請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94149完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏宏宇 | zh_TW |
| dc.contributor.advisor | Hung-Yu Wei | en |
| dc.contributor.author | 邱詠泰 | zh_TW |
| dc.contributor.author | Yong-Tai Chiu | en |
| dc.date.accessioned | 2024-08-14T16:57:35Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | [1] S. A. Mahler, K. M. Lenoir, B. J. Wells, G. L. Burke, P. W. Duncan, L. D. Case, D. M. Herrington, J.-F. Diaz-Garelli, W. M. Futrell, B. C. Hiestand et al., “Safely identifying emergency department patients with acute chest pain for early discharge: Heart pathway accelerated diagnostic protocol,” Circulation, vol. 138, no. 22, pp. 2456–2468, 2018.
[2] S. Goodacre, E. Cross, J. Arnold, K. Angelini, S. Capewell, and J. Nicholl, “The health care burden of acute chest pain,” Heart, vol. 91, no. 2, pp. 229–230, 2005. [3] Å. Omstedt, J. Höijer, T. Djärv, and P. Svensson, “Hypertension predicts major ad- verse cardiac events after discharge from the emergency department with unspecified chest pain,” European Heart Journal: Acute Cardiovascular Care, vol. 5, no. 5, pp. 441–448, 2016. [4] W. C. Members, M. Gulati, P. D. Levy, D. Mukherjee, E. Amsterdam, D. L. Bhatt, K. K. Birtcher, R. Blankstein, J. Boyd, R. P. Bullock-Palmer et al., “2021 aha/acc/ase/chest/saem/scct/scmr guideline for the evaluation and diagnosis of chest pain: a report of the american college of cardiology/american heart association joint committee on clinical practice guidelines,” Journal of the American College of Car- diology, vol. 78, no. 22, pp. e187–e285, 2021. [5] S.A.Mahler,R.F.Riley,B.C.Hiestand,G.B.Russell,J.W.Hoekstra,C.W.Lefeb- vre, B. A. Nicks, D. M. Cline, K. L. Askew, S. B. Elliott et al., “The heart pathway randomized trial: identifying emergency department patients with acute chest pain for early discharge,” Circulation: Cardiovascular quality and outcomes, vol. 8, no. 2, pp. 195–203, 2015. [6] M. D. Brown, S. J. Wolf, R. Byyny, D. B. Diercks, S. R. Gemme, C. J. Gerardo, S. A. Godwin, S. A. Hahn, N. E. Harrison, B. W. Hatten et al., “Clinical policy: critical issues in the evaluation and management of emergency department patients with suspected non–st-elevation acute coronary syndromes,” Annals of Emergency Medicine, vol. 72, no. 5, pp. e65–e106, 2018. [7] S. M. Green and D. L. Schriger, “A methodological appraisal of the heart score and its variants,” Annals of Emergency Medicine, vol. 78, no. 2, pp. 253–266, 2021. [8] Y. Sandoval, F. S. Apple, S. A. Mahler, R. Body, P. O. Collinson, A. S. Jaffe, I. F. of Clinical Chemistry, and L. M. C. on the Clinical Applica- tion of Cardiac Biomarkers, “High-sensitivity cardiac troponin and the 2021 aha/acc/ase/chest/saem/scct/scmr guidelines for the evaluation and diagnosis of acute chest pain,” Circulation, vol. 146, no. 7, pp. 569–581, 2022. [9] C. M. O’Rielly, T. G. Harrison, J. E. Andruchow, P. E. Ronksley, T. Sajobi, H. L. Robertson, D. Lorenzetti, and A. D. McRae, “Risk scores for clinical risk stratifi- cation of emergency department patients with chest pain but no acute myocardial infarction: a systematic review,” Canadian Journal of Cardiology, vol. 39, no. 3, pp. 304–310, 2023. [10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM computing surveys (CSUR), vol. 41, no. 3, pp. 1–58, 2009. [11] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for dis- covering clusters in large spatial databases with noise,” in kdd, vol. 96, no. 34, 1996, pp. 226–231. [12] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with nonlinear dimensionality reduction,” in Proceedings of the MLSDA 2014 2nd workshop on machine learning for sensory data analysis, 2014, pp. 4–11. [13] J. An and S. Cho, “Variational autoencoder based anomaly detection using recon- struction probability,” Special lecture on IE, vol. 2, no. 1, pp. 1–18, 2015. [14] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth, and G. Langs, “Un- supervised anomaly detection with generative adversarial networks to guide marker discovery,” in International conference on information processing in medical imag-ing. Springer, 2017, pp. 146–157. [15] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 eighth ieee inter- national conference on data mining. IEEE, 2008, pp. 413–422. [16] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei, Y. Feng et al., “Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications,” in Proceedings of the 2018 world wide web conference, 2018, pp. 187–196. [17] L. Breiman, “Bagging predictors,” Machine learning, vol. 24, pp. 123–140, 1996. [18] ——, “Random forests,” Machine learning, vol. 45, pp. 5–32, 2001. [19] Y.FreundandR.E.Schapire,“Adecision-theoreticgeneralizationofon-linelearning and an application to boosting,” Journal of computer and system sciences, vol. 55, no. 1, pp. 119–139, 1997. [20] J. H. Friedman, “Greedy function approximation: a gradient boosting machine,” An- nals of statistics, pp. 1189–1232, 2001. [21] L. Prokhorenkova, G. Gusev, A. Vorobev, A. V. Dorogush, and A. Gulin, “Catboost: unbiased boosting with categorical features,” Advances in neural information pro- cessing systems, vol. 31, 2018. [22] D.H.Wolpert,“Stackedgeneralization,”Neuralnetworks,vol.5,no.2,pp.241–259, 1992. [23] J. Lines, S. Taylor, and A. Bagnall, “Time series classification with hive-cote: The hierarchical vote collective of transformation-based ensembles,” ACM Transactions on Knowledge Discovery from Data (TKDD), vol. 12, no. 5, pp. 1–35, 2018. [24] T. Le Nguyen, S. Gsponer, I. Ilie, M. O’reilly, and G. Ifrim, “Interpretable time series classification using linear models and multi-resolution multi-domain symbolic representations,” Data mining and knowledge discovery, vol. 33, pp. 1183–1222, 2019. [25] M. Middlehurst, J. Large, M. Flynn, J. Lines, A. Bostrom, and A. Bagnall, “Hive- cote 2.0: a new meta ensemble for time series classification,” Machine Learning, vol. 110, no. 11, pp. 3211–3243, 2021. [26] M. Middlehurst, J. Large, G. Cawley, and A. Bagnall, “The temporal dictionary ensemble (tde) classifier for time series classification,” in Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part I. Springer, 2021, pp. 660–676. [27] I.Oguiza,“tsai-astate-of-the-artdeeplearninglibraryfortimeseriesandsequential data,” Github, 2023. [Online]. Available: https://github.com/timeseriesAI/tsai [28] Y. Zhao, Z. Nasrullah, and Z. Li, “Pyod: A python toolbox for scalable outlier detection,” Journal of Machine Learning Research, vol. 20, no. 96, pp. 1–7, 2019. [Online]. Available: http://jmlr.org/papers/v20/19-011.html [29] M. Ali, PyCaret: An open source, low-code machine learning library in Python, April 2020, pyCaret version 1.0.0. [Online]. Available: https://www.pycaret.org [30] F.Pedregosa,G.Varoquaux,A.Gramfort,V.Michel,B.Thirion,O.Grisel,M.Blon- del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna- peau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011. [31] S. Rayana, “ODDS library,” 2016. [Online]. Available: https://odds.cs.stonybrook.e du [32] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair, R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, “From local explanations to global under- standing with explainable ai for trees,” Nature Machine Intelligence, vol. 2, no. 1, pp. 2522–5839, 2020. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94149 | - |
| dc.description.abstract | 本研究提出並描述了一種創新性的集成方法,旨在提高各種異常數據集中的檢測和預測能力。所提出的框架結合了多種元模型的優勢,利用監督和非監督學習技術來實現卓越的性能。該方法的有效性通過六個不同數據集進行了嚴格評估:troponin、annthyroid、satellite、mammography、speech 和 letter。
首先,研究重點放在 troponin 數據集上,其中集成方法在主要不良心臟事件(MACE)的預測準確性方面顯示出顯著改進,超過了傳統指標如 HEART 分數。為了驗證所提出方法的普遍性和穩健性,我們進一步在 Odds 資料庫中選擇了五個廣泛使用的數據集進行測試。這些數據集因其多樣的特徵而被選中,為異常檢測算法提供了全面的評估基礎。 所提出的方法使用了總共110個模型,其性能與六個異常檢測數據集中的十種最先進(SOTA)方法進行了比較。結果一致顯示,所提出的方法在所有數據集上都優於傳統集成技術和SOTA模型,並在 AUC 和 AUPRC 分數上取得更高的成績。例如,在檢測異常值方面,所提出的方法顯著超過了單個檢測器、完整集成和其他基於表示學習的算法。 比較包括使用一組全面的排名指標進行的徹底評估,如 Kendall's Tau、Spearman's Rank Correlation、Normalized Discounted Cumulative Gain (NDCG) 和 Mean Squared Error (MSE)。此外,研究還探討了元模型和基礎模型的適用性和最佳數量。詳細實驗突顯了模型多樣性的重要性,SHAP(SHapley Additive exPlanations)值提供了關於單個模型貢獻的洞見。集成中的每個模型捕捉數據的不同方面,從而提升整體預測性能。 研究結果強調了所提出的集成方法在分類和異常檢測任務中的有效性。該研究為開發更可靠和更準確的預測模型做出了貢獻,強調了全面評估模型性能指標的必要性。未來的研究應集中於優化計算效率、解決潛在的過擬合問題,以及在不同環境中驗證該方法以確保更廣泛的適用性。這項工作代表了預測建模的重大進展,對臨床決策和其他關鍵應用具有重要影響。 | zh_TW |
| dc.description.abstract | This study is proposed, described, and demonstrated an innovative ensemble method designed to enhance detection and prediction capabilities across various abnormal datasets.The proposed framework combines the strengths of multiple meta-models, leveraging both supervised and unsupervised learning techniques to achieve superior performance. The method's efficacy is rigorously evaluated using six diverse datasets: troponin, annthyroid, satellite, mammography, speech, and letter.
Initially, the focus is on the troponin dataset, where the ensemble method demonstrates significant improvements in predictive accuracy for major adverse cardiac events (MACE), surpassing traditional metrics like the HEART score. To validate the generalizability and robustness of the proposed method, we further test it on five widely-used datasets from the Odds repository. These datasets were selected for their diverse characteristics, providing a comprehensive evaluation foundation for abnormal detection algorithms. The proposed method employs a total of 110 models, and its performance is compared against ten state-of-the-art (SOTA) methods across six abnormal detection datasets. Results consistently show that the proposed method outperforms traditional ensemble techniques and SOTA models, achieving higher AUC and AUPRC scores across all datasets. For instance, the proposed method significantly surpasses individual detectors, full ensembles, and other representation learning-based algorithms in detecting abnormalities. The comparison includes a thorough assessment using a comprehensive set of ranking metrics, such as Kendall's Tau, Spearman's Rank Correlation, Normalized Discounted Cumulative Gain (NDCG), and Mean Squared Error (MSE). Additionally, the study explores the suitability and optimal number of meta-models and base models. Detailed experiments highlight the importance of model diversity, with SHAP (SHapley Additive exPlanations) values providing insights into individual model contributions. Each model within the ensemble captures distinct aspects of the data, enhancing overall predictive performance. The findings underscore the effectiveness of the proposed ensemble method in both classification and abnormal detection tasks. The study contributes to the development of more reliable and accurate predictive models, emphasizing the need for a comprehensive evaluation of model performance metrics. Future research should focus on optimizing computational efficiency, addressing potential overfitting, and validating the method across diverse environments to ensure broader applicability. This work represents a significant advancement in predictive modeling, with implications for clinical decision-making and other critical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:57:35Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:57:35Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract v Chapter 1. INTRODUCTION 1 1.1 Contribution 4 Chapter 2. RELATED WORK 5 2.1 Anomaly Detection 5 2.2 Ensemble Methods 6 2.3 Machine Learning Models 8 2.3.1 Tsai 9 2.3.2 PyOD 9 2.3.3 PyCaret 10 2.3.4 Scikit-learn(sklearn) 10 Chapter 3. ALGORITHM DESIGN 13 3.1 Phase I: Create Meta-Data matrix through cross-validation 13 3.2 Phase II: Selecting Models in the Meta-Data Matrix 15 3.3 Phase III: Calculate Weighted Probability 16 3.4 Theoretical Foundations 20 3.5 Algorithm Description 21 3.6 Algorithm Design Summary 22 Chapter 4. EXPERIMENT DESIGN 23 4.1 Experimental Configuration 23 4.2 Dataset Description 23 4.3 Over 100 Models and Parameter Setting 29 4.4 Ensemble Methods for Model Aggregation 31 4.5 ExperimentSetting 34 4.5.1 Comparison of Various Ensemble Methods on Different Datasets 34 4.5.2 Suitable Meta-Model and Optimal Number of Meta-Models 35 4.5.3 Optimal Number of Base Models 36 4.5.4 Comprehensive Evaluation of Model Performance Metrics 37 4.5.5 Analysis of Model Contributions Using SHAP Values 37 Chapter 5. RESULTS AND DISCUSSIONS 39 5.1 Comparison of Various Ensemble Methods on Different Datasets 39 5.2 Suitable Meta-Model and Optimal Number of Meta-Models 45 5.3 Optimal Number of Base Models 47 5.4 Comprehensive Evaluation of Model Performance Metrics 49 5.5 Analysis of Model Contributions Using SHAP Values 52 5.6 Limitations and Future Directions 55 Chapter 6. CONCLUSIONS 61 Bibliography 63 AppendixA: Feature importance 69 AppendixB: Patient inclusion flowchart 71 AppendixC: Comparison between training and testing datasets 73 AppendixD: Comparison between 6-month MACE and NON-6-month MACE in training dataset 77 | - |
| dc.language.iso | en | - |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 堆疊 | zh_TW |
| dc.subject | 模型聚合 | zh_TW |
| dc.subject | 集成方法 | zh_TW |
| dc.subject | 異常檢測 | zh_TW |
| dc.subject | anomaly detection | en |
| dc.subject | model aggregation | en |
| dc.subject | machine learning | en |
| dc.subject | stacking | en |
| dc.subject | ensemble method | en |
| dc.title | 增強型異常檢測:使用超過100個模型的綜合集成方法 | zh_TW |
| dc.title | Enhanced Anomaly Detection: A Comprehensive Ensemble Approach Using Over 100 Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林澤;呂宗謙;王志宏;曹昱 | zh_TW |
| dc.contributor.oralexamcommittee | Che Lin;Tsung-Chien Lu;Chih-Hung Wang;Yu Tsao | en |
| dc.subject.keyword | 機器學習,異常檢測,集成方法,模型聚合,堆疊, | zh_TW |
| dc.subject.keyword | machine learning,anomaly detection,ensemble method,model aggregation,stacking, | en |
| dc.relation.page | 79 | - |
| dc.identifier.doi | 10.6342/NTU202401539 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 電機工程學系 | - |
| dc.date.embargo-lift | 2026-07-19 | - |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 此日期後於網路公開 2026-07-19 | 5.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
