Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94164
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳國慶zh_TW
dc.contributor.advisorKuo-Ching Chenen
dc.contributor.author張宇宏zh_TW
dc.contributor.authorYu-Hong Zhangen
dc.date.accessioned2024-08-14T17:02:02Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-14-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citation[1] Ecker M, Shafiei Sabet P,Sauer D U. Influence of operational condition on lithium plating for commercial lithium-ion batteries – Electrochemical experiments and post-mortem-analysis. Appl Energy 2017;206:934-946.
[2] Bednorz R and Gewald T, "Investigation of the Effects of Charging Processes on Lithium-Ion Cells with SiC Anodes at Low Temperatures," Batteries, vol. 6, no. 2. doi: 10.3390/batteries6020034
[3] Janakiraman U, Garrick T R,Fortier M E. Review—Lithium Plating Detection Methods in Li-Ion Batteries. J Electrochem Soc 2020;167:160552.
[4] Tomaszewska A, Chu Z, Feng X, O'Kane S, Liu X, Chen J, et al. Lithium-ion battery fast charging: A review. Etransportation 2019;1:100011.
[5] Rodrigues M-T F, Kalaga K, Trask S E, Dees D W, Shkrob I A,Abraham D P. Fast Charging of Li-Ion Cells: Part I. Using Li/Cu Reference Electrodes to Probe Individual Electrode Potentials. J Electrochem Soc 2019;166:A996.
[6] Waldmann T, Kasper M,Wohlfahrt-Mehrens M. Optimization of Charging
Strategy by Prevention of Lithium Deposition on Anodes in high-energy Lithium-ion Batteries – Electrochemical Experiments. Electrochim Acta 2015;178:525-532.
[7] Mei W, Zhang L, Sun J,Wang Q. Experimental and numerical methods to
investigate the overcharge caused lithium plating for lithium ion battery. Energy Storage Materials 2020;32:91-104.
[8] Takagishi Y and Yamaue T. Mathematical Modeling of Multiple-Li-Dendrite
Growth in Li-ion Battery Electrodes. J Electrochem Soc 2023;170:030528.
[9] Waldmann T, Hogg B-I,Wohlfahrt-Mehrens M. Li plating as unwanted side
reaction in commercial Li-ion cells – A review. J Power Sources 2018;384:107-124.
[10] Ding S, Li Y, Dai H, Wang L,He X. Accurate Model Parameter Identification to Boost Precise Aging Prediction of Lithium-Ion Batteries: A Review. Advanced Energy Materials 2023;13:2301452.
[11] Liu Q, Du C, Shen B, Zuo P, Cheng X, Ma Y, et al. Understanding undesirable anode lithium plating issues in lithium-ion batteries. RSC Advances 2016;6:88683-88700.
[12] Uhlmann C, Illig J, Ender M, Schuster R,Ivers-Tiffée E. In situ detection of lithium metal plating on graphite in experimental cells. J Power Sources 2015;279:428-438.
[13] Lin X, Khosravinia K, Hu X, Li J,Lu W. Lithium Plating Mechanism, Detection, and Mitigation in Lithium-Ion Batteries. Progress in Energy and Combustion Science 2021;87:100953.
[14] Legrand N, Knosp B, Desprez P, Lapicque F,Raël S. Physical characterization of the charging process of a Li-ion battery and prediction of Li plating by electrochemical modelling. J Power Sources 2014;245:208-216.
[15] von Lüders C, Keil J, Webersberger M,Jossen A. Modeling of lithium plating and lithium stripping in lithium-ion batteries. J Power Sources 2019;414:41-47.
[16] Ge H, Aoki T, Ikeda N, Suga S, Isobe T, Li Z, et al. Investigating Lithium Plating in Lithium-Ion Batteries at Low Temperatures Using Electrochemical Model with NMR Assisted Parameterization. J Electrochem Soc 2017;164:A1050.
[17] Chen Y, Torres-Castro L, Chen K-H, Penley D, Lamb J, Karulkar M, et al. Operando detection of Li plating during fast charging of Li-ion batteries using incremental capacity analysis. J Power Sources 2022;539:231601.
[18] Brodsky Ringler P, Wise M, Ramesh P, Kim J H, Canova M, Bae C, et al,
"Modeling of Lithium Plating and Stripping Dynamics during Fast Charging,"
Batteries, vol. 9, no. 7. doi: 10.3390/batteries9070337
[19] Koseoglou M, Tsioumas E, Ferentinou D, Panagiotidis I, Jabbour N, Papagiannis D, et al. Lithium plating detection using differential charging current analysis in lithium-ion batteries. J Energy Storage 2022;54:105345.
[20] Yang X-G, Ge S, Liu T, Leng Y,Wang C-Y. A look into the voltage plateau signal for detection and quantification of lithium plating in lithium-ion cells. J Power Sources 2018;395:251-261.
[21] Somasundaran N, Fereshteh Saniee N, Dinh T Q,Marco J, "Study on the
Extensibility of Voltage-Plateau-Based Lithium Plating Detection for Electric Vehicles," Energies, vol. 16, no. 6. doi: 10.3390/en16062537
[22] Mei W, Zhang Y, Li Y, Zhuo P, Chu Y, Chen Y, et al. Unveiling voltage evolution during Li plating-relaxation-Li stripping cycling of lithium-ion batteries. Energy Storage Materials 2024;66:103193.
[23] Qu J G, Jiang Z Y,Zhang J F. Investigation on lithium-ion battery degradation induced by combined effect of current rate and operating temperature during fast charging. J Energy Storage 2022;52:104811.
[24] Katzer F, Jahn L, Hahn M,Danzer M A. Model-based lithium deposition detection method using differential voltage analysis. J Power Sources 2021;512:230449.
[25] Duan X, Li B, Li J, Gao X, Wang L,Xu J. Quantitative Understanding of Lithium Deposition-Stripping Process on Graphite Anodes of Lithium-Ion Batteries. Advanced Energy Materials 2023;13:2203767.
[26] Koseoglou M, Tsioumas E, Ferentinou D, Jabbour N, Papagiannis D,Mademlis C. Lithium plating detection using dynamic electrochemical impedance spectroscopy in lithium-ion batteries. J Power Sources 2021;512:230508.
[27] Ren D, Smith K, Guo D, Han X, Feng X, Lu L, et al. Investigation of Lithium Plating-Stripping Process in Li-Ion Batteries at Low Temperature Using an Electrochemical Model. J Electrochem Soc 2018;165:A2167.
[28] Petzl M and Danzer M A. Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries. J Power Sources 2014;254:80-87.
[29] Sun K, Li X, Zhang Z, Xiao X, Gong L,Tan P. Pattern Investigation and
Quantitative Analysis of Lithium Plating under Subzero Operation of Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2023;15:36356-36365.
[30] Koleti U R, Dinh T Q,Marco J. A new on-line method for lithium plating detection in lithium-ion batteries. J Power Sources 2020;451:227798.
[31] Sun T, Shen T, Zheng Y, Ren D, Zhu W, Li J, et al. Modeling the inhomogeneous lithium plating in lithium-ion batteries induced by non-uniform temperature distribution. Electrochim Acta 2022;425:140701.
[32] Wang S, Ren D, Xu C, Han X, Liu X, Lu L, et al. Lithium plating induced volume expansion overshoot of lithium-ion batteries: Experimental analysis and modeling. J Power Sources 2024;593:233946.
[33] Campbell I D, Marzook M, Marinescu M,Offer G J. How Observable Is Lithium Plating? Differential Voltage Analysis to Identify and Quantify Lithium Plating Following Fast Charging of Cold Lithium-Ion Batteries. J Electrochem Soc 2019;166:A725.
[34] Vikrant K S N, McShane E, Colclasure A M, McCloskey B D,Allu S.
Quantification of Dead Lithium on Graphite Anode under Fast Charging
Conditions. J Electrochem Soc 2022;169:040520.
[35] Konz Z M, McShane E J,McCloskey B D. Detecting the Onset of Lithium Plating and Monitoring Fast Charging Performance with Voltage Relaxation. ACS Energy Letters 2020;5:1750-1757.
[36] Fear C, Adhikary T, Carter R, Mistry A N, Love C T,Mukherjee P P. In Operando Detection of the Onset and Mapping of Lithium Plating Regimes during Fast Charging of Lithium-Ion Batteries. ACS Applied Materials & Interfaces 2020;12:30438-30448.
[37] Schindler S, Bauer M, Petzl M,Danzer M A. Voltage relaxation and impedance spectroscopy as in-operando methods for the detection of lithium plating on graphitic anodes in commercial lithium-ion cells. J Power Sources 2016;304:170-180.
[38] Yang X-G, Leng Y, Zhang G, Ge S,Wang C-Y. Modeling of lithium plating
induced aging of lithium-ion batteries: Transition from linear to nonlinear aging.J Power Sources 2017;360:28-40.
[39] Liu J, Zhang Y, Bai J, Zhou L,Wang Z. Influence of lithium plating on lithium-ion battery aging at high temperature. Electrochim Acta 2023;454:142362.
[40] Luo W, Lyu C, Wang L,Zhang L. An approximate solution for electrolyte
concentration distribution in physics-based lithium-ion cell models.
Microelectronics Reliability 2013;53:797-804.
[41] Yuan Y, Wang H, Han X, Pan Y, Sun Y, Kong X, et al. The local lithium plating caused by anode crack defect in Li-ion battery. Appl Energy 2024;361:122968.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94164-
dc.description.abstract鋰離子電池 ( Lithium-ion Batteries, LIBs ) 快充最主要的問題是產生副反應在負極上形成鋰金屬沉積的鋰鍍層 ( Lithium Plating ) ,該副反應會造成電池容量下降的情況,嚴重者會造成內部短路產生危險。因此,能預防plating發生成為快充的主要議題。在本論文中,利用量測的實驗數據進行plating current的取值,並擬合出plating current與定電流 ( Constant current, CC ) 充電時間關係,以計算platnig current為0的時刻點以達到預防plating的效果,並透過Bulter-Volmer ( B-V ) 方程式利用所得plating current進行plating overpotential的計算,利用全電池數據得到半電池的資訊。在充電策略應用上,透過實驗及plating current的擬合結果進行快充,以達到CC充電時間的減少,並且不造成鋰鍍層生成。此外,討論鋰離子電池在不同工作環境下,包含充電速度 ( Crate )、健康度 ( State of Health , SOH ) 之鍍鋰層的趨勢及生成量的原因。zh_TW
dc.description.abstractThe primary issue with fast charging lithium-ion batteries ( LIBs ) is the occurrence of side reactions that lead to the formation of lithium metal deposits ( Lithium Plating ) on the anode. This side reaction results in a reduction of battery capacity and, in severe cases, can cause internal short circuits, posing safety risks. Therefore, preventing plating has become a major concern for fast charging. In this thesis, experimental data measurements are used to determine the plating current, and the relationship between plating current and constant current ( CC ) charging time is fitted. By calculating the point in CC time when the plating current is zero, plating can be effectively prevented. Additionally, the Butler-Volmer ( B-V ) equation is applied to calculate the plating overpotential using the obtained plating current. The study investigates side reactions in half-cells using full-cell information. Regarding charging strategy applications, the fitting results of experiments and plating current are used to achieve fast charging, aiming to reduce the constant current charging time without causing lithium plating. Furthermore, the study discusses the trends and causes of lithium plating formation in LIBs under different operating conditions, including charging speed (C-rate), state of health (SOH).en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T17:02:02Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T17:02:02Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝............................i
中文摘要..........................ii
英文摘要..........................iii
目次............................iv
圖次............................vi
表次............................x
第1章 序章........................1
1.1 研究背景與動機...................1
1.2 研究目的......................2
1.3 論文結構......................2
第2章 文獻回顧......................3
2.1 Lithium Plating 鋰鍍層................3
2.2 Lithium Plating 觸發條件 & Bulter-Volmer 方程式.....5
2.3 檢測Plating方法 - 無損表徵方式...........7
2.4 檢測Plating方法 - 等校電路與電化學阻抗譜......12
2.5 檢測Plating方法 – 參考電極、電化學模型、體積...13
2.6 可逆性.......................15
2.7 相關論文結果....................18
第3章 實驗與reversible plating、plating current計算.......26
3.1 電池類型.......................26
3.2 CC充電階段之plating current..............26
3.3 實驗設置.......................30
3.4 從實驗提取的reversible plating 資訊...........31
第4章 實驗結果......................33
4.1 Plating current 與CC充電時間關係...........33
4.2 Simplified Bulter-Volmer 方程式.............38
4.3 討論電解液濃度 ( Ce ) 對擬合過電位的影響.......39
4.4 驗證有效性......................43
第5章 討論........................45
5.1 不同Crate及初始SOC的充電情況...........45
5.2 老化後鋰鍍層情況...................48
5.3 充電策略應用....................50
5.4 COMSOL模型的驗證.................52
第6章 結論與未來展望...................56
參考文獻..........................57
-
dc.language.isozh_TW-
dc.subject過電位zh_TW
dc.subject快速充電zh_TW
dc.subject電池老化zh_TW
dc.subject鋰鍍層zh_TW
dc.subject鋰離子電池zh_TW
dc.subject充電策略zh_TW
dc.subjectoverpotentialen
dc.subjectlithium-ion batteriesen
dc.subjectlithium platingen
dc.subjectcharging strategyen
dc.subjectfast chargingen
dc.subjectbattery agingen
dc.title透過全電池資訊得到鋰鍍層過電位並應用到充電策略zh_TW
dc.titlePlating overpotential obtained through full battery information and its application in charge strategyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee周鼎贏;林祺皓;郭志禹;梁世豪zh_TW
dc.contributor.oralexamcommitteeDean Chou;Chi-Hao Lin;Chih-Yu Kuo;Shih-Hao Liangen
dc.subject.keyword鋰離子電池,鋰鍍層,充電策略,快速充電,電池老化,過電位,zh_TW
dc.subject.keywordlithium-ion batteries,lithium plating,charging strategy,fast charging,battery aging,overpotential,en
dc.relation.page60-
dc.identifier.doi10.6342/NTU202402774-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2026-08-01-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2026-08-01
5.2 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved