxidants in groundwater pollution treatments and in-situ chemical oxidation. PMS and PDS are highly stable in water and require activation to generate reactive species for degrading organic pollutants. Common activation methods such as using ultraviolet radiation, microwave irradiation, heating, transition metal ions and metal oxides face challenges such as high energy consumption and metal separation and leaching, which limit their widespread applications. Biochar prepared from agricultural waste, known for its sustainable characteristics and high resource yield, has emerged as a promising activator of persulfate. However, the mechanism involved in persulfate activation by biochar remains unclear.
In this study, biochars prepared using waste rice husks as raw materials under different pyrolysis temperatures of 400°C, 600°C, and 800°C (denoted as BC400, BC600, BC800), respectively, were employed to activate persulfate for the removal of 2,4-dichlorophenol (2,4-DCP). The results showed that biochar can directly adsorb 2,4-DCP and BC800 exhibited the best degradation performance for 2,4-DCP removal in the biochar-activated persulfate system, achieving over 87% removal in 90 min. Based on the results of quenching experiments and electron paramagnetic resonance (EPR) analysis, it is concluded that OH• plays a crucial role in the degradation of 2,4-DCP by BC800-activated persulfate. Raman analysis results showed that the active peroxide intermediate S2O8²⁻* generated from the activation of PDS adsorbed on the BC800 surfaces, likely facilitates the formation of OH• and the degradation of 2,4-DCP. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T17:07:17Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-14T17:07:17Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv Contents vi List of Figures ix List of Table xii Chapter 1 Introduction 1 1.1 Background 1 1.2 Research objective 2 Chapter 2 Literature Review 3 2.1 Persulfate-based advanced oxidation processes 3 2.2 Degradation mechanism of organic pollutants by activated persulfates 4 2.2.1 Radical Process 5 2.2.2 Non-radical process 6 2.3 Biochar Catalysts 7 Chapter 3 Materials and Methods 9 3.1 Research flowchart 9 3.2 Chemicals and reagents 11 3.3 Biochar preparation 11 3.4 Batch reaction 12 3.5 Identify free radicals 13 3.6 Analytical Instruments 14 Chapter 4 Results and discussion 16 4.1 Characterization of prepared biochar 16 4.2 Biochar activated persulfate system 25 4.2.1 Direct oxidation of 2,4-DCP by PMS and PDS 25 4.2.2 Adsorption of 2,4-DCP by biochar 27 4.2.3 Consumption of PMS and PDS by biochar 27 4.2.4 Removal of 2,4-DCP in the presence of biochar and persulfates 29 4.3 Influences of solution chemistry on the removal of 2,4-DCP by BC800-activated PDS 33 4.3.1 Influences of PDS dosage 33 4.3.2 Influences of 2,4-DCP concentration 35 4.3.3 Influences of biochar loading 37 4.3.4 Influences of pH 39 4.4 Identification of degradation mechanism 41 4.4.1 Radical scavenging experiments 41 4.4.2 EPR studies 44 4.4.3 Raman spectroscopy investigation 46 Chapter 5 Conclusion and Recommendation 48 5.1 Conclusion 48 5.2 Recommendation 49 References 50 | - |
dc.language.iso | en | - |
dc.title | 以稻殼生物炭活化過硫酸鹽降解2,4-二氯酚 | zh_TW |
dc.title | Persulfate activation by rice husk biochar for 2,4-dichlorophenol degradation | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林郁真;侯文哲 | zh_TW |
dc.contributor.oralexamcommittee | Yu-chen Lin;Wen-Che Hou | en |
dc.subject.keyword | 生物炭,過硫酸鹽,2,4-二氯酚,氫氧根自由基,過氧化物中間體, | zh_TW |
dc.subject.keyword | persulfate,2,4-dichlorophenol,activated peroxide intermediates,hydroxyl radicals,biochar, | en |
dc.relation.page | 53 | - |
dc.identifier.doi | 10.6342/NTU202402703 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-07 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 1.84 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。