請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94099完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳嘉文 | zh_TW |
| dc.contributor.advisor | Kevin C.-W. Wu | en |
| dc.contributor.author | 菲利普 | zh_TW |
| dc.contributor.author | Philip Anggo Krisbiantoro | en |
| dc.date.accessioned | 2024-08-14T16:41:11Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | [1] R. Yang, K. Jan, C. Chen, W. Chen, K.C. ‐W. Wu, Thermochemical conversion of plastic waste into fuels, chemicals, and value‐added materials: A critical review and outlooks, ChemSusChem 15 (2022) e202200171.
[2] T.M. Adyel, Accumulation of plastic waste during COVID-19, Science (1979) 369 (2020) 1314–1315. [3] Y. Peng, P. Wu, A.T. Schartup, Y. Zhang, Plastic waste release caused by COVID-19 and its fate in the global ocean, PNAS 118, 47 (2021) e2111530118. [4] R. Geyer, J.R. Jambeck, K.L. Law, Production, use, and fate of all plastics ever made, Sci. Adv. 3 (2017) e1700782. [5] A. Chamas, H. Moon, J. Zheng, Y. Qiu, T. Tabassum, J.H. Jang, M. Abu-Omar, S.L. Scott, S. Suh, Degradation rates of plastics in the environment, ACS Sustain. Chem. Eng. 8 (2020) 3494–3511. [6] X. Yuan, J.G. Lee, H. Yun, S. Deng, Y.J. Kim, J.E. Lee, S.K. Kwak, K.B. Lee, Solving two environmental issues simultaneously: Waste polyethylene terephthalate plastic bottle-derived microporous carbons for capturing CO2, Chem. Eng. J. 397 (2020) 125350. [7] I. Vollmer, M.J.F. Jenks, M.C.P. Roelands, R.J. White, T. van Harmelen, P. de Wild, G.P. van der Laan, F. Meirer, J.T.F. Keurentjes, B.M. Weckhuysen, Beyond mechanical recycling: giving new life to plastic waste, Angew. Chem. Int. Ed. 59 (2020) 15402–15423. [8] J. Manjunathan, K. Pavithra, S. Nangan, S. Prakash, K.K. Saxena, K. Sharma, K. Muzammil, D. Verma, J.R. Gnanapragasam, R. Ramasubburayan, M. Revathi, Polyethylene terephthalate waste derived nanomaterials (WDNMs) and its utilization in electrochemical devices, Chemosphere 353 (2024) 141541. [9] H. Webb, J. Arnott, R. Crawford, E. Ivanova, Plastic degradation and its environmental implications with special reference to poly(ethylene terephthalate), Polymers (Basel) 5 (2012) 1–18. [10] R.A. Clark, M.P. Shaver, Depolymerization within a circular plastics system, Chem. Rev. 124 (2024) 2617–2650. [11] K. Ragaert, L. Delva, K. Van Geem, Mechanical and chemical recycling of solid plastic waste, Waste Manag. 69 (2017) 24–58. [12] L.D. Ellis, N.A. Rorrer, K.P. Sullivan, M. Otto, J.E. McGeehan, Y. Román-Leshkov, N. Wierckx, G.T. Beckham, Chemical and biological catalysis for plastics recycling and upcycling, Nat. Catal. 4 (2021) 539–556. [13] S. Kalathil, M. Miller, E. Reisner, Microbial fermentation of polyethylene terephthalate (PET) plastic waste for the production of chemicals or electricity, Angew. Chem. Int. Ed. 61, 45 (2022) e202211057. [14] M.S.V. Ferreira, S.H. Mousavi, Nanofiber technology in the ex vivo expansion of cord blood-derived hematopoietic stem cells, Nanomed. 14 (2018) 1707–1718. [15] P. Westerhoff, P. Prapaipong, E. Shock, A. Hillaireau, Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water, Water Res. 42 (2008) 551–556. [16] Z. Leng, R.K. Padhan, A. Sreeram, Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt, J. Clean. Prod. 180 (2018) 682–688. [17] M. Crippa, B. Morico, PET depolymerization: a novel process for plastic waste chemical recycling, Stud. Surf. Sci. Catal. (2020) 215-229. [18] D. Kyriacos, Polycarbonates, in: Brydson’s Plastics Materials, Elsevier, 2017, 457–485. [19] F. Gomollón-Bel, Ten chemical innovations that will change our world: IUPAC identifies emerging technologies in chemistry with potential to make our planet more sustainable, Chem. Int. 41 (2019) 12–17. [20] UN News, World must ‘work as one’ to end plastic pollution: Guterres, Https://News.Un.Org/En/Story/2023/06/1137322 (2023). (Accessed June 20, 2024). [21] S. Chen, A global treaty to end plastic pollution is in sight, Https://Www.Undp.Org/Blog/Global-Treaty-End-Plastic-Pollution-Sight (2023). (Accessed June 20, 2024). [22] K.B. Connolly, Coca-Cola India PET Pilot to recycle 5 million bottles, Https://Www.Plasticstoday.Com/Packaging/Coca-Cola-India-Pet-Pilot-to-Recycle-5-Million-Bottles (2024). (Accessed June 20, 2024). [23] J. Krisanaraj, Coca-Cola targets Thai plastic waste crisis with recyclable bottles, Https://Www.Nationthailand.Com/Business/Corporate/40032037 (2023). (Accessed June 20, 2024). [24] Nestle, Waste reduction, Https://Www.Nestle.Com/Sustainability/Waste-Reduction (2024). (Accessed June 20, 2024). [25] PepsiCo, PepsiCo recycling and sustainability initiatives, Https://Contact.Pepsico.Com/Pepsico/Article/Pepsico-Recycling-and-Sustainability-Initiatives (2024). (Accessed June 20, 2024). [26] F.S. vom Saal, S.C. Nagel, B.L. Coe, B.M. Angle, J.A. Taylor, The estrogenic endocrine disrupting chemical bisphenol A (BPA) and obesity, Mol. Cell. Endocrinol. 354 (2012) 74–84. [27] R. Mukhopadhyay, N.B. Prabhu, S.P. Kabekkodu, P.S. Rai, Review on bisphenol A and the risk of polycystic ovarian syndrome: an insight from endocrine and gene expression, Environ. Sci. Pollut. Res. 29 (2022) 32631–32650. [28] V. Tolardo, A. Romaldini, F. Fumagalli, A. Armirotti, M. Veronesi, D. Magrì, S. Sabella, A. Athanassiou, D. Fragouli, Polycarbonate nanoplastics and the in vitro assessment of their toxicological impact on liver functionality, Environ. Sci. Nano 10 (2023) 1413–1427. [29] K. Ghosal, C. Nayak, Recent advances in chemical recycling of polyethylene terephthalate waste into value added products for sustainable coating solutions – hope vs . hype, Mater. Adv. 3 (2022) 1974–1992. [30] Damayanti, H.-S. Wu, Strategic Possibility Routes of Recycled PET, Polymers (Basel) 13, 9 (2021) 1475. [31] Alexander H. Tullo, Eastman will build a $250 million plastics recycling plant, (2021). (Accessed 07 October 2021). [32] Y. Liu, X. Lu, Chemical recycling to monomers: Industrial bisphenol‐A‐polycarbonates to novel aliphatic polycarbonate materials, J. Polym. Sci. 60 (2022) 3256–3268. [33] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks, Science (1979) 341 (2013). [34] T. Zhang, W. Lin, Metal–organic frameworks for artificial photosynthesis and photocatalysis, Chem. Soc. Rev. 43 (2014) 5982–5993. [35] J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.-Y. Su, Applications of metal–organic frameworks in heterogeneous supramolecular catalysis, Chem. Soc. Rev. 43 (2014) 6011–6061. [36] A. Dhakshinamoorthy, H. Garcia, Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles, Chem. Soc. Rev. 43 (2014) 5750–5765. [37] P. Ramaswamy, N.E. Wong, G.K.H. Shimizu, MOFs as proton conductors – challenges and opportunities, Chem. Soc. Rev. 43 (2014) 5913–5932. [38] J. Canivet, A. Fateeva, Y. Guo, B. Coasne, D. Farrusseng, Water adsorption in MOFs: fundamentals and applications, Chem. Soc. Rev. 43 (2014) 5594–5617. [39] E. Barea, C. Montoro, J.A.R. Navarro, Toxic gas removal – metal–organic frameworks for the capture and degradation of toxic gases and vapours, Chem. Soc. Rev. 43 (2014) 5419–5430. [40] Y. He, W. Zhou, G. Qian, B. Chen, Methane storage in metal–organic frameworks, Chem. Soc. Rev. 43 (2014) 5657–5678. [41] H.-C. “Joe” Zhou, S. Kitagawa, Metal–organic frameworks (MOFs), Chem. Soc. Rev. 43 (2014) 5415–5418. [42] L. Gagliardi, O.M. Yaghi, Three future directions for metal–organic frameworks, Chem. Mater. 35 (2023) 5711–5712. [43] N. Stock, S. Biswas, Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites, Chem. Rev. 112 (2012) 933–969. [44] Y.-R. Lee, J. Kim, W.-S. Ahn, Synthesis of metal-organic frameworks: A mini review, Korean J. Chem. Eng. 30 (2013) 1667–1680. [45] G. Ye, D. Zhang, X. Li, K. Leng, W. Zhang, J. Ma, Y. Sun, W. Xu, S. Ma, Boosting catalytic performance of metal–organic framework by increasing the defects via a facile and green approach, ACS Appl. Mater. Interfaces 9 (2017) 34937–34943. [46] R. D’Amato, R. Bondi, I. Moghdad, F. Marmottini, M.J. McPherson, H. Naïli, M. Taddei, F. Costantino, “Shake ‘n bake” route to functionalized Zr-UiO-66 metal–organic frameworks, Inorg. Chem. 60 (2021) 14294–14301. [47] E.-S.M. El-Sayed, D. Yuan, Waste to MOFs: sustainable linker, metal, and solvent sources for value-added MOF synthesis and applications, Green Chem. 22 (2020) 4082–4104. [48] B. Slater, S.-O. Wong, A. Duckworth, A.J.P. White, M.R. Hill, B.P. Ladewig, Upcycling a plastic cup: one-pot synthesis of lactate containing metal organic frameworks from polylactic acid, Chem. Commun. 55 (2019) 7319–7322. [49] V. Sinha, M.R. Patel, J. V. Patel, Pet Waste Management by chemical recycling: a review, J. Polym. Environ. 18 (2010) 8–25. [50] A.M. Al-Sabagh, F.Z. Yehia, Gh. Eshaq, A.M. Rabie, A.E. ElMetwally, Greener routes for recycling of polyethylene terephthalate, Egyp. J. Petrol. 25 (2016) 53–64. [51] E. Barnard, J.J. Rubio Arias, W. Thielemans, Chemolytic depolymerisation of PET: a review, Green Chem. 23 (2021) 3765-3789. [52] Manju, P. Kumar Roy, A. Ramanan, C. Rajagopal, Post consumer PET waste as potential feedstock for metal organic frameworks, Mater. Lett. 106 (2013) 390–392. [53] D. Senthil Raja, C.-C. Pan, C.-W. Chen, Y.-H. Kang, J.-J. Chen, C.-H. Lin, Synthesis of mixed ligand and pillared paddlewheel MOFs using waste polyethylene terephthalate material as sustainable ligand source, Microporous Mesoporous Mater. 231 (2016) 186–191. [54] A. Rahmani, H. Rahmani, A. Zonouzi, Cu(BDC) as a catalyst for rapid reduction of methyl orange: room temperature synthesis using recycled terephthalic acid, Chem. Pap. 72 (2018) 449–455. [55] S. Singh, S. Sharma, A. Umar, M. Jha, S.K. Mehta, S.K. Kansal, Nanocuboidal-shaped zirconium based metal organic framework for the enhanced adsorptive removal of nonsteroidal anti-inflammatory drug, ketorolac tromethamine, from aqueous phase, New J. Chem. 42 (2018) 1921–193. [56] V.D. Doan, T.L. Do, T.M.T. Ho, V.T. Le, H.T. Nguyen, Utilization of waste plastic pet bottles to prepare copper-1,4-benzenedicarboxylate metal-organic framework for methylene blue removal, Sep. Sci. Technol. 55 (2020) 444–455. [57] X. Dyosiba, J. Ren, N.M. Musyoka, H.W. Langmi, M. Mathe, M.S. Onyango, Feasibility of varied polyethylene terephthalate wastes as a linker source in metal–organic framework UiO-66(Zr) synthesis, Ind. Eng. Chem. Res.58 (2019) 17010–17016. [58] F. Zhang, S. Chen, S. Nie, J. Luo, S. Lin, Y. Wang, H. Yang, Waste PET as a reactant for lanthanide mof synthesis and application in sensing of picric acid, Polymers (Basel) 11 (2019) 2015. [59] W.P.R. Deleu, I. Stassen, D. Jonckheere, R. Ameloot, D.E. De Vos, Waste PET (bottles) as a resource or substrate for MOF synthesis, J. Mater. Chem. A Mater. 4 (2016) 9519–9525. [60] S.-H. Lo, D. Senthil Raja, C.-W. Chen, Y.-H. Kang, J.-J. Chen, C.-H. Lin, Waste polyethylene terephthalate (PET) materials as sustainable precursors for the synthesis of nanoporous MOFs, MIL-47, MIL-53(Cr, Al, Ga) and MIL-101(Cr), Dalton Tran. 45 (2016) 9565–9573. [61] J. Ren, X. Dyosiba, N.M. Musyoka, H.W. Langmi, B.C. North, M. Mathe, M.S. Onyango, Green synthesis of chromium-based metal-organic framework (Cr-MOF) from waste polyethylene terephthalate (PET) bottles for hydrogen storage applications, Int. J. Hydrogen Energy 41 (2016) 18141–18146. [62] L. Zhou, S. Wang, Y. Chen, C. Serre, Direct synthesis of robust hcp UiO-66(Zr) MOF using poly(ethylene terephthalate) waste as ligand source, Microporous Mesoporous Mater. 290 (2019) 109674. [63] M. Imran, D.H. Kim, W.A. Al-Masry, A. Mahmood, A. Hassan, S. Haider, S.M. Ramay, Manganese-, cobalt-, and zinc-based mixed-oxide spinels as novel catalysts for the chemical recycling of poly(ethylene terephthalate) via glycolysis, Polym. Degrad. Stab. 98 (2013) 904-915. [64] L. Bartolome, M. Imran, K.G. Lee, A. Sangalang, J.K. Ahn, D.H. Kim, Superparamagnetic γ-Fe2O3 nanoparticles as an easily recoverable catalyst for the chemical recycling of PET, Green Chem. 16 (2014) 279-286. [65] K.H. Zangana, A. Fernandez, J.D. Holmes, Simplified, fast, and efficient microwave assisted chemical recycling of poly(ethylene terephthalate) waste, Mater. Today Commun. 33 (2022) 104588. [66] E. Selvam, Y. Luo, M. Ierapetritou, R.F. Lobo, D.G. Vlachos, Microwave-assisted depolymerization of PET over heterogeneous catalysts, Catal. Today 418 (2023) 114124. [67] J. Cao, Y. Lin, T. Zhou, W. Wang, Q. Zhang, B. Pan, W. Jiang, Molecular oxygen-assisted in defect-rich ZnO for catalytic depolymerization of polyethylene terephthalate, IScience 26 (2023) 107492. [68] S. Mohammadi, M.G. Bouldo, M. Enayati, controlled glycolysis of poly(ethylene terephthalate) to oligomers under microwave irradiation using antimony(III) oxide, ACS Appl. Polym. Mater. 5 (2023) 6574–6584. [69] Y. Jo, E.J. Kim, J. Kim, K. An, Efficient Fe3O4 nanoparticle catalysts for depolymerization of polyethylene terephthalate, Green Chem. 25 (2023) 8160–8171. [70] D.D. Pham, A.N.T. Cao, P. Senthil Kumar, T.B. Nguyen, H. Tran Nguyen, P.T.T. Phuong, D.L.T. Nguyen, W. Nabgan, T.H. Trinh, D.-V.N. Vo, T.M. Nguyen, Insight the influence of the catalyst basicity on glycolysis behavior of Polyethylene terephthalate (PET), Chem. Eng. Sci. 282 (2023) 119356. [71] Q. Sun, Y.-Y. Zheng, L.-X. Yun, H. Wu, R.-K. Liu, J.-T. Du, Y.-H. Gu, Z.-G. Shen, J.-X. Wang, Fe 3 O 4 Nanodispersions as efficient and recoverable magnetic nanocatalysts for sustainable PET glycolysis, ACS Sustain. Chem. Eng. 11 (2023) 7586–7595. [72] L.-X. Yun, Y. Wei, Q. Sun, Y.-T. Li, B. Zhang, H.-T. Zhang, Z.-G. Shen, J.-X. Wang, Magnetic hollow micro-sized nanoaggregates for synergistically accelerating PET glycolysis, Green Chem. 25 (2023) 6901–6913. [73] F. Chen, G. Wang, W. Li, F. Yang, Glycolysis of poly(ethylene terephthalate) over Mg–Al mixed oxides catalysts derived from hydrotalcites, Ind. Eng. Chem. Res. 52 (2013) 565–571. [74] Gh. Eshaq, A.E. ElMetwally, (Mg–Zn)–Al layered double hydroxide as a regenerable catalyst for the catalytic glycolysis of polyethylene terephthalate, J. Mol. Liq. 214 (2016) 1–6. [75] Z. Guo, K. Lindqvist, H. de la Motte, An efficient recycling process of glycolysis of PET in the presence of a sustainable nanocatalyst, J. Appl. Polym. Sci. 135 (2018) 46285. [76] A.P. Arcanjo, D.O. Liborio, S. Arias, F.R. Carvalho, J.P. Silva, B.D. Ribeiro, M.L. Dias, A.M. Castro, R. Fréty, C.M.B.M. Barbosa, J.G.A. Pacheco, Chemical recycling of PET using catalysts from layered double hydroxides: effect of synthesis method and Mg-Fe biocompatible metals, Polymers (Basel) 15 (2023) 3274. [77] D. Thomas, R. Ranjan, B.K. George, Co-Al-CO3 layered double hydroxide: an efficient and regenerable catalyst for glycolysis of polyethylene terephthalate, RSC Sustain. 1 (2023) 2277–2286. [78] M. Zhang, Y. Yu, B. Yan, X. Song, Y. Liu, Y. Feng, W. Wu, B. Chen, B. Han, Q. Mei, Full valorisation of waste PET into dimethyl terephthalate and cyclic arylboronic esters, Appl. Catal. B Environ. Energy 352 (2024) 124055. [79] S. Kumari, S. Soni, A. Sharma, V. Sharma, A.K. Sharma, MAl-CO3 based layered double hydroxides for catalytic depolymerization of poly(ethylene terephthalate) and poly(bisphenol a carbonate) waste materials, Appl. Catal. O Open (2024) 206922. [80] R.-X. Yang, Y.-T. Bieh, C.H. Chen, C.-Y. Hsu, Y. Kato, H. Yamamoto, C.-K. Tsung, K.C.-W. Wu, Heterogeneous metal azolate framework-6 (MAF-6) catalysts with high zinc density for enhanced polyethylene terephthalate (PET) conversion, ACS Sustain. Chem. Eng. 9 (2021) 6541–6550. [81] T. Wang, C. Shen, G. Yu, X. Chen, Fabrication of magnetic bimetallic Co–Zn based zeolitic imidazolate frameworks composites as catalyst of glycolysis of mixed plastic, Fuel 304 (2021) 121397. [82] Q. Suo, J. Zi, Z. Bai, S. Qi, The glycolysis of poly(ethylene terephthalate) promoted by metal organic framework (MOF) catalysts, Catal. Lett. 147 (2017) 240–252. [83] D.D. Pham, D.-N. Vo, M.T. Phong, H.H. Nguyen, T. Nguyen-Thoi, T.-P.T. Pham, D. Ha Le Phuong, L.K.H. Pham, D.H. Won, D.L.T. Nguyen, T.M. Nguyen, A new circulation in glycolysis of polyethylene terephthalate using MOF-based catalysts for environmental sustainability of plastic, Chem. Eng. J. 490 (2024) 151667. [84] A.M. Al-Sabagh, F.Z. Yehia, D.R.K. Harding, Gh. Eshaq, A.E. ElMetwally, Fe3O4-boosted MWCNT as an efficient sustainable catalyst for PET glycolysis, Green Chem. 18 (2016) 3997-4003. [85] S.R. Shukla, V. Palekar, N. Pingale, Zeolite catalyzed glycolysis of poly(ethylene terephthalate) bottle waste, J. Appl. Polym. Sci. 110 (2008) 501-506. [86] G. Yang, H. Wu, K. Huang, Y. Ma, Q. Chen, Y. Chen, S. Lin, H. Guo, Z. Li, The recyclable dual-functional zeolite nanocrystals promoting the high efficiency glycolysis of PET, J. Polym. Environ. (2024). [87] C. Dai, Y. Liu, Z. Wang, G. Yu, Efficient glycolysis of waste polyethylene terephthalate textiles over Zn-MCM-41 catalysts, Catal. Today 440 (2024) 114827. [88] T. Wang, Y. Zheng, G. Yu, X. Chen, Glycolysis of polyethylene terephthalate: Magnetic nanoparticle CoFe2O4 catalyst modified using ionic liquid as surfactant, Eur. Polym. J. 155 (2021) 110590. [89] M.R. Nabid, Y. Bide, N. Fereidouni, B. Etemadi, Maghemite/nitrogen-doped graphene hybrid material as a reusable bifunctional catalyst for glycolysis of polyethylene terephthalate, Polym. Degrad. Stab. 144 (2017) 434–441. [90] M.R. Nabid, Y. Bide, M. Jafari, Boron nitride nanosheets decorated with Fe3O4 nanoparticles as a magnetic bifunctional catalyst for post-consumer PET wastes recycling, Polym. Degrad. Stab. 169 (2019) 108962. [91] I. Cano, C. Martin, J.A. Fernandes, R.W. Lodge, J. Dupont, F.A. Casado-Carmona, R. Lucena, S. Cardenas, V. Sans, I. de Pedro, Paramagnetic ionic liquid-coated SiO2@Fe3O4 nanoparticles-The next generation of magnetically recoverable nanocatalysts applied in the glycolysis of PET, Appl. Catal. B Environ. 260 (2020) 118110. [92] Z. Guo, E. Adolfsson, P.L. Tam, Nanostructured micro particles as a low-cost and sustainable catalyst in the recycling of PET fiber waste by the glycolysis method, Waste Manag. 126 (2021) 559–566. [93] Y. Cha, Y.-J. Park, D.H. Kim, Hydrodynamic synthesis of Fe2O3@MoS2 0D/2D-nanocomposite material and its application as a catalyst in the glycolysis of polyethylene terephthalate, RSC Adv. 11 (2021) 16841–16848. [94] Y. Li, K. Li, M. Li, M. Ge, Zinc-doped ferrite nanoparticles as magnetic recyclable catalysts for scale-up glycolysis of poly(ethylene terephthalate) wastes, Adv. Powder Technol. 33 (2022) 103444. [95] S. Lalhmangaihzuala, Z. Laldinpuii, V. Khiangte, G. Lallawmzuali, Thanhmingliana, K. Vanlaldinpuia, Orange peel ash coated Fe3O4 nanoparticles as a magnetically retrievable catalyst for glycolysis and methanolysis of PET waste, Adv. Powder Technol. 34 (2023) 104076. [96] S. Mohammadi, M. Enayati, Magnetic ionic liquid catalyst functionalized with antimony (III) bromide for effective glycolysis of polyethylene terephthalate, Waste Manag. 170 (2023) 308–316. [97] É. Casey, R. Breen, J.S. Gómez, A.P.M. Kentgens, G. Pareras, A. Rimola, Justin.D. Holmes, G. Collins, Ligand-Aided Glycolysis of PET Using Functionalized Silica-Supported Fe2O3 Nanoparticles, ACS Sustain. Chem. Eng. 11 (2023) 15544–15555. [98] A.R. Liandi, A.H. Cahyana, A.J.F. Kusumah, A. Lupitasari, D.N. Alfariza, R. Nuraini, R.W. Sari, F.C. Kusumasari, Recent trends of spinel ferrites (MFe2O4: Mn, Co, Ni, Cu, Zn) applications as an environmentally friendly catalyst in multicomponent reactions: a review, Case Stud. Chem. Environ. Eng. 7 (2023) 100303. [99] X. Yang, W. Liu, R. Zhao, A. Raise, Enhanced conversion of non-edible Jatropha oil to biodiesel utilizing highly reusable Mg decorated CoFe2O4 nanocatalyst: Optimization by RSM, Ind. Crops Prod. 204 (2023) 117319. [100] T.M. Sankaranarayanan, R.V. Shanthi, K. Thirunavukkarasu, A. Pandurangan, S. Sivasanker, Catalytic properties of spinel-type mixed oxides in transesterification of vegetable oils, J. Mol. Catal. A. Chem. 379 (2013) 234–242. [101] A. Ashok, L.J. Kennedy, magnetically separable zinc ferrite nanocatalyst for an effective biodiesel production from waste cooking oil, Catal. Lett. 149 (2019) 3525–3542. [102] H.R. Ong, M.M. Rahman Khan, A. Yousuf, N.A. Hussain, C.K. Cheng, Synthesis and characterization of a CaFe2O4 catalyst for oleic acid esterification, RSC Adv. 5 (2015) 100362–100368. [103] M. Gohain, V. Kumar, J.H. van Tonder, H.C. Swart, O.M. Ntwaeaborwa, B.C.B. Bezuidenhoudt, Nano CuFe2O4: an efficient, magnetically separable catalyst for transesterification of β-ketoesters, RSC Adv. 5 (2015) 18972–18976. [104] C. Luadthong, P. Khemthong, W. Nualpaeng, K. Faungnawakij, Copper ferrite spinel oxide catalysts for palm oil methanolysis, Appl. Catal. A Gen. 525 (2016) 68–75. [105] R.M. Ali, M.R. Elkatory, H.A. Hamad, Highly active and stable magnetically recyclable CuFe2O4 as a heterogenous catalyst for efficient conversion of waste frying oil to biodiesel, Fuel 268 (2020) 117297. [106] A. Ashok, T. Ratnaji, L. John Kennedy, J. Judith Vijaya, R. Gnana Pragash, Magnetically recoverable Mg substituted zinc ferrite nanocatalyst for biodiesel production: Process optimization, kinetic and thermodynamic analysis, Renew. Energy 163 (2021) 480–494. [107] A. Ashok, L.J. Kennedy, J.J. Vijaya, Structural, optical and magnetic properties of Zn1-xMnxFe2O4 (0 ≤ x ≤ 0.5) spinel nano particles for transesterification of used cooking oil, J. Alloys Compd. 780 (2019) 816–828. [108] J. Dantas, E. Leal, D.R. Cornejo, R.H.G.A. Kiminami, A.C.F.M. Costa, Biodiesel production evaluating the use and reuse of magnetic nanocatalysts Ni0.5Zn0.5Fe2O4 synthesized in pilot-scale, Arab. J. Chem. 13 (2020) 3026–3042. [109] G. Farokhi, M. Saidi, Catalytic activity of bimetallic spinel magnetic catalysts (NiZnFe2O4, CoZnFe2O4 and CuZnFe2O4) in biodiesel production process from neem oil: Process evaluation and optimization, Chem. Eng. Process. 181 (2022) 109170. [110] H. Nayebzadeh, F. Naderi, B. Rahmanivahid, Assessment the synthesis conditions of separable magnetic spinel nanocatalyst for green fuel production: Optimization of transesterification reaction conditions using response surface methodology, Fuel 271 (2020) 117595. [111] H.L. Andersen, M. Saura-Múzquiz, C. Granados-Miralles, E. Canévet, N. Lock, M. Christensen, Crystalline and magnetic structure–property relationship in spinel ferrite nanoparticles, Nanoscale 10 (2018) 14902-14914. [112] D.S. Mathew, R.-S. Juang, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, Chem. Eng. J. 129 (2007) 51-65. [113] P. Anggo Krisbiantoro, Y.-W. Chiao, W. Liao, J.-P. Sun, D. Tsutsumi, H. Yamamoto, Y. Kamiya, K. C.-W. Wu, Catalytic glycolysis of polyethylene terephthalate (PET) by solvent-free mechanochemically synthesized MFe2O4 (M= Co, Ni, Cu and Zn) spinel, Chem. Eng. J. 450 (2022) 137926. [114] L.-C. Hu, A. Oku, E. Yamada, Alkali-catalyzed methanolysis of polycarbonate. A study on recycling of bisphenol A and dimethyl carbonate, Polymer (Guildf) 39 (1998) 3841–3845. [115] E. Quaranta, D. Sgherza, G. Tartaro, Depolymerization of poly(bisphenol A carbonate) under mild conditions by solvent-free alcoholysis catalyzed by 1,8-diazabicyclo[5.4.0]undec-7-ene as a recyclable organocatalyst: a route to chemical recycling of waste polycarbonate, Green Chem. 19 (2017) 5422–5434. [116] F. Liu, Z. Li, S. Yu, X. Cui, X. Ge, Environmentally benign methanolysis of polycarbonate to recover bisphenol A and dimethyl carbonate in ionic liquids, J. Hazard. Mater. 174 (2010) 872–875. [117] F. Liu, L. Li, S. Yu, Z. Lv, X. Ge, Methanolysis of polycarbonate catalysed by ionic liquid [Bmim][Ac], J. Hazard. Mater. 189 (2011) 249–254. [118] J. Guo, M. Liu, Y. Gu, Y. Wang, J. Gao, F. Liu, Efficient alcoholysis of polycarbonate catalyzed by recyclable lewis acidic ionic liquids, Ind. Eng. Chem. Res. 57 (2018) 10915–10921. [119] M. Liu, J. Guo, Y. Gu, J. Gao, F. Liu, S. Yu, Pushing the limits in alcoholysis of waste polycarbonate with DBU-based ionic liquids under metal- and solvent-free conditions, ACS Sustain. Chem. Eng. 6 (2018) 13114–13121. [120] X. Song, W. Hu, W. Huang, H. Wang, S. Yan, S. Yu, F. Liu, Methanolysis of polycarbonate into valuable product bisphenol A using choline chloride-based deep eutectic solvents as highly active catalysts, Chem. Eng. J. 388 (2020) 124324. [121] Y. Zhao, X. Zhang, X. Song, F. Liu, Highly active and recyclable mesoporous molecular sieves CaO(SrO,BaO)/SBA-15 with base sites as heterogeneous catalysts for methanolysis of polycarbonate, Catal. Lett. 147 (2017) 2940–2949. [122] Y.-Y. Liu, G.-H. Qin, X.-Y. Song, J.-W. Ding, F.-S. Liu, S.-T. Yu, X.-P. Ge, Mesoporous alumina modified calcium catalyst for alcoholysis of polycarbonate, J. Taiwan Inst. Chem. Eng. 86 (2018) 222–229. [123] Y. Yang, C. Wang, F. Liu, X. Sun, G. Qin, Y. Liu, J. Gao, Mesoporous electronegative nanocomposites of SBA-15 with CaO–CeO2 for polycarbonate depolymerization, J. Mater. Sci. 54 (2019) 9442–9455. [124] F. Liu, Y. Xiao, X. Sun, G. Qin, X. Song, Y. Liu, Synergistic catalysis over hollow CeO2-CaO-ZrO2 nanostructure for polycarbonate methanolysis with methanol, Chem. Eng. J. 369 (2019) 205–214. [125] W. Huang, H. Wang, X. Zhu, D. Yang, S. Yu, F. Liu, X. Song, Highly efficient application of Mg/Al layered double oxides catalysts in the methanolysis of polycarbonate, Appl. Clay Sci. 202 (2021) 105986. [126] Z. Fehér, R. Németh, J. Kiss, B. Balterer, K. Verebélyi, B. Iván, J. Kupai, A silica-supported organocatalyst for polycarbonate methanolysis under mild and economic conditions, Chem. Eng. J. 485 (2024) 149832. [127] A.K. Manal, G. Saini, R. Srivastava, Solvent-free chemical upcycling of poly(bisphenol A carbonate) and poly(lactic acid) plastic waste using SBA-15-functionalized basic ionic liquids, Green Chem. 26 (2024) 3814–3831. [128] Y. Xu, Y. Ji, Y. Liu, W. Deng, F. Huang, F. Zhang, Polymeric carbon nitride nanosheets as a metal‐free heterogeneous catalyst for highly efficient methanolysis of polycarbonates, ChemCatChem (2024) e202301763. [129] P. Jutrzenka Trzebiatowska, Z. Maramorosz, M.A. Baluk, M. Gazda, A. Ecieza, A. Zaleska-Medynska, The catalytic activity of metal-organic frameworks (MOFs) and post-synthetic modified MOF towards depolymerisation of polycarbonate, (2023) https://ssrn.com/abstract=4597188. [130] V. Rayzman, I. Filipovich, L. Nisse, Y. Vlasenko, Sodium aluminate from alumina-bearing intermediates and wastes, JOM 50 (1998) 32–37. [131] T. Wan, P. Yu, S. Wang, Y. Luo, application of sodium aluminate as a heterogeneous base catalyst for biodiesel production from soybean oil, Energ. Fuel 23 (2009) 1089–1092. [132] V. Mutreja, S. Singh, A. Ali, Sodium Aluminate as Catalyst for Transesterification of Waste Mutton Fat, J. Oleo Sci. 61 (2012) 665–669. [133] R. Bai, P. Liu, J. Yang, C. Liu, Y. Gu, Facile synthesis of 2-aminothiophenes using NaAlO2 as an eco-effective and recyclable catalyst, ACS Sustain. Chem. Eng. 3 (2015) 1292–1297. [134] S.K. Cherikkallinmel, A. Gopalakrishnan, Z. Yaakob, R.M. Ramakrishnan, S. Sugunan, B.N. Narayanan, Sodium aluminate from waste aluminium source as catalyst for the transesterification of Jatropha oil, RSC Adv. 5 (2015) 46290–46294. [135] S. Ramesh, D.P. Debecker, Room temperature synthesis of glycerol carbonate catalyzed by spray dried sodium aluminate microspheres, Catal. Commun. 97 (2017) 102–105. [136] S. Ramesh, K. Indukuri, O. Riant, D.P. Debecker, Synthesis of carbonate esters by carboxymethylation using NaAlO2 as a highly active heterogeneous catalyst, Org. Process Res. Dev. 22 (2018) 1846–1851. [137] P. Rittiron, C. Niamnuy, W. Donphai, M. Chareonpanich, A. Seubsai, Production of glycerol carbonate from glycerol over templated-sodium-aluminate catalysts prepared using a spray-drying method, ACS Omega 4 (2019) 9001–9009. [138] S. Ramesh, M. Amoura, D.P. Debecker, Highly basic solid catalysts obtained by spray drying of a NaAlO2 and boehmite suspension for the upgrading of glycerol to acetins, Sustain. Energy Fuels 4 (2020) 3546–3551. [139] J. Keogh, G. Deshmukh, H. Manyar, Green synthesis of glycerol carbonate via transesterification of glycerol using mechanochemically prepared sodium aluminate catalysts, Fuel 310 (2022) 122484. [140] G. Pampararo, D.P. Debecker, Sodium aluminate-catalyzed biodiesel synthesis, ACS Sustain. Chem. Eng. 11 (2023) 10413–10421. [141] S. Lou, L. Jia, X. Guo, W. Wu, L. Gao, H. Wu, J. Wang, Synthesis of ethylene glycol monomethyl ether monolaurate catalysed by KF/NaAlO2 as a novel and efficient solid base, RSC Adv. 6 (2016) 6921–6931. [142] S. Ramesh, F. Devred, L. van den Biggelaar, D.P. Debecker, Hydrotalcites promoted by NaAlO2 as strongly basic catalysts with record activity in glycerol carbonate synthesis, ChemCatChem 10 (2018) 1398–1405. [143] S. Ramesh, F. Devred, D.P. Debecker, NaAlO2 supported on titanium dioxide as solid base catalyst for the carboxymethylation of allyl alcohol with DMC, Appl. Catal. A Gen. 581 (2019) 31–36. [144] Y. Zhang, S. Niu, C. Lu, Z. Gong, X. Hu, Catalytic performance of NaAlO2/γ-Al2O3 as heterogeneous nanocatalyst for biodiesel production: Optimization using response surface methodology, Energy Convers. Manag. 203 (2020) 112263. [145] S. Ramesh, F. Devred, D.P. Debecker, NaAlO2‐promoted mesoporous catalysts for room temperature Knoevenagel condensation reaction, ChemistrySelect 5 (2020) 300–305. [146] K.S. Kanakikodi, S.R. Churipard, R. Bai, S.P. Maradur, Upgrading of lignocellulosic biomass-derived furfural: An efficient approach for the synthesis of bio-fuel intermediates over γ-alumina supported sodium aluminate, Mol. Catal. 510 (2021) 111716. [147] A. Chotchuang, P. Kunsuk, A. Phanpitakkul, S. Chanklang, M. Chareonpanich, A. Seubsai, Production of glycerol carbonate from glycerol over modified sodium-aluminate-doped calcium oxide catalysts, Catal. Today 388–389 (2022) 351–359. [148] G. Pampararo, D.P. Debecker, Supported sodium aluminate catalysts effectively catalyze biodiesel synthesis, Mater Today Chem. 37 (2024) 102006. [149] P.A. Krisbiantoro, M. Sato, T.-M. Lin, Y.-C. Chang, T.-Y. Peng, Y.-C. Wu, W. Liao, Y. Kamiya, R. Otomo, K.C.-W. Wu, Low-temperature methanolysis of polycarbonate over solid base sodium aluminate, Langmuir 40 (2024) 5338–5347. [150] M. Ebrahimi Farshchi, N. Madadian Bozorg, A. Ehsani, H. Aghdasinia, Z. Chen, S. Rostamnia, B.-J. Ni, Green valorization of PET waste into functionalized Cu-MOF tailored to catalytic reduction of 4-nitrophenol, J. Environ. Manage. 345 (2023) 118842. [151] P. Dubey, V. Shrivastav, P.H. Maheshwari, M. Hołdyński, A. Krawczyńska, S. Sundriyal, Comparative study of different metal-organic framework electrodes synthesized using waste PET bottles for supercapacitor applications, J. Energy Storage 68 (2023) 107828. [152] H. Yarahmadi, S.K. Salamah, M. Kheimi, Synthesis of an efficient MOF catalyst for the degradation of OPDs using TPA derived from PET waste bottles, Sci. Rep. 13 (2023) 19136. [153] X. Dyosiba, J. Ren, N.M. Musyoka, H.W. Langmi, M. Mathe, M.S. Onyango, Preparation of value-added metal-organic frameworks (MOFs) using waste PET bottles as source of acid linker, Sustain. Mater. Technol. 10 (2016) 10–13. [154] H. Huang, Y. Heng, Z. Yu, X. Zhang, X. Zhu, Z. Fang, J. Li, X. Guo, Solvent-free synthesis of defective Zr-based metal–organic framework from waste plastic bottles for highly efficient lomefloxacin removal, J. Colloid Interface. Sci. 670 (2024) 509–518. [155] M. Ubaidullah, A.M. Al-Enizi, S. Shaikh, M.A. Ghanem, R.S. Mane, Waste PET plastic derived ZnO@NMC nanocomposite via MOF-5 construction for hydrogen and oxygen evolution reactions, J. King Saud. Univ. Sci. 32 (2020) 2397–2405. [156] S. Cheng, Y. Li, Z. Yu, R. Gu, W. Wu, Y. Su, Waste PET-derived MOF-5 for high-efficiency removal of tetracycline, Sep. Purif. Technol. 339 (2024) 126490. [157] A.M. Al-Enizi, A. Nafady, N.B. Alanazi, M. Moydeen Abdulhameed, S.F. Shaikh, Waste polyethylene terephthalate plastic derived Zn-MOF for high performance supercapacitor application, J. King Saud. Univ. Sci. 36 (2024) 103179. [158] K. Song, X. Qiu, B. Han, S. Liang, Z. Lin, Efficient upcycling electroplating sludge and waste PET into Ni-MOF nanocrystals for the effective photoreduction of CO2, Environ. Sci. Nano 8 (2021) 390–398. [159] A. Ghosh, G. Das, Facile synthesis of Sn(II)-MOF using waste PET bottles as an organic precursor and its derivative SnO2 NPs: Role of surface charge reversal in adsorption of toxic ions, J. Environ. Chem. Eng. 9 (2021) 105288. [160] N.P. Makhanya, B. Oboirien, N. Musyoka, J. Ren, P. Ndungu, Evaluation of PET-derived metal organic frameworks (MOFs) for water adsorption and heat storage, J. Porous Mater. 30 (2023) 387–401. [161] Y. Wang, H. Wang, S. Li, S. Sun, Waste PET Plastic-Derived CoNi-Based Metal–Organic Framework as an Anode for Lithium-Ion Batteries, ACS Omega 7 (2022) 35180–35190. [162] Y. Wang, K. Meng, H. Wang, Y. Si, K. Bai, S. Sun, Green Synthesis of CoZn-based metal–organic framework (CoZn-MOF) from waste polyethylene terephthalate plastic as a high-performance anode for lithium-ion battery applications, ACS Appl. Mater. Interfaces 16 (2024) 819–832. [163] K. Boukayouht, L. Bazzi, A. Daouli, G. Maurin, S. El Hankari, Ultrarapid and sustainable synthesis of trimetallic-based MOF (CrNiFe-MOF) from stainless steel and disodium terephthalate-derived PET wastes, ACS Appl. Mater. Interfaces 16 (2024) 2497–2508. [164] A. M. Al-Enizi, A. Nafady, N.B. Alanazi, M.M. Abdulhameed, S.F. Shaikh, Waste polyethylene terephthalate plastic derived Zr-MOF for high performance supercapacitor applications, Chemosphere 350 (2024) 141080. [165] J. Jindakaew, C. Ratanatawanate, J. Erwann, C. Kaewsaneha, P. Sreearunothai, P. Opaprakasit, R.-X. Yang, A. Elaissari, Upcycling of post-consumer polyethylene terephthalate bottles into aluminum-based metal-organic framework adsorbents for efficient orthophosphate removal, Sci. Total Environ. 935 (2024) 173394. [166] B.E. Keshta, H. Yu, L. Wang, A.H. Gemeay, Cutting-edge in the green synthesis of MIL-101(Cr) MOF based on organic and inorganic waste recycling with extraordinary removal for anionic dye, Sep. Purif. Technol. 332 (2024) 125744. [167] A.S. Abou-Elyazed, A.K.F. Shaban, A.I. Osman, L.A. Heikal, H.F.M. Mohamed, W.M.I. Hassan, A.M. El-Nahas, B.E. Keshta, A.S. Hamouda, Comparative catalytic efficacy of cost-effective MIL-101(Cr) based PET waste for biodiesel production, Curr. Res. Green Sustain. Chem. 8 (2024) 100401. [168] E. Moumen, K. Boukayouht, S. Elmoutchou, S. Kounbach, S. El Hankari, Sustainable and shaped synthesis of MOF composites using PET waste for efficient phosphate removal, New J. Chem. 48 (2024) 2226–2235. [169] M. Rubio-Martinez, C. Avci-Camur, A.W. Thornton, I. Imaz, D. Maspoch, M.R. Hill, New synthetic routes towards MOF production at scale, Chem. Soc. Rev. 46 (2017) 3453–3480. [170] J. Winarta, B. Shan, S.M. Mcintyre, L. Ye, C. Wang, J. Liu, B. Mu, A Decade of UiO-66 research: a historic review of dynamic structure, synthesis mechanisms, and characterization techniques of an archetypal metal–organic framework, Cryst. Growth Des. 20 (2020) 1347–1362. [171] P.A. Krisbiantoro, T.-J. Kuo, Y.-C. Chang, W. Liao, J.-P. Sun, C.-Y. Yang, Y. Kamiya, F.-K. Shieh, C.-C. Chen, K.C.-W. Wu, PET-derived bis(2-hydroxyethyl) terephthalate as a new linker source for solvent-free and hydrothermal synthesis of BDC-based MOFs, Mater. Today Nano 25 (2024) 100459. [172] P. Waribam, T. Rajeendre Katugampalage, P. Opaprakasit, C. Ratanatawanate, W. Chooaksorn, L. Pang Wang, C.-H. Liu, P. Sreearunothai, Upcycling plastic waste: Rapid aqueous depolymerization of PET and simultaneous growth of highly defective UiO-66 metal-organic framework with enhanced CO2 capture via one-pot synthesis, Chem. Eng. J. 473 (2023) 145349. [173] O. Semyonov, S. Chaemchuen, A. Ivanov, F. Verpoort, Z. Kolska, M. Syrtanov, V. Svorcik, M.S. Yusubov, O. Lyutakov, O. Guselnikova, P.S. Postnikov, Smart recycling of PET to sorbents for insecticides through in situ MOF growth, Appl. Mater. Today 22 (2021) 100910. [174] Y. Cedeño-Mattei, O. Perales-Pérez, O.N.C. Uwakweh, Effect of high-energy ball milling time on structural and magnetic properties of nanocrystalline cobalt ferrite powders, J. Magn. Magn. Mater. 341 (2013) 17-24. [175] A.M. Al-Sabagh, F.Z. Yehia, A.-M.M.F. Eissa, M.E. Moustafa, G. Eshaq, A.-R.M. Rabie, A.E. ElMetwally, Glycolysis of poly(ethylene terephthalate) catalyzed by the lewis base ionic liquid [Bmim][OAc], Ind. Eng. Chem. Res. 53 (2014) 18443–18451. [176] A.M. Al-Sabagh, F.Z. Yehia, A.M.F. Eissa, M.E. Moustafa, Gh. Eshaq, A.M. Rabie, A.E. ElMetwally, Cu- and Zn-acetate-containing ionic liquids as catalysts for the glycolysis of poly(ethylene terephthalate), Polym. Degrad. Stab. 110 (2014) 364-377. [177] F. Caddeo, D. Loche, M.F. Casula, A. Corrias, Evidence of a cubic iron sub-lattice in t-CuFe2O4 demonstrated by X-ray absorption fine structure, Sci. Rep. 8, 797 (2018). [178] R. López-Fonseca, I. Duque-Ingunza, B. de Rivas, S. Arnaiz, J.I. Gutiérrez-Ortiz, Chemical recycling of post-consumer PET wastes by glycolysis in the presence of metal salts, Polym. Degrad. Stab. 95 (2010) 1022-1028. [179] B. Liu, W. Fu, X. Lu, Q. Zhou, S. Zhang, Lewis acid–base synergistic catalysis for polyethylene terephthalate degradation by 1,3-dimethylurea/Zn(OAc)2 deep eutectic solvent, ACS Sustain. Chem. Eng. 7 (2019) 3292–3300. [180] O.C. Gagné, F.C. Hawthorne, Empirical lewis acid strengths for 135 cations bonded to oxygen, Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 73 (2017) 956-961. [181] R.T. Sanderson, Electronegativity and bond energy, J. Am. Chem. Soc. 105 (1983) 2259-2261. [182] C.G. Ramankutty, S. Sugunan, Surface properties and catalytic activity of ferrospinels of nickel, cobalt and copper, prepared by soft chemical methods, Appl. Catal. A Gen. 218 (2001) 39-51. [183] Aline. Auroux, Antonella. Gervasini, Microcalorimetric study of the acidity and basicity of metal oxide surfaces, J. Phys. Chem. 94 (1990) 6371–6379. [184] K. Nishamol, K.S. Rahna, S. Sugunan, Selective alkylation of aniline to N-methyl aniline using chromium manganese ferrospinels, J. Mol. Catal. A Chem. 209 (2004) 89–96. [185] M. Kurian, S. Thankachan, D.S. Nair, A. E. K., A. Babu, A. Thomas, B. Krishna K. T., Structural, magnetic, and acidic properties of cobalt ferrite nanoparticles synthesised by wet chemical methods, J. Adv. Ceram. 4 (2015) 199-205. [186] C.M. Hansen, Hansen Solubility Parameters, CRC Press, 2007. [187] S. Abbott, C.M. Hansen, H. Yamamoto, R.S. Valpey, Hansen Solubility Parameters in Practice Complete with eBook, 5th ed., 2015. [188] M.E. Viana, A. Riul, G.M. Carvalho, A.F. Rubira, E.C. Muniz, Chemical recycling of PET by catalyzed glycolysis: Kinetics of the heterogeneous reaction, Chem. Eng. J. 173 (2011) 210-219. [189] F. Pardal, G. Tersac, Kinetics of poly(ethylene terephthalate) glycolysis by diethylene glycol. I. Evolution of liquid and solid phases, Polym. Degrad. Stab. 91 (2006) 2840-2847. [190] R. López-Fonseca, I. Duque-Ingunza, B. de Rivas, L. Flores-Giraldo, J.I. Gutiérrez-Ortiz, Kinetics of catalytic glycolysis of PET wastes with sodium carbonate, Chem. Eng. J. 168 (2011) 312-320. [191] B.-Z. Wan, C.-Y. Kao, W.-H. Cheng, kinetics of depolymerization of poly(ethylene terephthalate) in a potassium hydroxide solution, Ind. Eng. Chem. Res. 40 (2001) 509-514. [192] J.R. Campanelli, M.R. Kamal, D.G. Cooper, Kinetics of glycolysis of poly(ethylene terephthalate) melts, J. Appl. Polym. Sci. 54 (1994) 1731-1740. [193] A.S. Goje, S. Mishra, Chemical kinetics, simulation, and thermodynamics of glycolytic depolymerization of poly(ethylene terephthalate) waste with catalyst optimization for recycling of value added monomeric products, Macromol. Mater. Eng. 288 (2003) 326-336. [194] Aspen Technnology, Aspen Plus® Aspen Plus User Guide, Cambridge, MA, 2000. http://www.aspentech.com. [195] A.B. Raheem, A. bin Hassan, Z.Z. Noor, S. bin Samsudin, M.A. Hamid, A. Bello, O. Oladokun, A.H. Sabeen, A. Shamiri, Process simulation of bis (2- hydroxyethyl) terephthalate and its recovery using two-stage evaporation systems, Chem. Eng. Trans. 63 (2018) 655–660. [196] F. Pilati, M. Toselli, C. Stramigioli, G. Baldi, M. Capra, M. Osella, G.B. Pilone, Process to prepare bis(2-hydroxyethyl) terephthalate - Google Patents, European Patent EP0723951A1 (1996). https://patents.google.com/patent/EP0723951A1/en (Accessed April 26, 2022). [197] F. Iannone, M. Casiello, A. Monopoli, P. Cotugno, M.C. Sportelli, R.A. Picca, N. Cioffi, M.M. Dell’Anna, A. Nacci, Ionic liquids/ZnO nanoparticles as recyclable catalyst for polycarbonate depolymerization, J. Mol. Catal. A. Chem. 426 (2017) 107–116. [198] W. Huang, H. Wang, W. Hu, D. Yang, S. Yu, F. Liu, X. Song, Degradation of polycarbonate to produce bisphenol A catalyzed by imidazolium-based DESs under metal-and solvent-free conditions, RSC Adv.11 (2021) 1595–1604. [199] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability, J. Am. Chem. Soc.130 (2008) 13850–13851. [200] L. Valenzano, B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory, Chem. Mater. 23 (2011) 1700–1718. [201] C. Atzori, G.C. Shearer, L. Maschio, B. Civalleri, F. Bonino, C. Lamberti, S. Svelle, K.P. Lillerud, S. Bordiga, Effect of benzoic acid as a modulator in the structure of UiO-66: an experimental and computational study, J. Phys. Chem. C 121 (2017) 9312–9324. [202] V. V. Butova, A.P. Budnyk, K.M. Charykov, K.S. Vetlitsyna-Novikova, A.L. Bugaev, A.A. Guda, A. Damin, S.M. Chavan, S. Øien-Ødegaard, K.P. Lillerud, A. V. Soldatov, C. Lamberti, Partial and complete substitution of the 1,4-benzenedicarboxylate linker in UiO-66 with 1,4-naphthalenedicarboxylate: synthesis, characterization, and H2-adsorption properties, Inorg. Chem. 58 (2019) 1607–1620. [203] M.J. Katz, Z.J. Brown, Y.J. Colón, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, O.K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun. 49 (2013) 9449. [204] Z. Fang, D.A. Dixon, Hydrolysis of ZrCl4 and HfCl4 : the initial steps in the high-temperature oxidation of metal chlorides to produce ZrO2 and HfO2, The J. Phys. Chem. C 117 (2013) 7459–7474. [205] K. Konstadinidis, B. Thakkar, A. Chakraborty, L.W. Potts, R. Tannenbaum, M. Tirrell, J.F. Evans, Segment level chemistry and chain conformation in the reactive adsorption of poly(methyl methacrylate) on aluminum oxide surfaces, Langmuir 8 (1992) 1307–1317. [206] E. Papirer, J.-M. Perrin, G. Nanse, P. Fioux, Adsorption of poly(methylmethacrylate) on an α alumina: evidence of formation of surface carboxylate bonds, Eur. Polym. J. 30 (1994) 985–991. [207] S.R. Leadley, J.F. Watts, The use of monochromated XPS to evaluate acid-base interactions at the PMMA/oxidised metal interface, J. Adhes. 60 (1997) 175–196. [208] L.I. Fockaert, S. Pletincx, B. Boelen, T. Hauffman, H. Terryn, J.M.C. Mol, Effect of zirconium-based conversion treatments of zinc, aluminium and magnesium on the chemisorption of ester-functionalized molecules, Appl. Surf. Sci. 508 (2020) 145199. [209] A. Schaate, P. Roy, A. Godt, J. Lippke, F. Waltz, M. Wiebcke, P. Behrens, Modulated synthesis of Zr-based metal-organic frameworks: from nano to single crystals, Chem. Eur. J. 17 (2011) 6643–6651. [210] M.R. Armstrong, K.Y.Y. Arredondo, C.-Y. Liu, J.E. Stevens, A. Mayhob, B. Shan, S. Senthilnathan, C.J. Balzer, B. Mu, UiO-66 MOF and poly(vinyl cinnamate) nanofiber composite membranes synthesized by a facile three-stage process, Ind. Eng. Chem. Res. 54 (2015) 12386–12392. [211] Y. Zhao, Q. Zhang, Y. Li, R. Zhang, G. Lu, Large-scale synthesis of monodisperse UiO-66 crystals with tunable sizes and missing linker defects via acid/base co-modulation, ACS Appl. Mater. Interfaces 9 (2017) 15079–15085. [212] B. Shan, S.M. McIntyre, M.R. Armstrong, Y. Shen, B. Mu, investigation of missing-cluster defects in UiO-66 and ferrocene deposition into defect-induced cavities, Ind. Eng. Chem. Res. 57 (2018) 14233–14241. [213] K. Užarević, T.C. Wang, S.-Y. Moon, A.M. Fidelli, J.T. Hupp, O.K. Farha, T. Friščić, Mechanochemical and solvent-free assembly of zirconium-based metal–organic frameworks, Chem. Commun. 52 (2016) 2133–2136. [214] Y.-H. Huang, W.-S. Lo, Y.-W. Kuo, W.-J. Chen, C.-H. Lin, F.-K. Shieh, Green and rapid synthesis of zirconium metal–organic frameworks via mechanochemistry: UiO-66 analog nanocrystals obtained in one hundred seconds, Chem. Commun. 53 (2017) 5818–5821. [215] X. Sang, J. Zhang, J. Xiang, J. Cui, L. Zheng, J. Zhang, Z. Wu, Z. Li, G. Mo, Y. Xu, J. Song, C. Liu, X. Tan, T. Luo, B. Zhang, B. Han, Ionic liquid accelerates the crystallization of Zr-based metal–organic frameworks, Nat. Commun. 8 (2017) 175. [216] C.S.M. Pereira, V.M.T.M. Silva, A.E. Rodrigues, Ethyl lactate as a solvent: properties, applications and production processes – a review, Green Chem. 13 (2011) 2658. [217] M.J. Cliffe, W. Wan, X. Zou, P.A. Chater, A.K. Kleppe, M.G. Tucker, H. Wilhelm, N.P. Funnell, F.-X. Coudert, A.L. Goodwin, Correlated defect nanoregions in a metal–organic framework, Nat. Commun. 5 (2014) 4176. [218] P. Chammingkwan, G.Y. Shangkum, L.T.T. Mai, P. Mohan, A. Thakur, T. Wada, T. Taniike, Modulator-free approach towards missing-cluster defect formation in Zr-based UiO-66, RSC Adv. 10 (2020) 28180–28185. [219] X. Feng, H.S. Jena, C. Krishnaraj, D. Arenas-Esteban, K. Leus, G. Wang, J. Sun, M. Rüscher, J. Timoshenko, B. Roldan Cuenya, S. Bals, P. Van Der Voort, Creation of exclusive artificial cluster defects by selective metal removal in the (Zn, Zr) mixed-metal UiO-66, J. Am. Chem. Soc. 143 (2021) 21511–21518. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94099 | - |
| dc.description.abstract | 開發一個塑膠回收和高值化應用的技術,以解決在過去半個世紀中因塑膠產量的大幅提升而日益惡化的全球塑膠污染,已是目前非常重要的議題。在本論文中,我們提出了以異相觸媒進行乙二醇解聚對苯二甲酸乙二酯(PET)和甲醇解聚碳酸酯(PC)的技術,並將PET乙二醇解後的產物聚對苯二甲酸乙二酯(BHET)當做配體以合成高價值的金屬有機框架(MOFs)。
在論文的第一部分中,我們使用機械化學合成法,在沒有溶劑的情況下成功合成四種尖晶石肥粒鐵(MFe2O4, M= Co, Ni, Cu, and Zn)以做為異相觸媒在常壓下乙二醇解PET。這四種尖晶石肥粒鐵在190 °C下皆具有良好的反應性並產出高純度的BHET,其中,他們的反應活性因為金屬離子的路易斯酸強度而可以排出以下結果:ZnFe2O4 > CuFe2O4 > CoFe2O4 > NiFe2O4。儘管CoFe2O4 在這些觸媒中的反應活性僅是第三佳,但其擁有的最高飽和磁化強度使它非常容易即可使用磁鐵和反應物分離。此外,它的反應活化能188 kJ mol–1也和目前文獻中異相觸媒的反應活化能相近。在實驗室規模的批次反應器中我們已可連續使用此觸媒至少五次,並透過Aspen Plus®軟體模擬證明這個乙二醇解技術在被放大後依然可行。 在論文的第二部分中,我們開發出一種以低成本且容易取得的鋁酸鈉做為觸媒來進行PC的甲醇解技術以得到高純度和高結晶度的雙酚A(BPA)單體。我們首先篩選了一系列的有機溶劑如丙酮、乙腈、氯仿、環己烷、二氯甲烷、碳酸二甲酯、庚烷、四氫呋喃(THF),其中THF由於和PC有相似的極性而有最好的催化效果。在溶劑是THF的系統時,鋁酸鈉做為固態鹼性觸媒,其反應活性和溶解度很高的氧化鍶相當,並遠高於氧化鎂和氧化鈣。在60 °C與常壓下,鋁酸鈉可在2小時內達到98.1%的PC轉化率和96.8%的BPA產率,並且可重複進行此反應至少四次。同時,我們證明了反應機制是由甲氧基途徑進行,並且THF會使PC快速膨脹和溶解以加速反應。此外,在動力學分析上,使用鋁酸鈉做為觸媒僅有75.1 kJ mol–1的反應活化能,這是目前發表過的異相催化反應文獻中最低的數值。 在第三部分中,我們使用在第一部分中經由PET乙二醇解得到的BHET做為配體,並在沒有溶劑的情況下合成金屬有機框架。透過我們研發的“研磨和加熱”法可在不需溶劑的條件下以130 °C和30分鐘的反應時間合成UiO-66(Zr),這比目前所有發表過的機械化學加熱法和溶劑熱合成方法都要快。此反應的反應機制是透過BHET水解產生的對苯二甲酸(BDC2−)陰離子和Zr簇的形成以合成出UiO-66(Zr)。此外,當我們將配體改成合成UiO-66(Zr)常用的對苯二甲酸,並使用相同的合成手法時,我們驚訝的發現不管是使用四氯化鋯或是氯氧化鋯做為鋯前驅物皆無法合成具高結晶度的UiO-66(Zr)。同時,我們也使用此技術合成出其他種類的MOF,如UiO-66(Hf)、Cu-BDC和MIL-53(Al)。與現有技術相比,本技術不僅實現了從廢PET到MOF的高值化轉化,還在更溫和的反應條件下同時兼顧環保。 第四部分做為第三部分的延續,我們發現將PET浸泡在乙二醇後 ,即可當做配體,並透過我們第三部分提到的研磨和加熱法來合成UiO-66(Zr)。此發現進一步證明了將PET直接轉化為MOF的可能性,讓廢PET轉化到MOF有更多可能。 | zh_TW |
| dc.description.abstract | Owing to the rapid upsurge in plastic production in the last five decades, which has resulted in a dramatic increase in global plastic pollution, the development of sustainable techniques for plastic recycling and upcycling is indispensable in an attempt to decrease global plastic pollution and to attain a sustainable cycle. In response to this, the present author performed the development of heterogeneous catalysts for the chemical recycling of polyethylene terephthalate (PET) via glycolysis and polycarbonate (PC) via methanolysis, and the conversion of PET and the glycolysis product of PET, namely bis(2-hydroxyethyl) terephthalate (BHET), into valuable metal-organic frameworks (MOFs).
The first section covers the use of solvent-free mechanochemically synthesized spinel ferrite (MFe2O4, M= Co, Ni, Cu, and Zn) as a solid catalyst for PET glycolysis under atmospheric pressure. While all catalysts were active for the reaction at 190 °C, producing highly pure BHET, the catalytic activity over ZnFe2O4 > CuFe2O4 > CoFe2O4 > NiFe2O4. The difference in the catalytic activity among the catalysts was revealed due to the difference in the Lewis acid strength of the M2+, whereas the catalyst with the higher Lewis acid strength possessed higher catalytic activity. Although CoFe2O4 was the third-best catalyst in terms of catalytic activity, it exhibited the highest saturation magnetization, which is a great advantage for the magnetic separation of the catalyst. Over CoFe2O4, the reaction possessed an apparent activation energy (Ea) of 188 kJ mol–1, which is comparable to most reported heterogeneous catalysts for the reaction. While the catalyst was reusable at least five times, a simulation using Aspen Plus® revealed that scale-up is feasible. In the second section, PC methanolysis by using a low-cost and readily available sodium aluminate (NaAlO2) is presented. NaAlO2 was a highly active solid base catalyst for the reaction in the presence of tetrahydrofuran (THF) as a solvent, producing highly pure and crystalline bisphenol A (BPA) monomer, with the catalytic performance comparable to soluble SrO and much higher than those of MgO and CaO. Among tested organic solvents, e.g., acetone, acetonitrile (ACN), chloroform, cyclohexane, dichloromethane (DCM), dimethyl carbonate (DMC), heptane, and THF, THF was the best one in aiding the reaction owing to the polarity similar to the PC according to the Hansen solubility parameters (HSPs). At 60 °C and under atmospheric pressure, 98.1 and 96.8% of PC conversion and BPA yield, respectively, were achieved within just 2 h. While the catalyst can be reused for at least four runs, the mechanistic study revealed that the reaction was governed by the methoxide pathway, with THF aiding in the faster swelling and dissolution of PC. Over NaAlO2, the reaction exhibited Ea of 75.1 kJ mol–1, which is the lowest ever reported for a reaction over a heterogeneous catalyst. In the third section, the use of BHET (the glycolysis product of PET obtained from the first section) as a new linker source for the solvent-free synthesis of MOFs is highlighted. Via the solvent-free “grind and bake” technique, UiO-66(Zr) was easily synthesized. It was found that the hydrolysis of BHET to terephthalate (BDC2−) anion by proton produced from the hydrolysis and clustering of Zr precursor was the key to the crystal growth of UiO-66(Zr). Surprisingly, the use of H2BDC, which is a typical linker source for UiO-66(Zr), resulted in no and poor diffraction patterns of UiO-66(Zr) when ZrCl4 and ZrOCl2•8H2O, respectively, were used as Zr precursors. In this work, UiO-66(Zr) can be synthesized within 30 min (at 130 °C), which is much shorter than any previously reported mechanochemical-heating and solvothermal synthesis of UiO-66(Zr). Some MOFs, namely UiO-66(Hf), Cu-BDC, and MIL-53(Al), have also been successfully synthesized. This work realizes the idea of PET waste-to-MOFs with more convenience and green compared to the prior arts. The fourth section is the follow-up of the third section, where it was found that when PET is treated with ethylene glycol (EG), it can be used as a linker source for the grind and bake synthesis of UiO-66(Zr). This work demonstrates that direct conversion of PET into MOF is possible, further pushing the limit of PET-to-MOF conversion. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:41:11Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:41:11Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
ABSTRACT iii TABLE OF CONTENT vi LIST OF FIGURES xi LIST OF TABLES xxii 1. INTRODUCTION 1 1.1. Global plastic production and pollution 1 1.2. Recycling processes of plastics waste 3 1.3. Polyethylene terephthalate (PET) 5 1.4. Polycarbonate (PC) 7 1.5. Global perspective towards plastic recycling 10 1.6. Chemical recycling of PET and PC 11 1.6.1. Chemical recycling of PET 12 1.6.2. Chemical recycling of PC 16 1.7. Metal-organic frameworks (MOFs) 19 1.8. Benzene-1,4-dicarboxylate (BDC)-based MOFs 21 1.9. Plastic upcycling into valuable MOFs 23 2. LITERATURE REVIEW 26 2.1. Catalytic glycolysis of PET over heterogeneous catalysts 26 2.1.1. Magnetically active heterogeneous catalysts for PET glycolysis 26 2.1.2. Spinel ferrites as heterogeneous catalysts for PET glycolysis 29 2.2. Catalytic methanolysis of PC over heterogeneous catalysts 33 2.2.1. Heterogeneous catalysts for PC methanolysis 33 2.2.2. NaAlO2 as a potential heterogeneous catalyst for PC methanolysis 36 2.3. PET monomer-to-MOF conversion 40 2.4. PET-to-MOF conversion 48 3. OBJECTIVE 53 4. EXPERIMENTAL 55 4.1. Chemicals and materials 55 4.2. Equipment 57 4.3. Procedures 58 4.3.1. PET glycolysis over metal ferrites (MFe2O4, M= Co, Ni, Cu, and Zn) 58 4.3.2. PC methanolysis over NaAlO2 64 4.3.3. “Grind and bake” synthesis of BDC-based MOFs with BHET as a linker source 70 4.3.4. Grind and bake synthesis of UiO-66(Zr) with EG-treated PET as a linker source 73 5. RESULTS AND DISCUSSION 75 5.1. PET glycolysis over metal ferrites (MFe2O4, M= Co, Ni, Cu, and Zn) 75 5.1.1. Physical properties of the as-prepared MFe2O4 75 5.1.2. Catalytic performance of the as-prepared MFe2O4 for PET glycolysis 78 5.1.3. Characterization of the as-produced BHET 83 5.1.4. Affinity evaluation by using Hansen solubility parameters 86 5.1.5. CoFe2O4 as a magnetically separable catalyst for PET glycolysis 93 5.2. PC methanolysis over NaAlO2 104 5.2.1. Catalytic performance of commercially available NaAlO2 104 5.2.2. Filtration test 106 5.2.3. Characterization of the as-produced BPA 107 5.2.4. Organic solvent-aided PC methanolysis 109 5.2.5. Effect of catalyst weight 114 5.2.6. Effect of reaction temperature 115 5.2.7. Kinetic analysis 116 5.2.8. Estimation of Ea 117 5.2.9. Elucidation of reaction mechanism 118 5.2.10. Reusability test 122 5.3. “Grind and bake” synthesis of BDC-based MOFs with BHET as a linker source 124 5.3.1. Screening of Zr precursors 124 5.3.2. Characterization of the as-synthesized UiO-66(Zr) 126 5.3.3. Elucidation on what happened during manual grinding 129 5.3.4. Elucidation on what happened during the baking 133 5.3.5. Effect of linker source: BHET vs H2BDC 135 5.3.6. Effect of baking temperature 136 5.3.7. Effect of baking time 138 5.3.8. Comparison with previous arts 140 5.3.9. BHET-derived UiO-66(Zr) as a heterogeneous catalyst for the esterification of lactic acid with ethanol 145 5.3.10. Grind and bake synthesis of other BDC-based MOFs 146 5.4. “Grind and bake” synthesis of UiO-66(Zr) with EG-treated PET as a linker source: a preliminary finding 148 6. CONCLUSIONS 151 7. CHALLENGES AND FUTURE PERSPECTIVES 154 7.1. PET glycolysis over metal ferrites (MFe2O4, M= Co, Ni, Cu, and Zn) 154 7.2. PC methanolysis over NaAlO2 155 7.3. “Grind and bake” synthesis of BDC-based MOFs with BHET as a linker source 157 7.4. “Grind and bake” synthesis of UiO-66(Zr) with EG-treated PET as a linker source 158 7.5. Future quest for solvent-free MOF synthesis 159 8. REFERENCES 161 9. APPENDICES 192 9.1. PET glycolysis over metal ferrites (MFe2O4, M= Co, Ni, Cu, and Zn) 192 9.1.1. Dispersion evaluation of MFe2O4 192 9.1.2. HSPs of MFe2O4 193 9.2. PC methanolysis over NaAlO2 194 9.2.1. Characterization of SrO and NaAlO2 after reaction 194 9.2.2. Distribution of basic strength via Hammett indicators 195 9.2.3. Effect of calcination temperature on the catalytic performance of NaAlO2 196 9.3. “Grind and bake” synthesis of BDC-based MOFs with BHET as a linker source 197 9.3.1. FTIR spectra of Zr precursor, BHET, H2BDC, pre-UiO-66(Zr) and as-synthesized UiO-66(Zr) 197 9.3.2. Raman spectra of UiO-66_ZrCl4 and UiO-66_ZrOCl2 198 9.3.3. Pore size distribution of the as-synthesized UiO-66(Zr) 199 9.3.4. Particle size distribution of the as-synthesized UiO-66(Zr) 200 | - |
| dc.language.iso | en | - |
| dc.subject | 聚對苯二甲酸乙二酯 | zh_TW |
| dc.subject | 金屬有機框架 | zh_TW |
| dc.subject | 無溶劑 | zh_TW |
| dc.subject | 塑膠回收 | zh_TW |
| dc.subject | 甲醇解 | zh_TW |
| dc.subject | 聚碳酸酯 | zh_TW |
| dc.subject | 尖晶石肥粒鐵 | zh_TW |
| dc.subject | 乙二醇解 | zh_TW |
| dc.subject | UiO-66(Zr) | zh_TW |
| dc.subject | Plastic recycling | en |
| dc.subject | metal ferrites | en |
| dc.subject | UiO-66(Zr) | en |
| dc.subject | glycolysis | en |
| dc.subject | metal-organic framework | en |
| dc.subject | solvent-free | en |
| dc.subject | methanolysis | en |
| dc.subject | polycarbonate | en |
| dc.subject | polyethylene terephthalate | en |
| dc.title | 從塑料到高價值金屬有機框架材料:使用無溶劑研磨和烘焙法開發用於PET/PC回收和BHET/PET轉化為MOF的高性能催化劑 | zh_TW |
| dc.title | From Plastic to Valuable MOF Materials: Development of High-Performance Catalysts for PET/PC Recycling and BHET/PET-to-MOF Synthesis by Solvent-Free Grinding and Baking | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.oralexamcommittee | 游文岳;神谷裕;鍾博文;陳靖天 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Yueh Yu;Yuichi Kamiya;Cedric Po-Wen Chung;Ching-Tien Chen | en |
| dc.subject.keyword | 塑膠回收,聚對苯二甲酸乙二酯,乙二醇解,尖晶石肥粒鐵,聚碳酸酯,甲醇解,無溶劑,金屬有機框架,UiO-66(Zr), | zh_TW |
| dc.subject.keyword | Plastic recycling,polyethylene terephthalate,glycolysis,metal ferrites,polycarbonate,methanolysis,solvent-free,metal-organic framework,UiO-66(Zr), | en |
| dc.relation.page | 200 | - |
| dc.identifier.doi | 10.6342/NTU202403545 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 分子科學與技術國際研究生博士學位學程 | - |
| 顯示於系所單位: | 分子科學與技術國際研究生博士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 10.18 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
