Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94161
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor許聿翔zh_TW
dc.contributor.advisorYu-Hsiang Hsuen
dc.contributor.author許良育zh_TW
dc.contributor.authorLiang-Yu Hsuen
dc.date.accessioned2024-08-14T17:01:10Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-14-
dc.date.issued2024-
dc.date.submitted2024-08-03-
dc.identifier.citation[1] J. J. Ferreira, C. I. Fernandes, H. G. Rammal, and P. M. Veiga, "Wearable technology and consumer interaction: A systematic review and research agenda," Computers in Human Behavior, vol. 118, 2021. DOI: 10.1016/j.chb.2021.106710.
[2] B. F. Q. Zhou, J. Shan, F. Sun and D. Guo, "A Survey of the Development of Wearable Devices," 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM), pp. 198-203, 2020. DOI: 10.1109/ICARM49381.2020.9195351.
[3] F. Firouzi et al., "Internet-of-Things and big data for smarter healthcare: From device to architecture, applications and analytics," Future Generation Computer Systems, vol. 78, pp. 583-586, 2018. DOI: 10.1016/j.future.2017.09.016.
[4] C.-L. Zhong and Y.-l. Li, "Internet of things sensors assisted physical activity recognition and health monitoring of college students," Measurement, vol. 159, 2020. DOI: 10.1016/j.measurement.2020.107774.
[5] Technavio, "Wearable Technology Market Analysis North America, APAC, Europe, South America, Middle East and Africa - US, Canada, China, Japan, Germany - Size and Forecast 2023-2027." https://www.technavio.com/report/wearable-technology-market-industry-analysis (accessed 7 April, 2024).
[6] Y. Cheng, K. Wang, H. Xu, T. Li, Q. Jin, and D. Cui, "Recent developments in sensors for wearable device applications," Anal Bioanal Chem, vol. 413, no. 24, pp. 6037-6057, 2021. DOI: 10.1007/s00216-021-03602-2.
[7] Y. Adesida, E. Papi, and A. H. McGregor, "Exploring the Role of Wearable Technology in Sport Kinematics and Kinetics: A Systematic Review," Sensors (Basel), vol. 19, no. 7, 2019. DOI: 10.3390/s19071597.
[8] N. Kitagawa and N. Ogihara, "Estimation of foot trajectory during human walking by a wearable inertial measurement unit mounted to the foot," Gait Posture, vol. 45, pp. 110-114, 2016. DOI: 10.1016/j.gaitpost.2016.01.014.
[9] A. Zadeh, D. Taylor, M. Bertsos, T. Tillman, N. Nosoudi, and S. Bruce, "Predicting Sports Injuries with Wearable Technology and Data Analysis," Information Systems Frontiers, vol. 23, no. 4, pp. 1023-1037, 2020. DOI: 10.1007/s10796-020-10018-3.
[10] Y. Cha, H. Kim, and D. Kim, "Flexible Piezoelectric Sensor-Based Gait Recognition," Sensors (Basel), vol. 18, no. 2, 2018. DOI: 10.3390/s18020468.
[11] A. Nandy, S. Chakraborty, J. Chakraborty, and G. Venture, "Introduction," in Modern Methods for Affordable Clinical Gait Analysis, 2021, ch. 1, pp. 1-15. DOI: 10.1016/b978-0-323-85245-6.00012-6.
[12] C. Strohrmann, H. Harms, C. Kappeler-Setz, and G. Troster, "Monitoring kinematic changes with fatigue in running using body-worn sensors," IEEE Trans Inf Technol Biomed, vol. 16, no. 5, pp. 983-990, 2012. DOI: 10.1109/TITB.2012.2201950.
[13] Technavio, "Gait Biometrics Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, Canada, China, UK, Germany - Size and Forecast 2024-2028." https://www.technavio.com/report/gait-biometrics-market-industry-analysis (accessed 7 April, 2024).
[14] 林國欽、陳年興, "穿戴式科技應用於體育運動領域之系統性文獻回顧," 中華體育季刊, vol. 37, no. 3, pp. 207-221, 2023. DOI: 10.6223/qcpe.202309_37(3).0001.
[15] M. G. Gazendam and A. L. Hof, "Averaged EMG profiles in jogging and running at different speeds," Gait Posture, vol. 25, no. 4, pp. 604-614, 2007. DOI: 10.1016/j.gaitpost.2006.06.013.
[16] J. E. Morais, "Editorial: Advances in Wearable Devices for Sports," Applied Sciences, vol. 13, no. 24, 2023. DOI: 10.3390/app132413288.
[17] R. Mason et al., "Wearables for Running Gait Analysis: A Systematic Review," Sports Med, vol. 53, no. 1, pp. 241-268, 2023. DOI: 10.1007/s40279-022-01760-6.
[18] P.-C. Liu, "Development of a Flexible Piezoelectric-Textile-Sensor for Human Muscle Measurements," M.S. thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, 2018. DOI: 10.6342/NTU201802273.
[19] Y.-C. Lai, "Development and verification of a monitoring method for muscle fatigue using a piezoelectric muscle-patch-sensor," M.S. thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, 2021. DOI: 10.6342/NTU202101846.
[20] T.-W. Wang, "Study on the reliability of the piezoelectric muscle patch sensor using ultrasound imaging and motion capture system," M.S. thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, 2022. DOI: 10.6342/NTU202202469.
[21] Y.-L. Lu, "Development of an analysis method for a piezoelectric muscle patch sensor and its application to muscle fatigue," M.S. thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, 2022. DOI: 10.6342/NTU202202811.
[22] G.-R. Chu, "Experimental verification and algorithm development of using a muscle patch sensor to monitor muscle dynamic contraction and fatigue-induced tremor," M.S. thesis, Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan, 2023. DOI: 10.6342/NTU202302934.
[23] M. S. Saghiv, Sagiv, M.S. , Basic Exercise Physiology. Cham: Springer, 2020.
[24] E. Criswell, Cram's introduction to surface electromyography. Jones & Bartlett Publishers, 2010.
[25] D. J. Cech and S. T. Martin, "Muscle System Changes," in Functional Movement Development Across the Life Span, 2012, ch. 7, pp. 129-150. DOI: 10.1016/b978-1-4160-4978-4.00007-7.
[26] S. A. P. Denise Louise Smith, Sports-Specific Rehabilitation Chapter 2 - Understanding Muscle Contraction. Churchill Livingstone, 2007.
[27] M. El Fezazi, A. Achmamad, M. Aqil, and A. Jbari, "PSoC-Based Embedded Instrumentation and Processing of sEMG Signals," Analog Integrated Circuits and Signal Processing, vol. 108, no. 3, pp. 635-650, 2021. DOI: 10.1007/s10470-021-01850-x.
[28] B. Walker, 運動傷害復健書 (The Anatomy of sports Injuries). Taipei City: ACORN Publishing, 2016.
[29] Lecturio, "Leg: Anatomy." https://app.lecturio.com/#/article/2745?return=%23%2Fwelcome%3Ffv%3D1 (accessed 10 Jun, 2024).
[30] H. M. Clarkson, Musculoskeletal assessment: joint range of motion and manual muscle strength, 2 ed. Lippincott Williams & Wilkins, 2000.
[31] M. Johnson, Polgar, J., Weightman, D., & Appleton, D, "Data on the distribution of fibre types in thirty-six human muscles An autopsy study," Journal of the neurological sciences, vol. 18, no. 1, pp. 111-129, 1973. DOI: 10.1016/0022-510X(73)90023-3.
[32] J. Rueterbories, E. G. Spaich, B. Larsen, and O. K. Andersen, "Methods for gait event detection and analysis in ambulatory systems," Medical Engineering & Physics, vol. 32, no. 6, pp. 545-552, 2010. DOI: 10.1016/j.medengphy.2010.03.007.
[33] E. M. Ayyappa, CPO, "Normal Human Locomotion Part1: Basic Concepts and Terminology," Journal of Prosthetics and Orthotics, vol. 9, no. 1, pp. 10-17, 1997.
[34] J. Taborri, E. Palermo, S. Rossi, and P. Cappa, "Gait Partitioning Methods: A Systematic Review," Sensors, vol. 16, no. 1, 2016. DOI: 10.3390/s16010066.
[35] T. F. Novacheck, "The biomechanics of running," Gait & Posture, vol. 7, no. 1, pp. 77-95, 1998. DOI: 10.1016/S0966-6362(97)00038-6.
[36] J. Nilsson, A. Thorstensson, and J. Halbertsma, "Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans," Acta Physiol Scand, vol. 123, no. 4, pp. 457-475, 1985. DOI: 10.1111/j.1748-1716.1985.tb07612.x.
[37] E. B. Lohman, K. S. Balan Sackiriyas, and R. W. Swen, "A comparison of the spatiotemporal parameters, kinematics, and biomechanics between shod, unshod, and minimally supported running as compared to walking," Physical Therapy in Sport, vol. 12, no. 4, pp. 151-163, 2011. DOI: 10.1016/j.ptsp.2011.09.004.
[38] Jeffrey M. Hausdorff , Zvi Ladin, and J. Y. Wei, "Footswitch system for measurement of the temporal parameters of gait," Journal of Biomechanics, vol. 28, no. 3, pp. 347-351, 1995. DOI: 10.1016/0021-9290(94)00074-E.
[39] B. K. Higginson, "Methods of Running Gait Analysis," Current Sports Medicine Reports, vol. 8, no. 3, pp. 136-141, 2009. DOI: 10.1249/JSR.0b013e3181a6187a.
[40] Payal S. Malvade, Atul K. Joshi, and S. P. Madhe, "IoT based monitoring of foot pressure using FSR sensor," 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, pp. 635-639, 2017. DOI: 10.1109/ICCSP.2017.8286435.
[41] N. Nazmi, M. A. Abdul Rahman, S. Yamamoto, S. A. Ahmad, H. Zamzuri, and S. A. Mazlan, "A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions," Sensors (Basel), vol. 16, no. 8, 2016. DOI: 10.3390/s16081304.
[42] Hermie J Hermens, Bart Freriks, Catherine Disselhorst-Klug, and G. Rau, "Recommendations for sensor locations in lower leg or foot muscles." http://seniam.org/lowerleg_location.htm (accessed 10 Jun., 2024).
[43] Hermie J Hermens, Bart Freriks, Catherine Disselhorst-Klug, and G. Rau, "Development of recommendations for SEMG sensors and sensor placement procedures," Journal of Electromyography and Kinesiology, vol. 10, no. 5, pp. 361-374, 2000. DOI: 10.1016/S1050-6411(00)00027-4.
[44] I. Campanini, A. Merlo, P. Degola, R. Merletti, G. Vezzosi, and D. Farina, "Effect of electrode location on EMG signal envelope in leg muscles during gait," J Electromyogr Kinesiol, vol. 17, no. 4, pp. 515-26, 2007. DOI: 10.1016/j.jelekin.2006.06.001.
[45] E. M. Arnold, S. R. Hamner, A. Seth, M. Millard, and S. L. Delp, "How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds," Journal of Experimental Biology, 2013. DOI: 10.1242/jeb.075697.
[46] B. Gerdle, Karlsson, S., Day, S., Djupsjöbacka, M., Acquisition, Processing and Analysis of the Surface Electromyogram (Windhorst, U., Johansson, H. (eds) Modern Techniques in Neuroscience Research). Berlin: Springer, 1999.
[47] D. Stegeman and Hermie J Hermens, "Standards for suface electromyography: The European project Surface EMG for non-invasive assessment of muscles (SENIAM)," Enschede: Roessingh Research and Development, vol. 10, pp. 8-12, 2007. https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=b280c4751a2658380a77052b0aab7929e6943a57
[48] D. A. Winter, Biomechanics and Motor Control of Human Movement, 4th Edition. USA: John wiley & sons, 2009.
[49] R. Shiavi, C. Frigo, and A. Pedotti, "Electromyographic signals during gait: Criteria for envelope filtering and number of strides," Medical and Biological Engineering and Computing vol. 36, pp. 171-178, 1998. DOI: 10.1007/BF02510739.
[50] G. R. Naik, Computational Intelligence in Electromyography Analysis - A Perspective on Current Applications and Future Challenges. 2012.
[51] D. Reid, P. J. McNair, S. Johnson, G. Potts, E. Witvrouw, and N. Mahieu, "Electromyographic analysis of an eccentric calf muscle exercise in persons with and without Achilles tendinopathy," Phys Ther Sport, vol. 13, no. 3, pp. 150-155, 2012. DOI: 10.1016/j.ptsp.2011.08.003.
[52] Norhafizan Bin Ahmad, Zahari Taha, and P. L. Eu, "Energetic requirement, muscle fatigue, and musculoskeletal risk of prolonged standing on female Malaysian operators in the electronic industries: influence of age," Engineering e-Transaction, vol. 1, no. 2, pp. 47-58, 2006. https://www.researchgate.net/publication/268395444_Energetic_requirement_muscle_fatigue_and_musculoskeletal_risk_of_prolonged_standing_on_female_Malaysian_operators_in_the_electronic_industries_influence_of_age
[53] F. Rybnikár, I. Kačerová, P. Hořejší, and M. Šimon, "Ergonomics Evaluation Using Motion Capture Technology—Literature Review," Applied Sciences, vol. 13, no. 1, 2022. DOI: 10.3390/app13010162.
[54] E. van der Kruk and M. M. Reijne, "Accuracy of human motion capture systems for sport applications; state-of-the-art review," Eur J Sport Sci, vol. 18, no. 6, pp. 806-819, 2018. DOI: 10.1080/17461391.2018.1463397.
[55] M. Menolotto, D. S. Komaris, S. Tedesco, B. O'Flynn, and M. Walsh, "Motion Capture Technology in Industrial Applications: A Systematic Review," Sensors (Basel), vol. 20, no. 19, 2020. DOI: 10.3390/s20195687.
[56] J. Cuadrado, F. Michaud, U. Lugris, and M. Perez Soto, "Using Accelerometer Data to Tune the Parameters of an Extended Kalman Filter for Optical Motion Capture: Preliminary Application to Gait Analysis," Sensors (Basel), vol. 21, no. 2, 2021. DOI: 10.3390/s21020427.
[57] D. R. Burnett, N. H. Campbell-Kyureghyan, R. V. Topp, and P. M. Quesada, "Biomechanics of Lower Limbs during Walking among Candidates for Total Knee Arthroplasty with and without Low Back Pain," Biomed Res Int, vol. 2015, 2015. DOI: 10.1155/2015/142562.
[58] Y. Wu, Y. Li, Y. Tao, L. Sun, and C. Yu, "Recent advances in the material design for intelligent wearable devices," Materials Chemistry Frontiers, vol. 7, no. 16, pp. 3278-3297, 2023. DOI: 10.1039/d3qm00076a.
[59] S. J. Mostafavi Yazdi and J. Baqersad, "Mechanical modeling and characterization of human skin: A review," J Biomech, vol. 130, 2022. DOI: 10.1016/j.jbiomech.2021.110864.
[60] S. Park, "Biochemical, structural and physical changes in aging human skin, and their relationship," Biogerontology, vol. 23, no. 3, pp. 275-288, 2022. DOI: 10.1007/s10522-022-09959-w.
[61] Y. Wu, Y. Ma, H. Zheng, and S. Ramakrishna, "Piezoelectric materials for flexible and wearable electronics: A review," Materials & Design, vol. 211, 2021. DOI: 10.1016/j.matdes.2021.110164.
[62] P. Mao, H. Li, and Z. Yu, "A Review of Skin-Wearable Sensors for Non-Invasive Health Monitoring Applications," Sensors (Basel), vol. 23, no. 7, 2023. DOI: 10.3390/s23073673.
[63] S. Reilly, R. Leach, A. Cuenat, S. Awan, and M. Lowe, "Overview of MEMS sensors and the metrology requirements for their manufacture," NMS Programme for Engineering Measurement 2005-2008, pp. 9-15, 2006. http://eprintspublications.npl.co.uk/id/eprint/3658
[64] A. Ballato, "Piezoelectricity: history and new thrusts," 1996 IEEE Ultrasonics Symposium. Proceedings, vol. 1, pp. 575-583, 1996. DOI: 10.1109/ULTSYM.1996.584046.
[65] A. SAFARI, B. JADIDIAN, and E. K. AKDOGAN, "Piezoelectric Composites for Transducer Applications," in Comprehensive Composite Materials, 2000, ch. 5, pp. 533-561. DOI: 10.1016/B0-08-042993-9/00095-4.
[66] M. Habib, I. Lantgios, and K. Hornbostel, "A review of ceramic, polymer and composite piezoelectric materials," Journal of Physics D: Applied Physics, vol. 55, no. 42, 2022. DOI: 10.1088/1361-6463/ac8687.
[67] D. Matsouka and S. Vassiliadis, "Piezoelectric Melt-Spun Textile Fibers: Technological Overview," in Piezoelectricity - Organic and Inorganic Materials and Applications, 2018, ch. 4. DOI: 10.5772/intechopen.78389.
[68] Petia Dineva, Dietmar Gross, Ralf Müller, and T. Rangelov, Piezoelectric Materials. In: Dynamic Fracture of Piezoelectric Materials. Solid Mechanics and Its Applications, vol 212. Springer, Cham, 2014.
[69] K. Mistewicz, Low-Dimensional Chalcohalide Nanomaterials: Energy Conversion and Sensor-Based Technologies (NanoScience and Technology). Springer Cham, 2024.
[70] T. Furukawa, "Piezoelectricity and pyroelectricity in polymers," IEEE Transactions on Electrical Insulation, vol. 24, no. 3, pp. 375-394, 1989. DOI: 10.1109/14.30878.
[71] L. Wu et al., "Recent advances in the preparation of PVDF-based piezoelectric materials," Nanotechnology Reviews, vol. 11, no. 1, pp. 1386-1407, 2022. DOI: 10.1515/ntrev-2022-0082.
[72] H. Kawai, "The Piezoelectricity of Poly (vinylidene Fluoride)," Japanese Journal of Applied Physics, vol. 8, no. 7, pp. 975-976, 1969. DOI: 10.1143/JJAP.8.975.
[73] N. A. Shepelin et al., "New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting," Energy & Environmental Science, vol. 12, no. 4, pp. 1143-1176, 2019. DOI: 10.1039/c8ee03006e.
[74] T. Wu et al., "A Flexible Film Bulk Acoustic Resonator Based on -Phase Polyvinylidene Fluoride Polymer," Sensors (Basel), vol. 20, no. 5, 2020. DOI: 10.3390/s20051346.
[75] C. Wan and C. R. Bowen, "Multiscale-structuring of polyvinylidene fluoride for energy harvesting: the impact of molecular-, micro- and macro-structure," Journal of Materials Chemistry A, vol. 5, no. 7, pp. 3091-3128, 2017. DOI: 10.1039/c6ta09590a.
[76] G. Ren, F. Cai, B. Li, J. Zheng, and C. Xu, "Flexible Pressure Sensor Based on a Poly(VDF‐TrFE) Nanofiber Web," Macromolecular Materials and Engineering, vol. 298, no. 5, pp. 541-546, 2012. DOI: 10.1002/mame.201200218.
[77] Z. Li and C. Wang, One-Dimensional nanostructures: Electrospinning Technique and Unique Nanofibers (SpringerBriefs in Materials). Berlin, Heidelberg: Springer 2013.
[78] G. I. Taylor, "Disintegration of water drops in an electric field," Mathematical and Physical Sciences, vol. 280, pp. 383-397, 1964. DOI: 10.1098/rspa.1964.0151.
[79] G. C. Rutledge and S. V. Fridrikh, "Formation of fibers by electrospinning," Adv Drug Deliv Rev, vol. 59, no. 14, pp. 1384-91, 2007. DOI: 10.1016/j.addr.2007.04.020.
[80] G. Kalimuldina et al., "A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications," Sensors (Basel), vol. 20, no. 18, 2020. DOI: 10.3390/s20185214.
[81] Delsys, "Delsys sensor." https://delsys.com/sensors/#emg (accessed Jun. 21, 2024).
[82] G. D. Ruxton and G. Beauchamp, "Time for some a priori thinking about post hoc testing," Behavioral Ecology, vol. 19, no. 3, pp. 690-693, 2008. DOI: 10.1093/beheco/arn020.
[83] D. C. Sauder and C. E. DeMars, "An Updated Recommendation for Multiple Comparisons," Advances in Methods and Practices in Psychological Science, vol. 2, no. 1, pp. 26-44, 2019. DOI: 10.1177/2515245918808784.
[84] P. Schober, C. Boer, and L. A. Schwarte, "Correlation Coefficients: Appropriate Use and Interpretation," Anesthesia & Analgesia, vol. 126, no. 5, pp. 1763-1768, 2018. DOI: 10.1213/ane.0000000000002864.
[85] R. R. Neptune, K. Sasaki, and S. A. Kautz, "The effect of walking speed on muscle function and mechanical energetics," Gait Posture, vol. 28, no. 1, pp. 135-43, 2008. DOI: 10.1016/j.gaitpost.2007.11.004.
[86] L. Fiori et al., "The Lower Limb Muscle Co-Activation Map during Human Locomotion: From Slow Walking to Running," Bioengineering (Basel), vol. 11, no. 3, 2024. DOI: 10.3390/bioengineering11030288.
[87] R. R. Neptune and K. Sasaki, "Ankle plantar flexor force production is an important determinant of the preferred walk-to-run transition speed," J Exp Biol, vol. 208, no. Pt 5, pp. 799-808, 2005. DOI: 10.1242/jeb.01435.
[88] D. J. Farris and G. S. Sawicki, "Human medial gastrocnemius force-velocity behavior shifts with locomotion speed and gait," Proc Natl Acad Sci U S A, vol. 109, no. 3, pp. 977-982, 2012. DOI: 10.1073/pnas.1107972109.
[89] A. Darendeli, H. Ertan, and R. M. Enoka, "Comparison of EMG Activity in Leg Muscles between Overground and Treadmill Running," Med Sci Sports Exerc, vol. 55, no. 3, pp. 517-524, 2023. DOI: 10.1249/MSS.0000000000003055.
[90] E. S. Chumanov, C. M. Wille, M. P. Michalski, and B. C. Heiderscheit, "Changes in muscle activation patterns when running step rate is increased," Gait Posture, vol. 36, no. 2, pp. 231-235, 2012. DOI: 10.1016/j.gaitpost.2012.02.023.
[91] A. L. Hof, H. Elzinga, W. Grimmius, and J. P. K. Halbertsma, "Speed dependence of averaged EMG profiles in walking," Gait Posture, vol. 16, no. 1, pp. 78-86, 2002. DOI: 10.1016/s0966-6362(01)00206-5.
[92] A. R. den Otter, A. C. Geurts, T. Mulder, and J. Duysens, "Speed related changes in muscle activity from normal to very slow walking speeds," Gait Posture, vol. 19, no. 3, pp. 270-278, 2004. DOI: 10.1016/S0966-6362(03)00071-7.
[93] G. A. Lichtwark, K. Bougoulias, and A. M. Wilson, "Muscle fascicle and series elastic element length changes along the length of the human gastrocnemius during walking and running," J Biomech, vol. 40, no. 1, pp. 157-164, 2007. DOI: 10.1016/j.jbiomech.2005.10.035.
[94] M. Blazkiewicz, I. Wiszomirska, K. Kaczmarczyk, R. Naemi, and A. Wit, "Inter-individual similarities and variations in muscle forces acting on the ankle joint during gait," Gait Posture, vol. 58, pp. 166-170, 2017. DOI: 10.1016/j.gaitpost.2017.07.119.
[95] R. A. Bogey, A. J. Gitter, and L. A. Barnes, "Determination of ankle muscle power in normal gait using an EMG-to-force processing approach," J Electromyogr Kinesiol, vol. 20, no. 1, pp. 46-54, 2010. DOI: 10.1016/j.jelekin.2008.09.013.
[96] Y.-C. LIN, "Biomechanical Characteristics of Side-kicks in Various Heights at Different Strategy from the Perspective of Electronic Body Protectors," Ph.D. dissertation, Graduate Institute of Athletics and Coaching Science, National Taiwan Sport University, Taoyuan, Taiwan, 2022. https://hdl.handle.net/11296/a5sq62
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94161-
dc.description.abstract目前應用於步態分析之裝置大多需在實驗室中進行,在應用環境上有許多限制,而若是使用慣性傳感器IMU,則僅能量測加速度及角速度值來間接監測人體步態的生理訊號。因此本研究旨在開發應用於步態分析之新型穿戴式裝置與其分析方法,利用具備高靈敏度、高穩定性、高生物相容性與具穿戴舒適度之肌肉感應貼布,直接量測人體活動過程中之肌肉施力的生理訊號,以進行肌肉活動狀態之監測。本研究透過人體實驗收集步態資訊,藉由跑步機調控不同速度,量測實驗參與者在不同步態模式下之小腿蹠屈肌肉之訊號變化。實驗結果顯示肌肉感應貼布訊號在頻域上之第一頻率與步頻間之相關係數達0.99,具有顯著的高度正相關,且主頻率與步頻間也呈現倍率關係,證明感測器於頻率上之準確性。除此之外,實驗結果亦顯示肌肉感應貼布具有透過量測皮膚表面形變監測肌肉收縮程度之能力,與肌電訊號具有顯著的高度正相關,相關係數r值介於0.76 ~ 0.80之間,發現在跑步模式之速度差異性判別效能高於走路模式,並能由步態訊號之曲線特徵說明此現象。本研究證明了肌肉感應貼布於步態分析上之可行性,其具備高頻率靈敏度,能夠識別走與跑之步態模式,評估肌肉在不同步行和跑步速度下之總能量大小,並進行姿態判斷,可提供新的步態資訊作為步態監測與訓練之參考依據。zh_TW
dc.description.abstractMost current gait analysis methods are based on sensors that need to be carried out in laboratories, which can limit their applications. On the other hand, inertia sensors like IMU are common wearable sensors for daily activities. However, these sensors can only measure resultant accelerations and angular velocity. They cannot infer the contributions of muscles to various gait actions. Therefore, this study aims to develop a new wearable device and analysis method for gait analysis, using the muscle patch sensor (MPS) that has high sensitivity, stability, biocompatibility, and wearing comfort. The MPS can directly measure muscle force exertion during various gait activities. To verify and study the performance of the MPS, a series of human studies were conducted to collect the contraction signals of calf plantar flexor muscles during different walking and running speeds using a speed-controllable treadmill. The experimental results show that the primary frequency of the MPS signal has a high correlation with the step frequency, with a correlation coefficient of 0.99. This primary frequency also increases along with the stepping frequency, demonstrating the accuracy of this MPS device. In addition, the experimental results also show that the MPS can monitor muscle contraction has a high positive correlation with the electromyographic signal. The correlation coefficient value is between 0.76 ~ 0.80. In the running experiments, the discriminating capability is higher than that in walking experiments, and this phenomenon can be explained by the characteristic profiles of the gait signal. In summary, this study demonstrates the feasibility of using the MPS for gait analysis. It has high-frequency sensitivity that can be used to identify walking and running gait patterns, evaluate the total energy of muscles, and perform posture analysis. The MPS signals can provide new gait reference signals for gait analysis and training.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T17:01:10Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T17:01:10Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 i
摘要 ii
ABSTRACT iii
目次 v
圖次 ix
表次 xix
第1章 緒論 1
1.1 研究背景與動機 1
1.1.1 運動感測器與監測系統之應用 3
1.1.2 步態分析 (Gait analysis) 4
1.1.3 肌肉感應貼布過往研究成果 6
1.2 研究目標 8
1.3 論文架構 8
第2章 文獻探討 9
2.1 肌肉作動原理與收縮機制 9
2.1.1 肌肉收縮原理 10
2.1.2 小腿肌群簡介 12
2.2 步態週期 (Gait cycle) 14
2.2.1 步態週期事件 (Gait cycle phases) 15
2.2.2 步態感測器 (Foot switch) 16
2.2.3 步態訊號分析方法與訊號時間正規化 17
2.3 肌電訊號 (EMG) 18
2.3.1 肌電訊號介紹 18
2.3.2 肌電訊號預處理 20
2.3.3 肌電訊號分析方法 23
2.4 動作捕捉攝影系統 (Motion) 24
2.4.1 動作捕捉系統 24
2.4.2 動作捕捉攝影系統實驗與擷取方式 24
2.4.3 動作捕捉攝影系統數據預處理 25
2.4.4 動作捕捉系統分析方法 26
2.5 肌肉感應貼布之應用與本團隊過去研究 27
2.5.1 MPS與皮膚表面變化之相關性 27
2.5.2 MPS與肌肉直徑變化之相關性 28
2.5.3 MPS與肌肉電刺激訊號之訊號相關性 29
2.5.4 MPS與肌肉施力之相關性 30
2.5.5 肌肉疲勞震顫量測 32
2.6 總結 33
第3章 肌肉感應貼布原理與訊號分析 34
3.1 可撓式物理感測器 34
3.2 壓電效應與壓電材料 36
3.3 高分子聚合物P (VDF-TrFE) 40
3.4 靜電紡絲 42
3.5 肌肉感應貼布訊號擷取 45
3.6 肌肉感應貼布訊號分析 46
3.6.1 肌肉感應貼布訊號預處理 47
3.6.2 肌肉感應貼布訊號分析係數與二次正規化 47
第4章 研究方法與實驗架設 49
4.1 實驗架構 49
4.2 肌肉感應貼布製程 50
4.2.1 高分子P (VDF-TrFE) 溶液配置 50
4.2.2 靜電紡絲 51
4.2.3 絲線剝離與後處理 52
4.2.4 絲線拉伸線性化 52
4.2.5 封裝壓電絲線製成感測器 53
4.2.6 感測器拉伸線性化 56
4.3 肌肉感應貼布性能測試 57
4.3.1 拉伸試驗 58
4.3.2 訊號穩定性測試 59
4.4 跑步機步態實驗 60
4.4.1 實驗流程 61
4.4.2 跑步機實驗架設 63
4.4.3 感測器黏貼與訊號擷取 64
4.4.4 最大肌力測試實驗 71
4.4.5 實驗參與者條件與習慣調查 72
4.4.6 資料收集與處理 72
4.4.7 統計分析 76
第5章 實驗結果與討論 77
5.1 MPS性能測試 77
5.1.1 拉伸測試實驗結果 77
5.1.2 訊號穩定性測試結果 79
5.2 跑步機步態實驗之肌肉感應貼布時域訊號表現 81
5.2.1 實驗參與者資訊 81
5.2.2 肌肉感應貼布時域訊號表現 81
5.2.3 肌肉感應貼布訊號表現與分析方法討論 85
5.3 肌肉感應貼布週期性訊號討論 86
5.3.1 肌肉感應貼布頻域訊號表現 86
5.3.2 步態時空資訊分析 88
5.3.3 MPS頻率訊號與步頻之相關性討論 90
5.4 肌肉感應貼布之步態能量討論 92
5.4.1 MPS與EMG時域訊號表現 92
5.4.2 步態訊號能量強度之相關性 94
5.4.3 分群排除之特例數據討論 105
5.5 肌肉感應貼布之步態訊號特徵意義討論 109
5.5.1 Motion姿態訊號處理 109
5.5.2 不同步態中之MPS訊號 111
5.5.3 肌肉皮膚表面形變與MPS訊號之關聯 113
5.5.4 步態事件分辨 117
5.5.5 不同步態中之EMG訊號 121
5.5.6 不同步態中之Motion姿態訊號 125
5.5.7 步態中之MPS訊號與代表的生理意義 128
5.5.8 MPS訊號意義總結 139
第6章 結論與未來展望 140
6.1 結論 140
6.2 未來展望 141
參考文獻 142
附錄 151
-
dc.language.isozh_TW-
dc.subject動態肌肉活動zh_TW
dc.subject肌肉監測zh_TW
dc.subject蹠屈肌zh_TW
dc.subject穿戴裝置zh_TW
dc.subject可撓式感測器zh_TW
dc.subject步態分析zh_TW
dc.subjectdynamic muscle contractionen
dc.subjectflexible sensoren
dc.subjectwearable deviceen
dc.subjectgait analysisen
dc.subjectmuscle monitoringen
dc.subjectplantar flexoren
dc.title應用肌肉感應貼布於步態分析之實驗與分析方法開發zh_TW
dc.titleDevelopment of experimental and analyzing methods to apply a muscle patch sensor for gait analysisen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee湯文慈;林哲宇;黃聰育zh_TW
dc.contributor.oralexamcommitteeWen-Tzu Tang;Che-Yu Lin;Tsung-Yu Huangen
dc.subject.keyword可撓式感測器,穿戴裝置,步態分析,肌肉監測,蹠屈肌,動態肌肉活動,zh_TW
dc.subject.keywordflexible sensor,wearable device,gait analysis,muscle monitoring,plantar flexor,dynamic muscle contraction,en
dc.relation.page173-
dc.identifier.doi10.6342/NTU202402801-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
dc.date.embargo-lift2029-07-30-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2029-07-30
17.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved