請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94153
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林逸彬 | zh_TW |
dc.contributor.advisor | Yi-Pin Lin | en |
dc.contributor.author | 蔡路臻 | zh_TW |
dc.contributor.author | Lu-Chen Tsai | en |
dc.date.accessioned | 2024-08-14T16:58:45Z | - |
dc.date.available | 2024-08-15 | - |
dc.date.copyright | 2024-08-14 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-01 | - |
dc.identifier.citation | Adawi, H. I., Newbold, M. A., Reed, J. M., Vance, M. E., Feitshans, I. L., Bickford, L. R., & Lewinski, N. A. (2018). Nano-enabled personal care products: Current developments in consumer safety. NanoImpact, 11, 170-179. https://doi.org/https://doi.org/10.1016/j.impact.2018.08.002
Alonso, M., & Kousaka, Y. (1996). Mobility shift in the differential mobility analyzer due to Brownian diffusion and space-charge effects. Journal of Aerosol Science, 27(8), 1201-1225. https://doi.org/https://doi.org/10.1016/0021-8502(96)00052-3 Degueldre, C., & Favarger, P. Y. (2003). Colloid analysis by single particle inductively coupled plasma-mass spectroscopy: a feasibility study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217(1), 137-142. https://doi.org/https://doi.org/10.1016/S0927-7757(02)00568-X Degueldre, C., Favarger, P. Y., & Bitea, C. (2004). Zirconia colloid analysis by single particle inductively coupled plasma–mass spectrometry. Analytica Chimica Acta, 518(1), 137-142. https://doi.org/https://doi.org/10.1016/j.aca.2004.04.015 Degueldre, C., Favarger, P. Y., & Wold, S. (2006). Gold colloid analysis by inductively coupled plasma-mass spectrometry in a single particle mode. Analytica Chimica Acta, 555(2), 263-268. https://doi.org/https://doi.org/10.1016/j.aca.2005.09.021 Domingos, R. F., Baalousha, M. A., Ju-Nam, Y., Reid, M. M., Tufenkji, N., Lead, J. R., Leppard, G. G., & Wilkinson, K. J. (2009). Characterizing Manufactured Nanoparticles in the Environment: Multimethod Determination of Particle Sizes. Environmental Science & Technology, 43(19), 7277-7284. https://doi.org/10.1021/es900249m Elzey, S., Tsai, D.-H., Yu, L. L., Winchester, M. R., Kelley, M. E., & Hackley, V. A. (2013). Real-time size discrimination and elemental analysis of gold nanoparticles using ES-DMA coupled to ICP-MS. Analytical and Bioanalytical Chemistry, 405(7), 2279-2288. https://doi.org/10.1007/s00216-012-6617-z Flagan, R. C. (1999). On Differential Mobility Analyzer Resolution. Aerosol Science and Technology, 30(6), 556-570. https://doi.org/10.1080/027868299304417 Grasso, A., Ferrante, M., Zuccarello, P., Filippini, T., Arena, G., Fiore, M., Cristaldi, A., Conti, G. O., & Copat, C. (2020). Chemical Characterization and Quantification of Titanium Dioxide Nanoparticles (TiO2-NPs) in Seafood by Single-Particle ICP-MS: Assessment of Dietary Exposure. International Journal of Environmental Research and Public Health, 17(24), 9547. https://www.mdpi.com/1660-4601/17/24/9547 Hadioui, M., Peyrot, C., & Wilkinson, K. J. (2014). Improvements to Single Particle ICPMS by the Online Coupling of Ion Exchange Resins. Analytical Chemistry, 86(10), 4668-4674. https://doi.org/10.1021/ac5004932 Hess, A., Tarik, M., Losert, S., Ilari, G., & Ludwig, C. (2016). Measuring air borne nanoparticles for characterizing hyphenated RDD-SMPS-ICPMS instrumentation. Journal of Aerosol Science, 92, 130-141. https://doi.org/https://doi.org/10.1016/j.jaerosci.2015.10.007 Hetzer, B., Burcza, A., Gräf, V., Walz, E., & Greiner, R. (2017). Online-coupling of AF4 and single particle-ICP-MS as an analytical approach for the selective detection of nanosilver release from model food packaging films into food simulants. Food Control, 80, 113-124. https://doi.org/https://doi.org/10.1016/j.foodcont.2017.04.040 Hineman, A., & Stephan, C. (2014). Effect of dwell time on single particle inductively coupled plasma mass spectrometry data acquisition quality. Journal of Analytical Atomic Spectrometry, 29(7), 1252-1257. (Journal of Analytical Atomic Spectrometry) Hoyt, V. W., & Mason, E. (2008). Nanotechnology. Journal of Chemical Health & Safety, 15(2), 10-15. https://doi.org/10.1016/j.jchas.2007.07.015 Hsieh, Y.-C., Lin, Y.-P., Hsiao, T.-C., & Hou, W.-C. (2022). A two-dimensional nanoparticle characterization method combining differential mobility analyzer and single-particle inductively coupled plasma-mass spectrometry with an atomizer-enabled sample introduction (ATM-DMA-spICP-MS): Toward the analysis of heteroaggregated nanoparticles in wastewater. Science of The Total Environment, 838, 156444. https://doi.org/https://doi.org/10.1016/j.scitotenv.2022.156444 Iskandar, F., Gradon, L., & Okuyama, K. (2003). Control of the morphology of nanostructured particles prepared by the spray drying of a nanoparticle sol. Journal of Colloid and Interface Science, 265(2), 296-303. https://doi.org/https://doi.org/10.1016/S0021-9797(03)00519-8 Kousaka, Y., Okuyama, K., Adachi, M., & Mimura, T. (1986). EFFECT OF BROWNIAN DIFFUSION ON ELECTRICAL CLASSIFICATION OF ULTRAFINE AEROSOL PARTICLES IN DIFFERENTIAL MOBILITY ANALYZER. Journal of Chemical Engineering of Japan, 19(5), 401-407. https://doi.org/10.1252/jcej.19.401 Laborda, F., Bolea, E., & Jiménez-Lamana, J. (2014). Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Analytical Chemistry, 86(5), 2270-2278. https://doi.org/10.1021/ac402980q (Analytical Chemistry) Laborda, F., Bolea, E., & Jiménez-Lamana, J. (2016). Single particle inductively coupled plasma mass spectrometry for the analysis of inorganic engineered nanoparticles in environmental samples. Trends in Environmental Analytical Chemistry, 9, 15-23. https://doi.org/https://doi.org/10.1016/j.teac.2016.02.001 Lenggoro, I. W., Widiyandari, H., Hogan, C. J., Biswas, P., & Okuyama, K. (2007). Colloidal nanoparticle analysis by nanoelectrospray size spectrometry with a heated flow. Analytica Chimica Acta, 585(2), 193-201. https://doi.org/https://doi.org/10.1016/j.aca.2006.12.030 Pace, H. E., Rogers, N. J., Jarolimek, C., Coleman, V. A., Gray, E. P., Higgins, C. P., & Ranville, J. F. (2012). Single Particle Inductively Coupled Plasma-Mass Spectrometry: A Performance Evaluation and Method Comparison in the Determination of Nanoparticle Size. Environmental Science & Technology, 46(22), 12272-12280. https://doi.org/10.1021/es301787d Pace, H. E., Rogers, N. J., Jarolimek, C., Coleman, V. A., Higgins, C. P., & Ranville, J. F. (2011). Determining Transport Efficiency for the Purpose of Counting and Sizing Nanoparticles via Single Particle Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 83(24), 9361-9369. https://doi.org/10.1021/ac201952t (Analytical Chemistry) Patil, M. A., & Parikh, P. A. (2014). Investigation on Likely Effects of Ag, TiO2, and ZnO Nanoparticles on Sewage Treatment. Bulletin of Environmental Contamination and Toxicology, 92(1), 109-114. https://doi.org/10.1007/s00128-013-1141-1 Peters, R. J. B., van Bemmel, G., Herrera-Rivera, Z., Helsper, H. P. F. G., Marvin, H. J. P., Weigel, S., Tromp, P. C., Oomen, A. G., Rietveld, A. G., & Bouwmeester, H. (2014). Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles. Journal of Agricultural and Food Chemistry, 62(27), 6285-6293. https://doi.org/10.1021/jf5011885 Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14(9), 1109. https://doi.org/10.1007/s11051-012-1109-9 Potocnik, J. (2011). Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off. J. Eur. Communities Legis, 275, 38-40. (Off. J. Eur. Communities Legis) Prasad, M., Lambe, U. P., Brar, B., Shah, I., J, M., Ranjan, K., Rao, R., Kumar, S., Mahant, S., Khurana, S. K., Iqbal, H. M. N., Dhama, K., Misri, J., & Prasad, G. (2018). Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed Pharmacother, 97, 1521-1537. https://doi.org/10.1016/j.biopha.2017.11.026 Rakcheev, D., Philippe, A., & Schaumann, G. E. (2013). Hydrodynamic Chromatography Coupled with Single Particle-Inductively Coupled Plasma Mass Spectrometry for Investigating Nanoparticles Agglomerates. Analytical Chemistry, 85(22), 10643-10647. https://doi.org/10.1021/ac4019395 Sajid, M., Ilyas, M., Basheer, C., Tariq, M., Daud, M., Baig, N., & Shehzad, F. (2015). Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environmental Science and Pollution Research, 22(6), 4122-4143. https://doi.org/10.1007/s11356-014-3994-1 Tsai, D. H., Pease Iii, L. F., Zangmeister, R. A., Tarlov, M. J., & Zachariah, M. R. (2009). Aggregation Kinetics of Colloidal Particles Measured by Gas-Phase Differential Mobility Analysis. Langmuir, 25(1), 140-146. https://doi.org/10.1021/la703164j Wang, J.-W., Yu, C.-H., Hou, W.-C., Hsiao, T.-C., & Lin, Y.-P. (2024). Characterization of Fe-Containing and Pb-Containing Nanoparticles Resulting from Corrosion of Plumbing Materials in Tap Water Using a Hyphenated ATM-DMA-spICP-MS System. Environmental Science & Technology, 58(4), 2038-2047. https://doi.org/10.1021/acs.est.3c07592 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94153 | - |
dc.description.abstract | 單顆粒感應耦合電漿質譜儀(single particle inductively coupled plasma mass spectrometry, spICP-MS) 已被廣泛應用於環境奈米顆粒的研究。然而,實際環境中的奈米顆粒通常為非球形且組成複雜,這可能會影響spICP-MS分析的精準度。已有研究顯示,通過霧化器(atomizer, ATM)、微分電移動度粒徑分析儀(differential mobility analyzer, DMA)及spICP-MS的串聯系統 (ATM-DMA-spICP-MS),可以獲得更精確的奈米顆粒粒徑量測,同時估算奈米顆粒的濃度。在奈米顆粒濃度的測定中,傳輸效率(transport efficiency, "η" _"n" ),其定義為系統中出流顆粒濃度與進流顆粒數量濃度的比值,的測定極為重要。目前的標準程序中,通常先測定50 nm金標準奈米顆粒的傳輸效率,再假設其他尺寸及種類的奈米顆粒具有相同的傳輸效率,再將此50 nm金標準奈米顆粒的傳輸效率用於這些奈米顆粒濃度的估算。然而,此假設需要加以驗證以確保顆粒數量濃度的準確量化。
本研究採用金標準奈米顆粒(粒徑=30 nm、50 nm、80 nm及100 nm)、銀標準奈米顆粒(粒徑=30 nm、50 nm、80 nm及100 nm)以及鉑標準奈米顆粒(粒徑=50 nm)來探討顆粒尺寸和金屬組成對於獨立spICP-MS和串聯系統傳輸效率的影響。對於獨立spICP-MS而言,所有大於30 nm的金、銀和鉑標準奈米顆粒有相似的傳輸效率,顯示使用50 nm 金標準奈米顆粒所測定的傳輸效率應可以適用於其他尺寸大於30 nm的奈米顆粒。然而,對於串聯系統,實驗結果顯示傳輸效率會隨顆粒尺寸的增加而增加,而且不同金屬奈米顆粒之間存在差異。因此,本研究針對金奈米顆粒和銀奈米顆粒建立了傳輸效率與顆粒直徑之間的相關曲線,此曲線可以用於估算不同尺寸金奈米顆粒和銀奈米顆粒的傳輸效率,可以讓串聯系統更準確地量化環境樣品中金奈米顆粒和銀奈米顆粒的顆粒數量濃度。 | zh_TW |
dc.description.abstract | Single particle inductively coupled plasma mass spectrometry (spICP-MS) has emerged as a prevalent analytical technique for studying environmental nanoparticles. However, nanoparticles in environmental samples are generally non-spherical and composed of various elements, which influence the precision of spICP-MS analysis. It has been demonstrated that more accurate sizing ability can be achieved by hyphenating the atomizer (ATM), differential mobility analyzer (DMA), and spICP-MS (hyphenated ATM-DMA-spICP-MS). Although the system has been successfully developed, it relies on using a single-sized (typically 50 mm) gold nanoparticle as the reference to determine the transport efficiency ("η" _"n" ), defined as the ratio of effluent particle concentration to influent particle concentration in the system, for particle number concentration estimations. It is generally assumed that the transport efficiency can be applied to nanoparticles with different sizes and metallic compositions. However, this assumption requires verification to ensure accurate quantification of particle number concentration.
This study utilized gold standard nanoparticle (AuNPs) (30 nm, 50 nm, 80 nm, 100 nm), silver standard nanoparticle (AgNPs) (30 nm, 50 nm, 80 nm, 100 nm), and platinum standard nanoparticle (PtNPs) (50 nm) to investigate the influences of particle size and metal composition on transport efficiency for stand-alone spICP-MS and the hyphenated system. For stand-alone spICP-MS, a similar transport efficiency was found for these standard nanoparticles with a size > 30 nm, suggesting that the transport efficiency determined using 50 mm AuNPs, as outlined in the spICP-MS manufacture’s user manual, can be used for other nanoparticles with a size greater than 30 nm. In contrast, for the hyphenated system, the transport efficiency generally increased with the particle size and varied among different metallic nanoparticles. The correlations between transport efficiency and particle size were established for AuNPs and AgNPs and can be used to provide a more accurate quantification of particle number concentration of AuNPs and AgNPs in environmental samples using the hyphenated system. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:58:45Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-14T16:58:45Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii LIST OF TABLES ix Chapter 1 Introduction 1 Chapter 2 Literature review 3 2.1 Traditional characterization methods for metallic nanoparticles 3 2.2 Single particle inductively coupled plasma mass spectrometry (spICP-MS) 4 2.3 Hyphenated ATM-DMA-spICP-MS system 7 2.4 Transport efficiency 12 2.5 Hypothesis 12 2.6 Objectives 13 Chapter 3 Materials and Methods 14 3.1 Research framework 14 3.2 Configuration of the hyphenated system 16 3.3 Operation of the hyphenated system 18 3.4 Materials and Chemicals 19 3.5 Transport efficiency and particle number concentration calculations 20 Chapter 4. Results and Discussion 22 4.1 Characterization of nanoparticle standards 22 4.2 Influence of particle size and metal composition on the transport efficiency of stand-alone spICP-MS 28 4.3 Influence of particle size and metal composition on the transport efficiency of the hyphenated system 34 4.4 Discussion on the influence of particle size and metal composition on transport efficiency 40 Chapter 5. Conclusions and Recommendations 44 Reference 46 | - |
dc.language.iso | en | - |
dc.title | 不同顆粒大小和金屬種類對於串聯微分電移動度粒徑分析儀與單顆粒感應耦合電漿質譜儀系統傳輸效率的影響 | zh_TW |
dc.title | Effect of different size and metal on transport efficiency in the hyphenated ATM-DMA-spICP-MS system | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蕭大智;侯文哲 | zh_TW |
dc.contributor.oralexamcommittee | Ta-Chih Hsiao;Wen-Che Hou | en |
dc.subject.keyword | 金屬奈米顆粒,串聯系統,微分電移動度粒徑分析儀,單顆粒感應耦合電漿質譜儀,傳輸效率, | zh_TW |
dc.subject.keyword | metallic nanoparticles,hyphenated system,differential mobility analyzer,spICP-MS,transport efficiency, | en |
dc.relation.page | 49 | - |
dc.identifier.doi | 10.6342/NTU202402806 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-05 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 6.1 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。