請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94088完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡志偉 | zh_TW |
| dc.contributor.advisor | Chi-Wei Tsai | en |
| dc.contributor.author | 黃雅郁 | zh_TW |
| dc.contributor.author | Ya-Yu Huang | en |
| dc.date.accessioned | 2024-08-14T16:37:53Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-14 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | Barman, M.; Samanta, S.; Chakraborty, S.; Samanta, A.; Tarafdar, J. Copy number variation of two begomovirus acquired and inoculated by different cryptic species of whitefly, Bemisia tabaci in okra. PLoS ONE 2022, 17, e0265991.
Blanc, S.; Michalakis, Y. Manipulation of hosts and vectors by plant viruses and impact of the environment. Curr. Opin. Insect Sci. 2016, 16, 36–43. Brown, J.K. The status of Bemisia tabaci (Genn.) as a pest and vector in world agroecosystems. FAO Plant Prot. Bull. 1994, 42, 3–32. Briddon, R.W.; Mansoor, S.; Bedford, I.D.; Pinner, M.S.; Markham, P.G. Clones of cotton leaf curl geminivirus induce symptoms atypical of cotton leaf curl disease. Virus Genes 2000, 20, 17–24. Cheng, Y.H.; Tsai, S.T.; Chiang, C.H; Lin, F.C.; Kuo, C.H.. Identification and molecular characterization of lisianthus enation leaf curl virus from tomato. J. Plant Med. 2019, 61, 44. Colvin, J.; Omongo, C.A.; Maruthi, M.N.; Otim‐Nape, G.W.; Thresh, J.M. Dual begomovirus infections and high Bemisia tabaci populations: Two factors driving the spread of a cassava mosaic disease pandemic. Plant Pathol. 2004, 53, 577–584. Czosnek, H.; Ghanim, M.; Ghanim, M. The circulative pathway of begomoviruses in the whitefly vector Bemisia tabaci—insights from studies with tomato yellow leaf curl virus. Ann. Appl. Biol. 2002, 140, 215–231. Czosnek, H.; Hariton-Shalev, A.; Sobol, I.; Gorovits, R.; Ghanim, M. The incredible journey of begomoviruses in their whitefly vector. Viruses 2017, 9, 273. De Barro, P.J.; Liu, S.S.; Boykin, L.M.; Dinsdale, A.B. Bemisia tabaci: A statement of species status. Annu. Rev. Entomol. 2011, 56, 1–19. Dietzgen, R.G.; Krin, S.M.; Karyn, N.J. Plant virus–insect vector interactions: Current and potential future research directions. Viruses 2016, 303. Di Mattia, J.; Ryckebusch, F.; Vernerey, M.S.; Pirolles, E.; Sauvion, N.; Peterschmitt, M.; Zeddam, J.L.; Blanc, S. Co-acquired nanovirus and geminivirus exhibit a contrasted localization within their common aphid vector. Viruses 2020, 12, 299. Eigenbrode, S.D.; Ding, H.; Shiel, P.; Berger, P.H. Volatiles from potato plants infected with potato leafroll virus attract and arrest the virus vector, Myzus persicae (Homoptera: Aphididae). Proc. R. Soc. Lond. Ser. B. Biol. sci. 2002, 269, 455–460. Fang, Y.; Jiao, X.; Xie, W.; Wang, S.; Wu, Q.; Shi, X.; Chen, G.; Su, Q.; Yang, X.; Pan, H.; et al. Tomato yellow leaf curl virus alters the host preferences of its vector Bemisia tabaci. Sci. Rep. 2013, 3, 2876. Fan, Y.Y.; Chi, Y.; Chen, N.; Cuellar, W.J.; Wang, X.W. Role of aminopeptidase N‐like in the acquisition of begomoviruses by Bemisia tabaci, the whitefly vector. Insect Sci. 2024, 31, 707–719. Fiallo-Olivé, E.; Pan, L.-L.; Liu, S.-S.; Navas-Castillo, J. Transmission of begomoviruses and other whitefly-borne viruses: dependence on the vector species. Phytopathology 2020, 110, 10–17. Fishpool, L.D.C.; Fauquet, C.; Fargette, D.; Thouvenel, J.C.; Burban, C.; Colvin, J. The phenology of Bemisia tabaci (Homoptera: Aleyrodidae) populations on cassava in southern Côte d'Ivoire. Bull. Entom. Res., Lond. 1995, 85, 197–207. Gautam, S.; Gadhave, K.R.; Buck, J.W.; Dutta, B.; Coolong, T.; Adkins, S.; Srinivasan, R. Virus-virus interactions in a plant host and in a hemipteran vector: Implications for vector fitness and virus epidemics. Virus Res. 2020, 286, 198069. Gafni, Y. Tomato yellow leaf curl virus, the intracellular dynamics of a plant DNA virus. Mol. Plant Pathol. 2003, 4, 9–15. Gilbertson, R.L.; Batuman, O.; Webster, C.G.; Adkins, S. Role of the insect supervectors Bemisia tabaci and Frankliniella occidentalis in the emergence and global spread of plant viruses. Annu. Rev. Virol. 2015, 67–93. Ghanim, M. A review of the mechanisms and components that determine the transmission efficiency of tomato yellow leaf curl virus (Geminiviridae; Begomovirus) by its whitefly vector. Virus Res. 2014, 186, 47–54. Ghanim, M.; Morin, S.; Czosnek, H. Rate of tomato yellow leaf curl virus translocation in the circulative transmission pathway of its vector, the whitefly Bemisia tabaci. Phytopathology 2001, 91, 188–196. Green S.K.; Sulyo Y; Lesemann D.E. Outbreaks and new records. Leaf curl virus on tomato in Taiwan Province. FAO Plant Prot. Bull. 1987, 35, 62. Guo, Y.; Xu, G.; Yang, X.; Ruan, K.; Ma, T.; Zhang, Q.; Gu, J.; Wu, Y.; Liu, H.; Guo, Z. Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology. J. Mater. Chem. C. 2018, 6, 3004–3015. Haapalainen, M. Biology and epidemics of Candidatus Liberibacter species, psyllid‐transmitted plant‐pathogenic bacteria. Ann. Appl. Biol. 2014, 165, 172–198. Hogenhout, S.A.; Ammar, E.D.; Whitfield, A.E.; Redinbaugh, M.G. Insect vector interactions with persistently transmitted viruses. Annu. Rev. Phytopathol. 2008, 46, 327–359. Hu F.Y.; Mou D.F.; Tsai C.W. Evaluation of barrier plants for the cultural control of tomato yellow leaf curl disease. J. Asia Pac. Entomol. 2020, 23, 132–137. Ingwell, L.L.; Eigenbrode, S.D.; Bosque-Pérez, N.A. Plant viruses alter insect behavior to enhance their spread. Sci. Rep. 2012, 2, 578. Jiu, M.; Zhou, X.P.; Liu, S.S. Acquisition and transmission of two begomoviruses by the B and a non‐B Biotype of Bemisia tabaci from Zhejiang, China. J. Phytopathol. 2006, 154, 587–591. Jan, F.J.; Green, S.K.; Shih, S.L.; Lee, L.M.; Ito, H.; Kimbara, J.; Hosoi, K.; Tsai, W.S. First report of tomato yellow leaf curl Thailand virus in Taiwan. Plant Dis. 2007, 91, 1363. Kanakala, S.; Ghanim, M. Global genetic diversity and geographical distribution of Bemisia tabaci and its bacterial endosymbionts. PLoS ONE 2019, 14, e0213946. Kennedy, G.G.; Sharpee, W.; Jacobson, A.L.; Wambugu, M.; Mware, B.; Hanley-Bowdoin, L. Genome segment ratios change during whitefly transmission of two bipartite cassava mosaic begomoviruses. Sci. Rep. 2023, 13, 10059. Kenyon, L.; Chan, Y.L.; Lee, L.M.; Kuo, F.H.; Shih, S.L. Survey of viruses infecting tomato in Taiwan. Acta Hortic. 2021, 107–112. Kil, E.J.; Kim, S.; Lee, Y.J.; Byun, H.S.; Park, J.; Seo, H.; Kim, C.S.; Shim, J.K.; Lee, J.H.; Kim, J.K.; Lee, K.Y.; Choi, H.S.; Lee, S. Tomato yellow leaf curl virus (TYLCV-IL): A seed-transmissible geminivirus in tomatoes. Sci. Rep. 2016, 6. Kim, J.; Kil, E.J.; Kim, S.; Seo, H.; Byun, H.S.; Park, J.; Chung, M.N.; Kwak, H.R.; Kim, M.K.; Kim, C.S.; Yang, J.W.; Lee, K.Y.; Choi, H.S.; Lee, S. Seed transmission of sweet potato leaf curl virus in sweet potato (Ipomoea batatas). Plant Pathol. 2015, 64, 1284–1291. Kollenberg, M.; Winter, S.; Götz, M. Quantification and localization of watermelon chlorotic stunt virus and tomato yellow leaf curl virus (Geminiviridae) in populations of Bemisia tabaci (Hemiptera, Aleyrodidae) with differential virus transmission characteristics. PLoS One 2014. 9, e111968. Kothandaraman, S.V.; Devadason, A.; Ganesan, M.V. Seed-borne nature of a begomovirus, mungbean yellow mosaic virus in black gram. Appl. Microbiol. Biotechnol. 2016, 100, 1925–1933. Ko, C.C.; Hung, Y.C.; Wang, C.H. Sequence characterized amplified region markers for identifying biotypes of Bemisia tabaci (Hem., Aleyrodidae). J. Appl. Entomol. 2007, 131, 542–547. Lai, H.C.; Neoh, Z.Y.; Tsai, W.S. Genetic diversity and pathogenicity characterization of tomato-infecting begomoviruses in Taiwan. Plant Dis. 2024, 1-46 Li, M.; Zhao, J.; Su, Y.L. Transcriptome analysis of gene expression profiles of tomato yellow leaf curl virus-infected whiteflies over different viral acquisition access periods. Insects 2020, 11, 297. Li R; Xie W; Wang S; Wu Q; Yang X; Pan H; Zhou X; Bai L; Xu B; Zhou X; Zhang Y. Reference gene selection for qRT-PCR analysis in the sweetpotato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae). PLoS One 2013, 8, e53006. Liu, B.; Preisser, E.L.; Chu, D.; Pan, H.; Xie, W.; Wang, S.; Wu, Q.; Zhou, X.; Zhang, Y. Multiple forms of vector manipulation by a plant-infecting virus: Bemisia tabaci and tomato yellow leaf curl virus. Virol. J. 2013, 87, 4929–4937. Li, W.H.; Mou, D.F.; Hsieh, C.K.; Weng, S.H.; Tsai, W.S.; Tsai, C.W. Vector transmission of tomato yellow leaf curl Thailand virus by the whitefly Bemisia tabaci: Circulative or propagative? Insects 2021, 12, 181. Li, W.H.; Poovendhan, S; Mou, D.F.; Tsai, W.S.; Tsai, C.W. Impacts of coingesting two tomato-infecting begomoviruses on virus infection in Bemisia tabaci and vector transmission. Entomol. Gen. 2024, in press Mahatma, L.; Pawar, D.; Patel, V.; Patel, H.; Patel, N.; Patel, R.; Mahatma, M. Insight in seed transmission of begomoviruses. Academia Letters 2021, 2. McLaughlin, A.A.; Hanley-Bowdoin, L.; Kennedy, G.G.; Jacobson, A.L. Vector acquisition and co-inoculation of two plant viruses influences transmission, infection, and replication in new hosts. Sci. Rep. 2022, 12, 20355. Medina-Ramos, G. Co-transmission of pepper huasteco pellow vein virus and pepper golden nosaic virus in Chili Pepper by Bennisia tabaci (Genn.). J. Entomol. 2008, 5, 176–184. Morales, F. J.; Jones, P. G. The ecology and epidemiology of whitefly-transmitted viruses in Latin America. Virus Res. 2004, 100, 57–65. Morales, F.J.; Anderson, P.K. The emergence and dissemination of whitefly-transmitted geminiviruses in Latin America. Arch. Virol. 2001, 146, 415–441. Moreno-Delafuente, A.; Garzo, E.; Moreno, A.; Fereres, A. A plant virus manipulates the behavior of its whitefly vector to enhance its transmission efficiency and spread. PLoS ONE 2013, 8, e61543. Naranjo, S.E.; Castle, S.J.; De Barro, P.J.; Liu, S.S. Population dynamics, demography, dispersal and spread of Bemisia tabaci. Bemisia: Bionomics and management of a global pest 2010, 185–226. Navas-Castillo, J.; Fiallo-Olivé, E.; Sánchez-Campos, S. Emerging virus diseases transmitted by whiteflies. Annu. Rev. Phytopathol. 2011, 49, 219–248. Ng, James C.K.; Bryce W.F. Virus-vector interactions mediating nonpersistent and semipersistent transmission of plant viruses. Annu. Rev. Phytopathol. 2006, 44, 183–212. Noris, E.; Miozzi, L. Real-time PCR protocols for the quantification of the begomovirus tomato yellow leaf curl Sardinia virus in tomato plants and in its insect vector. Methods Mol. Biol. 2015, 1236, 61–72. Ogden, A.J.; Boukari, W.; Nava, A.; Lucinda, N.; Sunter, G.; Curtis, W. R., ...; Polston, J.E. Characterization of local and systemic impact of whitefly (Bemisia tabaci) feeding and whitefly-transmitted tomato mottle virus infection on tomato leaves by comprehensive proteomics. Int. J. Mol. Sci. 2020, 21, 7241. Otim-Nape, G.W.; Bua, A.; Thresh, J.M.; Baguma, Y.; Ogwal, S.; Ssemakula, G.N.; Acola, G.; Byabakama, B.; Colvin, J; Cooter, R.J.; Martin, A. The current pandemic of cassava mosaic virus disease in East Africa and its control. Publication No. 100 Chatham, UK, NRI/NARO 2000 Pakkianathan, B.C.; Kontsedalov, S.; Lebedev, G.; Mahadav, A.; Zeidan, M.; Czosnek, H.; Ghanim, M. Replication of tomato yellow leaf curl virus in its whitefly vector, Bemisia tabaci. Virol. J. 2015, 89, 9791–9803. Polston, J.E.; Anderson, P.K.; Polston, J.E.; Anderson, P.K. The emergence of whitefly-transmitted geminiviruses in tomato in the western hemisphere. Plant disease 1997, 81, 1358–1369. Rosell-Melé, A.; Eglinton, G.; Pflaumann, U.; Sarnthein, M. Atlantic core-top calibration of the U37K index as a sea-surface palaeotemperature indicator. Geochim. Cosmochim. Acta. 1995, 59, 3099–3107. Roy B.; Chakraborty P.; Ghosh A. How many begomovirus copies are acquired and inoculated by its vector, whitefly (Bemisia tabaci) during feeding? PLoS ONE 2021, 16, e0258933. Sánchez-Campos, S.; Rodríguez-Negrete, E.; Cruzado, L.; Grande-Pérez, A.; Bejarano, E.R.; Navas-Castillo, J.; Moriones, E. Tomato yellow leaf curl virus: no evidence for replication in the insect vector Bemisia tabaci. Sci. Rep. 2016, 30942. Sastry, S.B.S.; Balasubramanyam, K. Optical and electrical properties of RbI: Pb2+ crystals. J. Phys. C: Solid State Phys. 1978, 11, 4213. Shi, J.; Deng, G.; Ma, S.; Zeng, X.; Yin, X.; Li, M.; Zhang, B.; Cui, P.; Chen, Y.; Yang, H.; Wan, X. Rapid evolution of H7N9 highly pathogenic viruses that emerged in China in 2017. Cell Host & microbe. 2018, 24, 558–568. Stafford, C.A.; Walker, G. P.; Ullman, D. E. Hitching a ride: vector feeding and virus transmission. Commun. Integr. Biol. 2012, 5, 43–49. Sujatha, E.R.; Atchaya, S.; Sivasaran, A.; Keerdthe, R.S. Enhancing the geotechnical properties of soil using xanthan gum—An eco-friendly alternative to traditional stabilizers. Bull. Eng. Geol. 2021, 80,1157–1167. Sisodia, P.; Mahatma, L. Detection of bhendi yellow vein mosaic virus (BYVMV) from the different parts of bhendi [Abelmoschus esculentus (L.) Moench] plant, flower and seed. Int. J. Curr. Microbiol. Appl. Sci. 2020, 9, 389–395. Sooryanarain, H.; Elankumaran, S. Environmental role in influenza virus outbreaks. Annu. Rev. Anim. Biosc. 2015, 3, 347–373. Varma, A.; Malathi, V.G. Emerging geminivirus problems: a serious threat to crop production. Ann. Appl. Biol. 2003, 142, 145–164. Wang, H.L.; Lei, T.; Wang, X.W.; Cameron, S.; Navas-Castillo, J.; Liu, Y.Q.; Maruthi, M.N.; Omongo, C.A.; Delatte, H.; Lee, K.Y.; ...; Liu, S.S. A comprehensive framework for the delimitation of species within the Bemisia tabaci cryptic complex, a global pest-species group. Insect Sci. 2024, 0, 1–22. Weng, S.H.; Tsai, W.S.; Kenyon, L.; Tsai, C.W. Different transmission efficiencies may drive displacement of tomato begomoviruses in the fields in Taiwan. Ann. Appl. Biol. 2015, 166, 321–330. Polston, J. E.; Anderson, P. L. The emergence of whitefly transmitted geminiviruses in tomato in the western hemisphere. Plant Dis. 1997, 81, 1358–1369. Wu, H.Y.; Li W.H.; Weng S.H.; Tsai W.S.; Tsai C.W. Differential effects of two tomato begomoviruses on the life history and feeding preference of Bemisia tabaci. Insects 2023, 14, 870. Weng, S.H.; Tsai, W.S.; Kenyon, L.; Tsai, C.W. Different transmission efficiencies may drive displacement of tomato begomoviruses in the fields in Taiwan. Ann. Appl. Biol. 2015, 166, 321–330. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94088 | - |
| dc.description.abstract | 番茄黃化捲葉病毒是一群嚴重威脅全球番茄生產的病毒。在台灣番茄田間最常見的病毒為番茄黃化捲葉泰國病毒 (tomato yellow leaf curl Thailand virus, TYLCTHV) 與番茄捲葉臺灣病毒 (tomato leaf curl Taiwan virus, ToLCTV),大約40%有病徵的番茄植株被這兩種病毒感染。由於這群病毒均僅依賴菸草粉蝨 (Bemisia tabaci) 傳播,因此菸草粉蝨與病毒之間的相互作用對病毒的傳播和流行有重要影響。本研究的目的是檢驗:1)粉蝨取食時間對菸草粉蝨獲得TYLCTHV和ToLCTV的影響;2)病源株病毒量對菸草粉蝨獲得TYLCTHV和ToLCTV的影響;3)複合感染病源植株的TYLCTHV和ToLCTV比例對菸草粉蝨獲得病毒的影響。結果顯示,在單一和複合感染植物上,TYLCTHV和ToLCTV在菸草粉蝨中腸和主唾腺的病毒量增加隨著獲毒時間的而增加,且在48 小時前病毒量已達到平原期。無論是在單一還是複合感染植物中,在整個獲毒期間TYLCTHV在中腸和主唾腺中的病毒量均顯著高於ToLCTV。此外,菸草粉蝨中腸的 TYLCTHV 與 ToLCTV 病毒量增加皆隨病源植株病毒量而增加,而主唾腺的病毒量也顯示類似的結果。最後,無論複合感染病源植物中的病毒比例如何,菸草粉蝨的中腸和主唾腺獲得TYLCTHV的效率均高於ToLCTV。這些發現突顯了TYLCTHV在獲毒和在粉蝨體內移動過程中的優勢。研究結果將有助於制定和實施綜合病害管理(IDM)計畫,如利用殺蟲劑或忌避劑減少粉蝨取食時間、移除病株以減少病源植物、使用抗病毒的植物品系以降低罹病植株中的病毒量、利用生物刺激素或栽培管理強化植物的抗病毒能力。 | zh_TW |
| dc.description.abstract | Tomato yellow leaf curl viruses are a group of viruses that seriously threaten global tomato production. In Taiwan, the most common viruses in the tomato field are tomato yellow leaf curl Thailand virus (TYLCTHV) and tomato leaf curl Taiwan virus (ToLCTV) are, with about 40% of symtomatic plants infected by both viruses. Since these viruses only rely on Bemisia tabaci for transmission, the interaction between whiteflies and the viruses has an important impact on the spread and prevalence of the viruses. The objectives of this study were to examine: 1) the effects of feeding time on the acquisition of TYLCTHV and ToLCTV by B. tabaci; 2) the effects of viral load of virus source plants on the acquisition of TYLCTHV and ToLCTV by B. tabaci; 3) the effects of the ratios of TYLCTHV and ToLCTV in coinfected source plants on virus acquisition by B. tabaci. The results showed that the titers of TYLCTHV and ToLCTV in the midgut and primary salivary gland (PSG) of B. tabaci increased with acquisition time on both single and coinfected plants, and the titers of viruses reached plateau before 48 h. The titers of TYLCTHV in the midgut and PSG were significantly higher than those of ToLCTV throughout the feeding period on both single and coinfected plants. Further, in the whitefly’s midgut, the titers of TYLCTHV and ToLCTV increased as the viral load in tomato plants increased, and similar results were obtained in the whitefly’s PSG. Last, regardless of the virus ratio in coinfected source plants, the midgut and PSG of whitefly acquired TYLCTHV more efficiently than ToLCTV. These findings highlight the advantages of TYLCTHV over ToLCTV in the process of virus acquisition and translocation. The results will apply to developing and implementing integrated disease management (IDM) program, such as using insecticides or repellents to reduce the feeding time of whiteflies, removing diseased plants to decrease source plants, using virus-resistant plant varieties to lower the virus load in infected plants, using biostimulants or cultivation management to enhance the plant's resistance to viruses. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:37:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:37:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iii Abstract iv Contents vi List of Figures viii 1. Introduction 1 2. Materials and methods 6 2.1. Bemisia tabaci MEAM1, TYLCTHV, ToLCTV, chinese kale, and tomato plants 6 2.2. DNA crude extraction from tomato plants 7 2.3. Polymerase chain reaction (PCR) 7 2.4 Effect of acquisition access period on virus accumulation in B. tabaci 8 2.5 Effect of virus load of source plants on virus accumulation in B. tabaci 9 2.6 Effect of virus ratio in coinfected source plants on virus accumulation in B. tabaci 10 2.7 DNA extraction from tomato plants 11 2.8 DNA extraction from whitefly organs 11 2.9 Quantitative real-time PCR (qPCR) 12 2.10 Statistical analysis 13 3. Results 15 3.1. Effect of acquisition access period on virus accumulation in B. tabaci 15 3.1.1.Single-infected leaves 15 3.1.2.Coinfected leaves 16 3.2. Effect of viral load of source plants on virus accumulation in B. tabaci 17 3.2.1.Midgut 17 3.2.2.Primary salivary gland (PSG) 19 3.3. Effect of virus ratio in coinfected source plants on virus accumulation in B. tabaci 20 3.3.1.Midgut 20 3.3.2.Primary salivary gland (PSG) 20 4. Discussion 22 5. References 30 | - |
| dc.language.iso | en | - |
| dc.subject | 菸草粉蝨 | zh_TW |
| dc.subject | 番茄 | zh_TW |
| dc.subject | 番茄黃化捲葉病毒 | zh_TW |
| dc.subject | 病毒-病媒昆蟲的交互作用 | zh_TW |
| dc.subject | 共感染 | zh_TW |
| dc.subject | virus-vector interaction | en |
| dc.subject | tomato | en |
| dc.subject | tomato yellow leaf curl viruses | en |
| dc.subject | coinfection | en |
| dc.subject | Bemisia tabaci | en |
| dc.title | 影響菸草粉蝨取食獲得TYLCTHV和ToLCTV的生物因子 | zh_TW |
| dc.title | Biotic Factors Affecting the Acquisition of Tomato Yellow Leaf Curl Thailand Virus (TYLCTHV) and Tomato Leaf Curl Taiwan Virus (ToLCTV) by Bemisia tabaci MEAM1 | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃莉欣;林柏安 | zh_TW |
| dc.contributor.oralexamcommittee | Li-Hsin Huang;Po- An Lin | en |
| dc.subject.keyword | 菸草粉蝨,番茄,番茄黃化捲葉病毒,病毒-病媒昆蟲的交互作用,共感染, | zh_TW |
| dc.subject.keyword | Bemisia tabaci,tomato,tomato yellow leaf curl viruses,virus-vector interaction,coinfection, | en |
| dc.relation.page | 49 | - |
| dc.identifier.doi | 10.6342/NTU202403600 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-09 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 昆蟲學系 | - |
| 顯示於系所單位: | 昆蟲學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 1.48 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
