請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9413完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊烽正 | |
| dc.contributor.author | Ren-Fu Li | en |
| dc.contributor.author | 李仁富 | zh_TW |
| dc.date.accessioned | 2021-05-20T20:21:26Z | - |
| dc.date.available | 2013-08-16 | |
| dc.date.available | 2021-05-20T20:21:26Z | - |
| dc.date.copyright | 2011-08-16 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-11 | |
| dc.identifier.citation | Bennell, J. A. ,and Dowsland, K. A. (1999), ‘A tabu thresholding implementation for the irregular stock cutting problem.’ Int. J. Prod. Res. 37,4259-4275.
Bullnheimer, B., Hartl, R. F., and Strauss, C. (1997), “A new rank based version of the ant system: Acomputational study,” Working paper, University of Vienna, Austria. Dorigo, M., and Gambardella, L. M. (1997), “Ant Colony System: A cooperative Learning Approach to the Traveling Salesman Problem,” IEEE Transactions on Evolutionary Computation, vol.1, no.1, pp. 53-66. Dowsland, K. A., (1993), “Some experiments with simulated annealing techniques for packing problems.” European Journal of Operational Research 68, 389–399. Dueck, G., and Scheuer, T. (1990), “Threshold Accepting: A General Purpose Optimization Algorithm Appearing Superior to Simulated Annealing.” Journal of Computational Physics, 90(1), 161-175. Falkenauer, E. (1994), “A new representation and operators for GAs applied to grouping problems.” Evolutionary Computation ,1994(2), 123–144. Garey, M., Graham, R., Johnson, D., and Yao, A. (1976), “Resource Constrained Scheduling as Generalized Bin Packing,” J. Comb. Theory, Ser. A 21. Glover, F. (1989), “Tabu search-part I.” ORSA journal on Computing, 1(3), 190–206. Goldberg, D. E., and Lingle, J. R. (1985), “Alleles, Loci and the TSP.” Proceedings of the First International Conference on Genetic Algorithms and Their Applications, 154–159. Holland, J.H. (1975), “Adaptation in Natural and Artificial System,” The University of Michigan Press. Kennedy, J., and Eberhart, R. (1995), “Particle Swarm Optimization,” In Proceedings of the IEEE International Conference on Neural Networks, vol. 4, 1942-1948. Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983), “Optimization by Simulated Annealing.” Science, 220, 671-680. Stutzle, T., and Hoos, H. (1997), “The MAX-MIN Ant System and Local Search for the Traveling Salesman Problem,” In Proceedings of the Fourth International Conference on Evolutionary Computation. , IEEE Press, 308-313. Shuang, B., Chen, J. ,and Li, Z. (2009), “ Study on hybrid PS-ACO algorithm,” Applied Intelligence, Volume 34, Number 1, 64-73. Stutzle, T., and Hoos, H. (2000), “MAX-MIN Ant System,” Journal of Future Generation Computer Systems, 889-914. Scholl, A., Klein, R., and Jurgens, C. (1997), “ BISON: a fast hybrid procedure for exactly solving the one-dimensional bin packing problem,” Computers & Operations Research 24, 627-645. Ugur, A., and Aydim, D. (2009), “An interactive simulation and analysis software for solving TSP using Ant Colony Optimization algorithms,” Advances in Engineering Software, Volume 40, Issue 5, May 2009, Pages 341-349 Yang, F., and Chou, Y. (2009), “Superior/Inferior Segment-Discriminated Ant System for combinatorial optimization problems,” Computers & Industrial Engineering, Volume 57, Issue 2, September 2009, Pages 475-495. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9413 | - |
| dc.description.abstract | 本研究提出一個創新的啟發式演算法名為「仿頻寬限制資料傳輸優化演算法」(Bandwidth Restricted Transmission-Simulated Optimization Algorithm, BRT-S)。BRT-S的演算機制是仿網路資料傳輸的過程。BRT-S針對解代理人求解所使用的資源加以限制,代理人須彼此競爭搶占資源才能進行解建構。當先行代理人佔用了某建構步驟上的資源,後續代理人將避開資源不足的建構步驟,改選其他尚有資源的建構步驟,保持迭代中求得解的多樣性。演算系統只針對搶得資源且成功建構解的代理人進行解評估,節省評估解所花費的運算資源。並記錄成功建構解的代理人所選擇的建構步驟,根據其解品質的優劣,添加或扣減建構步驟上的資源,加速解的演化收斂。
本研究提出的BRT-S是以離散優化問題為求解對象設計演算流程。研究內容並針對物件排序優化問題中的旅行銷售員問題(Traveling Salesman Problem, TSP)及物件分群優化問題中的裝箱問題(Bin Packing Problem, BPP)建立BRT-S求解模式再藉以開發出BRTSDOS求解系統。再以開發的求解系統求解TSPLIB和BPPLIB中的標竿問題,並和其他啟發式演算法比較求解結果。在求解TSP範例中,BRT-S能在公平的停止條件下求得品質比其他演算法好的解,且在目標函數呼叫次數花費上較為精簡。在求解BPP範例中,能針對一系列不同容量屬性的標竿問題求得不違反箱子容量限制的解。本研究創新的仿頻寬限制資料傳輸優化演算法能有效地求解TSP和BPP兩種問題,且能花費較少的運算資源求得品質良好的解。 | zh_TW |
| dc.description.abstract | This research presents an innovative heuristic algorithm called “Bandwidth Restricted Transmission-Simulated Optimization Algorithm” (BRT-S) for solving discrete optimization problems. BRT-S simulates the process of transferring data over the network. BRT-S restricts the resources that the solution agents use for searching solutions, so agents must compete with others to obtain the resources. The preceding agent can obtain more resources than the succeeding agent, so the succeeding agent needs to avoid the construction steps lacking of resources. Only the constructed solutions are subject to objective value evaluations for saving computing resources. Concluding the construction steps selected by successful constructed agents, resources enhancement and deduction are performed based on solution quality.
BRT-S is designed for solving discrete optimization problems. We develop BRTSDOS solving system for Traveling Salesman Problem and Bin Packing Problem through programming language. Using the benchmark of TSPLIB and BPPLIB, we compare results with other heuristic algorithm’s results to verify the feasibility of BRT-S. In the example for TSP, BRT-S can obtain better solutions and call less evolution functions than the others. In the example for BPP, BRT-S can obtain optimum number of bins in the benchmarks which have different capacity attributes items and effectively balance the load between the bins. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-20T20:21:26Z (GMT). No. of bitstreams: 1 ntu-100-R98546023-1.pdf: 1470069 bytes, checksum: ecba66bfd45d69687aa36e3197f468d6 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vi 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 2 1.3 研究流程 3 1.4 章節概要 5 第二章 文獻回顧 6 2.1 啟發式演算法 6 2.1.1 遺傳演算法 6 2.1.2 蟻拓優化法 8 2.2 離散優化問題 12 第三章 仿頻寬限制資料傳輸優化演算法 15 3.1 網路資料傳輸特性 15 3.2 仿頻寬限制資料傳輸優化演算法演化機制 17 3.3 仿頻寬限制資料傳輸優化演算法應用及演化流程 19 3.4 求解物件排序優化問題的BRT-S模式 35 3.5 求解物件分群優化問題的BRT-S模式 37 3.6 小結 40 第四章 數值範例測試與結果分析 41 4.1 仿頻寬限制資料傳輸優化演算法求解系統軟體 41 4.2 BRT-S求解旅行銷售員問題測試 44 4.3 BRT-S求解裝箱問題範例測試 53 第五章 結論與建議 57 5.1 結論 57 5.2 後續研究建議 58 參考文獻 59 | |
| dc.language.iso | zh-TW | |
| dc.title | 仿頻寬限制資料傳輸之離散優化演算法 | zh_TW |
| dc.title | Bandwidth Restricted Transmission-Simulated Discrete Optimization Algorithm | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡瑞煌,徐旭昇,黃奎隆 | |
| dc.subject.keyword | 啟發式演算法,旅行銷售員問題,裝箱問題,仿頻寬限制資料傳輸優化演算法, | zh_TW |
| dc.subject.keyword | heuristic algorithm,traveling salesman problems,bin packing problems,bandwidth restricted transmission-simulated optimization algorithm, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-08-11 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工業工程學研究所 | zh_TW |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 1.44 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
