Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94113
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳志毅zh_TW
dc.contributor.advisorChih-I Wuen
dc.contributor.author馮姿芸zh_TW
dc.contributor.authorZi-Yun Fongen
dc.date.accessioned2024-08-14T16:45:50Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-14-
dc.date.issued2024-
dc.date.submitted2024-08-06-
dc.identifier.citation[1] E. Gerstner, “Nobel Prize 2010: Andre Geim & Konstantin Novoselov,” Nat Phys, vol. 6, no. 11, pp. 836–836, Nov. 2010, doi: 10.1038/nphys1836.
[2] A. K. Geim, “Graphene: Status and Prospects,” Science (1979), vol. 324, no. 5934, pp. 1530–1534, Jun. 2009, doi: 10.1126/science.1158877.
[3] V. Shanmugam et al., “A Review of the Synthesis, Properties, and Applications of 2D Materials,” Particle & Particle Systems Characterization, vol. 39, no. 6, Jun. 2022, doi: 10.1002/ppsc.202200031.
[4] J. Kang, W. Cao, X. Xie, D. Sarkar, W. Liu, and K. Banerjee, “Graphene and beyond-graphene 2D crystals for next-generation green electronics,” T. George, M. S. Islam, and A. K. Dutta, Eds., Jun. 2014, p. 908305. doi: 10.1117/12.2051198.
[5] M. Mattinen, M. Leskelä, and M. Ritala, “Atomic Layer Deposition of 2D Metal Dichalcogenides for Electronics, Catalysis, Energy Storage, and Beyond,” Adv Mater Interfaces, vol. 8, no. 6, Mar. 2021, doi: 10.1002/admi.202001677.
[6] J. Gusakova et al., “Electronic Properties of Bulk and Monolayer TMDs: Theoretical Study Within DFT Framework (GVJ‐2e Method),” physica status solidi (a), vol. 214, no. 12, Dec. 2017, doi: 10.1002/pssa.201700218.
[7] S. Das, Y. Wang, Y. Dai, S. Li, and Z. Sun, “Ultrafast transient sub-bandgap absorption of monolayer MoS2,” Light Sci Appl, vol. 10, no. 1, p. 27, Jan. 2021, doi: 10.1038/s41377-021-00462-4.
[8] W.-T. Hsu et al., “Evidence of indirect gap in monolayer WSe2,” Nat Commun, vol. 8, no. 1, p. 929, Oct. 2017, doi: 10.1038/s41467-017-01012-6.
[9] H. Terrones, F. López-Urías, and M. Terrones, “Novel hetero-layered materials with tunable direct band gaps by sandwiching different metal disulfides and diselenides,” Sci Rep, vol. 3, no. 1, p. 1549, Mar. 2013, doi: 10.1038/srep01549.
[10] C.-H. Chang, X. Fan, S.-H. Lin, and J.-L. Kuo, “Orbital analysis of electronic structure and phonon dispersion in MoS2, MoSe2, WS2, and WSe2 monolayers under strain,” Phys Rev B, vol. 88, no. 19, p. 195420, Nov. 2013, doi: 10.1103/PhysRevB.88.195420.
[11] J. He, K. Hummer, and C. Franchini, “Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2,” Phys Rev B, vol. 89, no. 7, p. 075409, Feb. 2014, doi: 10.1103/PhysRevB.89.075409.
[12] H. Li, J. Wu, Z. Yin, and H. Zhang, “Preparation and Applications of Mechanically Exfoliated Single-Layer and Multilayer MoS2 and WSe2 Nanosheets,” Acc Chem Res, vol. 47, no. 4, pp. 1067–1075, Apr. 2014, doi: 10.1021/ar4002312.
[13] J. Huang, T. B. Hoang, and M. H. Mikkelsen, “Probing the origin of excitonic states in monolayer WSe2,” Sci Rep, vol. 6, no. 1, p. 22414, Mar. 2016, doi: 10.1038/srep22414.
[14] X. Liu, M. S. Choi, E. Hwang, W. J. Yoo, and J. Sun, “Fermi Level Pinning Dependent 2D Semiconductor Devices: Challenges and Prospects,” Advanced Materials, vol. 34, no. 15, Apr. 2022, doi: 10.1002/adma.202108425.
[15] “raman拉曼光譜儀分析原理.”
[16] “melting point.”
[17] P.-C. Shen et al., “Ultralow contact resistance between semimetal and monolayer semiconductors,” Nature, vol.593, no.7858, pp. 211–217, May 2021, doi:10.1038/s41586-021-03472-9.
[18] A.-S. Chou et al., “Antimony Semimetal Contact with Enhanced Thermal Stability for High Performance 2D Electronics,” in 2021 IEEE International Electron Devices Meeting(IEDM), IEEE, Dec. 2021, pp. 7.2.1-7.2.4. doi: 10.1109/IEDM19574.2021.9720608.
[19] J. Jang et al., “Fermi‐Level Pinning‐Free WSe2 Transistors via 2D Van der Waals Metal Contacts and Their Circuits,” Advanced Materials, vol. 34, no. 19, May 2022, doi: 10.1002/adma.202109899.
[20] X. Liu, M. S. Choi, E. Hwang, W. J. Yoo, and J. Sun, “Fermi Level Pinning Dependent 2D Semiconductor Devices: Challenges and Prospects,” Advanced Materials, vol. 34, no. 15, Apr. 2022, doi: 10.1002/adma.202108425.
[21] K. Sotthewes et al., “Universal Fermi-Level Pinning in Transition-Metal Dichalcogenides,” The Journal of Physical Chemistry C, vol. 123, no. 9, pp. 5411–5420, Mar. 2019, doi: 10.1021/acs.jpcc.8b10971.
[22] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput Mater Sci, vol. 6, no. 1, pp. 15–50, Jul. 1996, doi: 10.1016/0927-0256(96)00008-0.
[23] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total- energy calculations using a plane-wave basis set,” Phys Rev B, vol. 54, no. 16, pp. 11169–11186, Oct. 1996, doi: 10.1103/PhysRevB.54.11169.
[24] P. Hohenberg and W. Kohn, “Inhomogeneous Electron Gas,” Physical Review, vol. 136, no. 3B, pp. B864–B871, Nov. 1964, doi: 10.1103/PhysRev.136.B864.
[25] W. Kohn and L. J. Sham, “Self-Consistent Equations Including Exchange and Correlation Effects,” Physical Review, vol. 140, no. 4A, pp. A1133– A1138, Nov. 1965, doi: 10.1103/PhysRev.140.A1133.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94113-
dc.description.abstract本研究探討了使用乾式轉移樣品製備的方法來研究過渡金屬硫族化合物與接觸金屬之間的介面分析。透過此方法可使用 X 射線光電子能譜儀和紫外光電子能譜儀直接測量過渡金屬硫族化合物與接觸金屬之間的功函數變化及能帶結構,進而深入理解它們的相互作用及其對元件性能的影響。
研究首先針對不同接觸金屬與單層二硫化鉬之間的接觸介面進行了分析。根據 X 射線光電子能譜儀和紫外光電子能譜儀的數據,觀察到三種主要的作用模式:接觸介面具有高金屬誘導能隙態導致費米能階釘札、較少的金屬誘導能隙態以及接觸介面摻雜。使用高功函數金屬如鉑、鈀、金和鎳作為接觸金屬時,經過數值計算,觀察到費米能階釘札現象,由於金屬誘導能隙態的產生,對元件性能造成不利影響。而使用了銻和鉍作為接觸金屬,並分別覆蓋金作為保護層,其結果顯示,使用銻作為接觸金屬可以顯著減少金屬誘導能隙態的形成概率,從而達到透過金屬功函數調變單層二硫化鉬介面處有效功函數之效果。鉍接觸金屬顯示了 N 型摻雜行為,部分鉍在暴露於大氣後氧化,接觸金屬中形成的氧化鉍具有約 3.75 電子伏特的功函數,進一步調控了接觸介面之功函數。這些發現表明,透過選擇適當的接觸金屬和摻雜策略,可以有效調控過渡金屬硫族化合物元件的電子性能。
接著,研究中亦探討不同接觸金屬與單層二硒化鎢之間的接觸介面。確認了高功函數金屬如鈀、鉑、金和鎳,使用於單層二硫化鉬與單層二硒化鎢做為接觸金屬,皆導致產生大量的金屬誘導能隙態,更進一步的造成極明顯的費米能階釘札結果。而使用銻作為半金屬接觸金屬時,其特性有助於減少金屬誘導能隙態的形成,然而由於單層二硒化鎢相比單層二硫化鉬具有較強的費米能階釘札效應,導致其接觸金屬作用後的有效功函數仍被釘札在單層二硒化鎢能隙中間。
最終,本研究提出了使用銻與鉑的異質結構層作為單層二硒化鎢場效電晶體的接觸金屬。通過調節銻的厚度,可以改變單層二硒化鎢通道的多數載子極性。
電性量測結果顯示,銻與鉑異質混合結構接觸金屬對單層二硒化鎢場效電晶體的轉移特性具有顯著影響,證實了銻的應用能有效減少對單層二硒化鎢的破壞,進而提高元件的整體功函數。
總述本研究,通過乾式轉移樣品製備方法,成功獲取了過渡金屬硫族化合物與金屬接觸介面之間的重要電子特性信息,為設計更高效能的過渡金屬硫族化合物元件提供了理論支持和實驗依據。這種方法為改善接觸金屬與過渡金屬硫族化合物的費米能階釘札問題提供了有效策略,對未來元件性能的提升具有重要意義。
zh_TW
dc.description.abstractThis study explores the use of a dry transfer sample preparation method for interfacial analysis between transition metal chalcogenides and contact metals. This method allows for the direct measurement of work function changes and band structure between transition metal chalcogenides and contact metals using X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy, thereby gaining a deeper understanding of their interactions and their impact on device performance.
The research initially analyzed the contact interfaces between various contact metals and monolayer molybdenum disulfide. Based on the data from X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy, three main interaction modes were observed: a high metal induced gap state leading to Fermi level pinning, fewer metal induced gap states, and contact interface doping. When using high work function metals such as platinum, palladium, gold, and nickel as contact metals, Fermi level pinning phenomena were observed through numerical calculations due to the creation of metallic-induced gap states, adversely affecting device performance. On the other hand, using antimony and bismuth as contact metals, with gold respectively serving as a protective layer, results showed that using antimony as a contact metal could significantly reduce metal induced gap states formation, thus achieving effective work function modulation at the monolayer molybdenum disulfide interface. Bismuth contact metal exhibited n-type doping behavior, with part of the bismuth oxidizing upon exposure to the atmosphere, forming bismuth oxide in the contact metal with a work function of about 3.75 electron volts, further modulating the interface work function. These findings indicate that by selecting appropriate contact metals and doping strategies, the electronic performance of transition metal chalcogenide components can be effectively controlled.
Furthermore, the study also explored different contact metals with monolayer tungsten diselenide interfaces. It was confirmed that high work function metals such as palladium, platinum, gold, and nickel, used with monolayer molybdenum disulfide and monolayer tungsten diselenide as contact metals, all led to the creation of a significant number of metal induced gap states, further resulting in pronounced Fermi level pinning effects. While using antimony as a semimetal contact metal helped reduce the formation of metallic-induced gap states, the stronger Fermi level pinning effect of monolayer tungsten diselenide compared to monolayer molybdenum disulfide still pinned the effective work function after contact metal interaction to the middle of the monolayer tungsten diselenide gap.
Ultimately, the study proposed using a heterostructure of antimony and platinum as contact metals for monolayer tungsten diselenide field-effect transistors. By adjusting the thickness of antimony, the majority carrier polarity of the monolayer tungsten diselenide channel could be changed. Electrical measurement results showed that the antimony and platinum heterostructure contact metals significantly affected the transfer characteristics of the monolayer tungsten diselenide field-effect transistors, confirming that the application of antimony could effectively reduce damage to monolayer tungsten diselenide, thereby improving the overall work function of the device.
In summary, through the dry transfer sample preparation method, this study successfully obtained crucial electronic characteristic information between transition metal chalcogenides and metal contact interfaces, providing theoretical support and experimental basis for designing more efficient transition metal chalcogenide components. This method offers an effective strategy for improving the Fermi level pinning issues between contact metals and transition metal chalcogenides, which holds significant implications for future enhancement of device performance.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:45:50Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:45:50Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents論文口試委員審定書 i
謝辭 ii
摘要 iii
Abstract v
目次 viii
圖次 xi
表次 xv
Chapter 1. 緒論 1
二維材料簡介 1
1.1.1. N型半導體-單層二硫化鉬材料結構與特性 3
1.1.1. P型半導體-單層二硒化鎢材料結構與特性 5
1.2. 過渡金屬硫族化合物材料特性分析 7
1.3. 過渡金屬硫族化合物與金屬接觸介面之分析 11
1.3.1. 費米能階釘扎效應 13
1.3.2. 金屬接觸介面之化學組態 15
1.3.3. 金屬接觸介面之能帶分析 16
Chapter 2. 實驗儀器與原理 19
2.1. 製程儀器 19
2.1.1. 低壓化學氣相沉積法 19
2.1.2. 快速熱退火 20
2.1.3. 步進式曝光機 21
2.1.4. 氦離子束微影 21
2.1.5. 電子束金屬鍍膜機 23
2.2. 基礎特性量測儀器 24
2.2.1. 光學顯微鏡 24
2.2.2. 拉曼光譜分析儀 24
2.2.3. 原子力顯微鏡 25
2.2.4. 掃描式電子顯微鏡 26
2.2.5. 穿透式電子顯微鏡 26
2.2.6. 真空電性量測系統 27
2.3. 介面特性量測儀器 28
2.3.1. X射線光電子能譜儀 28
2.3.2. 紫外光電子能譜儀 30
2.3.3. 離子濺射縱深分析 31
2.3.4. 化學組態與介面能帶分析 32
Chapter 3. 金屬與二硫化鉬之接觸介面分析 35
3.1. 實驗流程 35
3.1.1. 乾式轉移樣品製備 35
3.1.2. 介面及縱深量測方法 37
3.2. 多種金屬與二硫化鉬之接觸介面分析 39
3.2.1. 金屬鉑(Pt)與二硫化鉬之接觸介面分析 39
3.2.2. 金屬鈀(Pd)與二硫化鉬之接觸介面分析 42
3.2.3. 金屬金(Au)與二硫化鉬之接觸介面分析 44
3.2.4. 金屬鎳(Ni)與二硫化鉬之接觸介面分析 47
3.2.5. 金屬銻(Sb)/金(Au)與二硫化鉬之接觸介面分析 49
3.2.6. 金屬鉍(Bi)/金(Au)與二硫化鉬之接觸介面分析 54
3.2.7. 不同金屬與二硫化鉬能帶結構與功函數討論 60
3.3. N型全背閘極電晶體其接觸金屬之選用與討論 64
Chapter 4. 金屬與二硒化鎢之接觸介面分析 66
4.1. 實驗流程 66
4.1.1. 乾式轉移樣品製備 66
4.1.2. 介面及縱深量測方法 67
4.2. 多種金屬與二硒化鎢之接觸介面分析 69
4.2.1. 金屬鉑(Pt)與二硒化鎢之接觸介面分析 69
4.2.2. 金屬鈀(Pd)與二硒化鎢之接觸介面分析 72
4.2.3. 金屬金(Au)與二硒化鎢之接觸介面分析 74
4.2.4. 金屬鎳(Ni)與二硒化鎢之接觸介面分析 77
4.2.5. 金屬銻(Sb)/金(Au)與二硒化鎢之接觸介面分析 79
4.2.6. 金屬鉍(Bi)/金(Au)與二硒化鎢之接觸介面分析 84
4.2.7. 不同金屬與二硒化鎢能帶結構與功函數討論 89
4.3. P型(全域)背閘極電晶體其接觸金屬之選用與討論 94
Chapter 5. 接觸金屬銻(Sb)/鉑(Pt)厚度調變單層二硒化鎢通道多數載子極性 96
5.1. 接觸金屬蒸鍍對單層二硒化鎢之影響 96
5.2. 接觸金屬銻(Sb)/鉑(Pt)厚度調變對單層二硒化鎢電晶體電性討論 98
5.3. N/P型單層二硒化鎢電晶體統計電性分析 101
5.4. N/P型接觸金屬對單層二硒化鎢介面化學組態分析 103
5.5. N/P型接觸金屬對單層二硒化鎢能帶結構分析 106
Chapter 6. 總結與未來展望 110
參考文獻 113
-
dc.language.isozh_TW-
dc.subject過渡金屬硫族化合物zh_TW
dc.subject功函數zh_TW
dc.subject電子性能zh_TW
dc.subject乾式轉移樣品製備zh_TW
dc.subject費米能階釘札zh_TW
dc.subject光電子能譜儀zh_TW
dc.subject接觸金屬zh_TW
dc.subjectWork Functionen
dc.subjectFermi Level Pinningen
dc.subjectElectronic Performanceen
dc.subjectContact Metalsen
dc.subjectPhotoelectron Spectroscopy (PES)en
dc.subjectTransition Metal Dichalcogenides (TMDCs)en
dc.subjectDry Transfer Sample Preparationen
dc.title利用光電子能譜儀探討不同金屬與過渡金屬硫族化合物之接觸介面分析zh_TW
dc.titleInvestigation of Contact Interfaces between Different Metals and Transition Metal Dichalcogenides Using Photoelectron Spectroscopyen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳奕君;吳肇欣;周昂昇;張子璿zh_TW
dc.contributor.oralexamcommitteeI-Chun Cheng;Chao-Hsin Wu;Ang-Sheng Chou;Tzu-Hsuan Changen
dc.subject.keyword乾式轉移樣品製備,過渡金屬硫族化合物,光電子能譜儀,費米能階釘札,接觸金屬,功函數,電子性能,zh_TW
dc.subject.keywordDry Transfer Sample Preparation,Transition Metal Dichalcogenides (TMDCs),Photoelectron Spectroscopy (PES),Fermi Level Pinning,Contact Metals,Work Function,Electronic Performance,en
dc.relation.page115-
dc.identifier.doi10.6342/NTU202403739-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-09-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
8.5 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved