請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94085
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 徐澔德 | zh_TW |
dc.contributor.advisor | J Bruce H. Shyu | en |
dc.contributor.author | 蘇聖天 | zh_TW |
dc.contributor.author | Sheng-Tien Su | en |
dc.date.accessioned | 2024-08-14T16:36:56Z | - |
dc.date.available | 2024-08-15 | - |
dc.date.copyright | 2024-08-13 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-07 | - |
dc.identifier.citation | 王天送 (2003)。台灣地區露天開採礦場災害防救之研究。國立臺北科技大學土木與防災技術研究所碩士論文,共109頁。
名倉真悟(2022)。世界第一簡單無人機。世茂,新北市,共224頁。 交通部民用航空局 (2022)。遙控無人機學科測驗指南。交通部民用航空局飛航標準組(編號:AC 107-004B)。 何春蓀 (1990)。普通地質學。五南,臺北市,共751頁。 余騰鐸(2021)。應用地基合成孔徑雷達干涉技術於邊坡崩塌預警系統建置。水保技術,15(3),36-37頁。 林淑媛 (2003)。地形地質均質區劃分與山崩因子探討。國立中央大學應用地質研究所碩士論文,共140頁。 林錫宏,紀宗吉,費立沅 (2016年8月)。掌握山崩的前兆。科學月刊,524,26-33頁。 張弼超 (2005)。運用羅吉斯迴歸法進行山崩潛感分析-以臺灣中部國姓地區為例。國立中央大學應用地質研究所碩士論文,共134頁。 臺灣鑛業史編篡委員會 (1969)。臺灣鑛業史上冊。臺灣鑛業史編篡委員會,臺北市,共994頁。 臺灣鑛業史續三冊編篡委員會 (2008)。臺灣鑛業史續三冊。中華民國鑛業協進會,臺北市,共1054頁。 蔡雨澄 (2012)。極端降雨下之山崩潛感分析-以莫拉克颱風誘發山崩為例。國立中央大學應用地質研究所碩士論文,共144頁。 Agisoft LLC., (2024). Agisoft Metashape Pro user manual-Professional edition, version 2.1. Agisoft LLC, 231 p. Bay, H., Ess, A., Tuytelaars, T., Gool, L. V., (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346-359. https://doi.org/10.1016/j.cviu.2007.09.014 Bemis, S.P., Micklethwaite, S., Turner, D., James, M.R., Akciz, S., Thiele, S.T., Bangash, H.A., (2014). Ground-based and UAV-based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology. Journal of Structural Geology, 69(A), 163-78. https://doi.org/10.1016/j.jsg.2014.10.007 Eisenbeiss, H., (2009). UAV photogrammetry. Ph. D. Thesis, Dresden University of Technology, 236 p. Eltner, A., Kaiser, A., Castillo, C., Rock, G., Neugirg, F., Abellan, A., (2016). Image-based surface reconstruction in geomorphometry - merits, limits and developments. Earth Surface Dynamics, 4(2), 359-389. https://doi.org/10.5194/esurf-4-359-2016 Eltner, A., Sofia, G., (2020). Structure from motion photogrammetric technique. Developments in Earth Surface Processes, 23, 1-24. https://doi. org/10.1016/B978-0-444-64177-9.00001-1. Furukawa, Y., Ponce, J., (2007). Accurate, Dense, and Robust Multi-View Stereopsis. 2007 IEEE Conference on Computer Vision and Pattern Recognition, 1-8. https://doi.org/10.1109/CVPR.2007. 383246 Gerke, M., Przybilla, H.-J., (2016). Accuracy Analysis of Photogrammetric UAV Image Blocks: Influence of Onboard RTK-GNSS and Cross Flight Patterns. Photogrammetrie-Fernerkundung-Geoinformation, 2016(1), 17-30. https://doi.org/10.1127/pfg/2016/0284 Gibson, J.J., (1957). Optical motions and transformations as stimuli for visual perception. Psychological Review, 64(5), 288–295. https://doi.org/10.1037/h0044277 Gruen, A., (2012). Development and status of image matching in photogrammetry. The Photogrammetric Record, 27(137), 36-57. https://doi.org/10.1111/j.1477-9730.2011.00671.x Hamid, E., (2006). Advanced Analytical Aerial Triangulation. K.N.Toosi, University of Technology, 127 p. Harwin, S., Lucieer, A., Osborn, J., (2015). The impact of the calibration method on the accuracy of point clouds derived using unmanned aerial vehicle multi-view stereopsis. Remote Sensing, 7(9), 11933-11953. Krule, J., (2014, October 24). The Origins of Aerial Photography. Retrieved from https://www.newyorker.com/culture/photo-booth/origins-aerial-photography James, M.R., Robson, S., (2012). Straightforward reconstruction of 3Dsurfaces and topography with a camera: accuracy and geoscience application. Journal of Geophysical Research, 117(F3), 1-17. https://doi.org/10.1029/2011JF002289 James, M.R., Robson, S., (2014). Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surface Process and Landforms, 39(10), 1413-1420. https://doi.org/10.1002/esp.3609 James, M.R., Robson, S., d’Oleire-Oltmanns, S., Niethammer, U., (2017a). Optimising UAV topographic surveys processed with structure-from-motion: ground control quality, quantity and bundle adjustment. Geomorphology, 280, 51-66. https://doi.org/10.1016/j.geomorph.2016.11.021 James, M.R., Robson, S., Smith, M.W., (2017b). 3-D uncertainty-based topographic change detection with structure-from-motion photogrammetry: precision maps for ground control and directly georeferenced surveys. Earth Surface Process and Landforms, 42(12), 1769-1788. https://doi.org/10.1002/esp.4125 James, M.R., Chandler, J.H., Eltner, A., Fraser, C., Miller, P.E., Mills, J.P., Noble, T., Robson, S., Lane, S.N., (2019). Guidelines on the use of structure from motion photogrammetry in geomorphic research. Earth Surface Process and Landforms, 44(10), 2081-2084. https://doi.org/10.1002/esp.4637 Johnson, E.A., (1990). Geology of the Fushun coalfield, Liaoning province, People's Republic of China. International Journal of Coal Geology, 14(3), 217-236. https://doi.org/10.1016/0166-5162(90)90004-I Lee, S.J., Choi, Y.S., (2015a). Topographic Survey at Small-scale Open-pit Mines using a Popular Rotary-wing Unmanned Aerial Vehicle (Drone). Tunnelling and Underground Space Technology, 25(5), 462-469. https://doi.org/10.7474/TUS.2015.25.5.462 Lee, S.J., Choi, Y.S., (2015b). On-site Demonstration of Topographic Surveying Techniques at Open-pit Mines using a Fixed-wing Unmanned Aerial Vehicle (Drone). Tunnelling and Underground Space Technology, 25(6), 527-533. https://doi.org/10.7474/TUS.2015.25.6.527 Lin, A.T., Watts, A.B., Hesselbo, S.P., (2003). Cenozoic stratigraphy and subsidence history of the South China Sea margin in the Taiwan region. Basin Research, 15(4), 453-478. https://doi.org/10.1046/j.1365-2117.2003.00215.x Lowe, D.G., (2004). Distinctive Image Features from Scale-Invariant Keypoints. International Journal of Computer Vision, 60(2), 91-110. https://doi.org/10.1023/B:VISI.0000029664.99615.94 Madjid, M.Y.A., Vandeginste, V., Hampson, G., Jordan, C.J., Booth, A.D., (2018). Drones in carbonate geology: Opportunities and challenges, and application in diagenetic dolomite geobody mapping. Marine and Petroleum Geology, 91, 723-734. https://doi.org/10.1016/j.marpetgeo.2018.02.002 Malet, J.P., Maquaire, O., Calais, E. (2002). The use of Global Positioning System for the continuous monitoring of landslides: application to the Super – Sauze earthflow (Alpes-de-Haute-Provence, France). Geomorphology, 43(1-2), 33-54. https://doi.org/10.1016/S0169-555X(01)00098-8 Maybank, S. (1993). Theory of Reconstruction from Image Motion. Heidelberg: Berlin: Springer-Verlag: New York. Micheletti, N., Chandler, J.H., Lane, S.N., (2014). Investigating the geomorphological potential of freely available and accessible structure-from-motion photogrammetry using a smartphone. Earth Surface Process and Landforms, 40(4), 473-486. https://doi.org/10.1002/esp.3648 Mosbrucker, A.R., Major, J.J., Spicer, K.R., Pitlick, J., (2017). Camera system considerations for geomorphic applications of SfM photogrammetry. Earth Surface Process and Landforms, 42(6), 969-986. https://doi.org/10.1002/esp.4066 Nie, L., Li, Z., Zhang, M., Xu, L., (2015). Deformation characteristics and mechanism of the landslide in West Open-Pit Mine, Fushun, China. Arabian Journal of Geosciences, 8(7), 4457-4468. https://doi.org/10.1007/s12517-014-1560-2 O’Connor, J., Smith, M.J., James, M.R., (2017). Cameras and settings for aerial surveys in the geosciences: optimizing image data. Progress in Physical Geography: Earth and Environment, 41(3), 325-344. https://doi.org/10.1177/0309133317703092 Ohlmacher, G.C., Davis, J.C., (2003). Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69(3-4), 331-343. https://doi.org/10.1016/S0013-7952(03)00069-3 Over, J.R., Ritchie, A.C., Kranenburg, C.J., Brown, J.A., Buscombe, D., Noble, T., Sherwood, C.R., Warrick, J.A., Wernette, P.A., (2021). Processing coastal imagery with Agisoft Metashape Pro Professional Edition, version 1.6-Structure from motion workflow documentation: U.S. Geological Survey Open-File Report 2021-1039, 46 p. https://doi.org/10.3133/ ofr20211039 Polidori, L., (2020). On Laussedat’s contribution to the emergence of photogrammetry. ISPRS International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLIII-B2-2020, 893-899. https://doi.org/10.5194/isprs-archives-XLIII-B2-2020-893-2020 Ragey, L., (1952). The work of Laussedat and education in photogrammetry at the National School of Arts and Crafts, Paris. Photogrammetric Engineering, 18(1), 21-26. Seitz, A.R., Kim, R., Shams, L., (2006). Sound facilitates visual learning. Current Biology, 16(14), 1422-1427. http://dx.doi.org/10.1016/j.cub.2006.05.048 Snavely, N., Seitz, S.M., Szeliski, R., (2006). Photo tourism: exploring photo collections in 3D. ACM Transactions on Graphics, 25(3), 835-846. https://doi.org/10.1145/1141911.1141964 Suh, J.W., Choi, Y.S., (2017). Mapping hazardous mining-induced sinkhole subsidence using unmanned aerial vehicle (drone) photogrammetry. Environmental Earth Sciences, 76(4), 1-12. https://doi.org/10.1007/s12665-017-6458-3 Suppe, J., (1981). Mechanics of mountain building and metamorphism in Taiwan. Memoir of the Geological Society of China, 4, 67-89. Suppe, J., (1984). Kinematics of arB-Bontinent collision, flipping of subduction, and back-arc spreading near Taiwan, Memoir of the Geological Society of China, 6, 21- 33. Teng, L.S., (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949-952. https://doi.org/10.1130/0091-7613(1996)024<0949:ECOTNT>2.3.CO;2 Theodoridou, S., Tokmakidis, K., Skarlatos, D., (2000). Use of Radio-Controlled Model Helicopters in archaeology Surveying and in Building Construction Industry. International Archives of Photogrammetry and Remote Sensing, XXXIII(B5), 825-829. Turner, A.K., Schuster, R.L., (1996) Landslides: Investigation and Mitigation. special report 247, Transportation Research Board, National Academies Press, Washington DC, 673 P. Ullman S. (1979). The interpretation of structure from motion. Proceedings of the Royal Society Lond B Biological Sciences, 203(1153), 405-426. http://doi.org/10.1098/rspb.1979.0006 Ullman S. (1977). Structure from motion (short note). Journal of the Optical Society of America, 67(10), 1400. van Blyenburgh, P., (1999). UAVs: and Overview. Air & Space Europe, 1(5-6), 43-47. Varnes, D.J. (1978). Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: Transportation research board, National Academy of Sciences, Washington DC, 11-33. Vinoth, S., Ajay Kumar, L., Mishra, A.K., (2016). Status and Developments of Slope Monitoring Techniques in Opencast Mines. In: INDOROCK2016, Mumbai-India, 767-781. Von Fieandt, K., Gibson, J.J. (1959). The sensitivity of the eye to two kinds of continuous transformation of a shadow-pattern. Journal of Experimental Psychology, 57(5), 344-347. https://doi.org/10.1037/h0046028 Wallach, H., O'Connell, D.N., (1953). The kinetic depth effect. Journal of Experimental Psychology, 45(4), 205-217. https://doi.org/10.1037/h0056880 Wester-Ebbinghaus, W., (1980). Aerial Photography by radio controlled model helicopter. The Photogrammetric Record, 10(55), 85-92. https://doi.org/10.1111/j.1477-9730.1980.tb00006.x Wheatstone, C., (1838). On some remarkable, and hitherto unobserved, phenomena of binocular vision (Part the first). Philosophical Transactions of the Royal Society of London, 128, 371-394. https://doi.org/10.1098/rstl.1838.0019 Zhang, N.B., Wang, Y.J., Zhao, F., Wang, T., Zhang, K.W., Fan, H.D., Zhou, D.W., Zhang, L.X., Yan, S.Y., Diao, X.P., Song, R., (2024). Monitoring and Analysis of the Collapse at Xinjing Open-Pit Mine, Inner Mongolia, China, Using Multi-Source Remote Sensing. Remote Sensing, 16(993), 1-18. https://doi.org/10.3390/rs16060993 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94085 | - |
dc.description.abstract | 現今我國礦業開發以露天開採的大理石及矽砂為大宗,而露天礦場最主要面臨之災害為落石及崩塌問題,常造成生命與財產損失。為達到以低成本方式對此類災害防範預警之目標,本研究嘗試利用無人飛行載具(Unmanned Aerial Vehicle, UAV)針對礦場邊坡進行其穩定性監測。
位於苗栗縣南庄鄉的桃源興業礦場於2021年1月曾發生東南側邊坡崩塌事故,因此本研究選定該礦場為研究場址,於2021年10月開始,使用無人飛行載具於不同時期拍攝全礦及邊坡。截至2022年11月共進行六次飛行,取得五期影像,並藉由Agisoft Metashape Pro商用套裝軟體提供之運動恢復結構 (Structure from Motion, SfM)技術建置礦場3D點雲及數值高程模型(Digital Elevation Model, DEM),再以ESRI ArcGIS軟體進行不同期影像比對。 根據2022年3月取得之影像與前期比較,本研究發現礦場西北側邊坡有滑動趨勢,配合同年6月進行現地調查,發現該處邊坡出現冠部裂隙、崩崖、蝕溝等山崩前兆現象,隨即將此監測資訊提供礦場業者以進行處置,成功防止崩塌災害再次發生。經處置後,同年10月、11月再度取得兩期影像並進行比對,發現該礦場西北側邊坡目前已無先前大面積滑動之跡象。 本研究結果顯示利用無人飛行載具針對露天礦場邊坡進行監測,或可有效預警礦場邊坡之崩塌災害。由於現今無人飛行載具取得容易,且相關軟體的使用門檻亦不高,將其運用於防範礦場邊坡崩塌災害上,具有很大的應用價值。 | zh_TW |
dc.description.abstract | Nowadays, the mining industry in our country primarily involves the open-pit extraction of marble and silica sand. The main hazards faced by open-pit mines are rockfalls and landslides, which often result in loss of life and property. To achieve the goal of low-cost disaster prevention and early warning for such hazards, this study attempts to utilize Unmanned Aerial Vehicles (UAVs) to monitor the stability of mine slopes.
The Taoyuan Xingye mine, located in Nanzhuang Township, Miaoli County, experienced a landslide on its southeastern slope in January 2021. Therefore, this study selected this mine as the research site. Starting from October 2021, UAVs were used to capture images of the entire mine and its slopes at different periods. By November 2022, six flights were conducted, obtaining five sets of images. These images were processed using the Structure from Motion (SfM) technique provided by Agisoft Metashape Pro to construct multi-period 3D point clouds and Digital Surface Models (DSMs) of the mine. The images from different periods were then compared using ESRI ArcGIS. Comparing images obtained in March 2022 with those from earlier periods, this study found a sliding trend on the northwestern slope of the mine. Combined with an on-site investigation conducted in June of the same year, precursory landslide phenomena such as crown cracks and erosion gullies were observed on the slope. This monitoring information was immediately provided to the mine operators for appropriate action, successfully preventing another landslide disaster. After remediation, two more sets of images were obtained in October and November of the same year for comparison, revealing that the northwestern slope of the mine no longer showed signs of large-scale sliding as observed previously. The results of this study demonstrate that using UAVs to monitor open-pit mine slopes can effectively provide early warnings for landslide hazards. Given that UAVs are now easily obtainable and the related software is relatively easy to use, their application in preventing mine slope landslide disasters holds significant value. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:36:55Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-14T16:36:56Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 論文口試委員審定書 i
誌 謝 iii 摘 要 iv Abstract v 目 次 vii 圖 次 x 表 次 xv 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 7 1.3 研究目標礦場背景與地質概況 7 第二章 文獻回顧 11 2.1 攝影測量 11 2.1.1 早期攝影測量 11 2.1.2 數位攝影測量 12 2.1.3 數位攝影測量流程 13 2.2 無人飛行載具攝影測量 14 2.2.1 無人飛行載具發展歷史 14 2.2.2 多懸翼無人機原理 15 2.2.3 無人飛行載具攝影測量精度影響因子 16 2.3 山崩機制、影響因子與特徵 19 2.3.1 山崩機制 19 2.3.2 山崩影響因子 19 2.3.3 山崩的分類及移動方式 19 2.3.4 潛在山崩地形特徵 20 2.4 無人機攝影測量在礦場的應用 22 第三章 研究方法 24 3.1 研究流程 24 3.2 研究設備 26 3.3 航拍任務準備 28 3.3.1 無人機選擇 29 3.3.2 航拍任務設計 29 3.3.3 航線規劃 32 3.3.4 地面控制點佈置 34 3.3.5 控制點測量 38 3.4 執行飛行任務 39 3.4.1 空域確認 39 3.4.2 天氣資訊確認 39 3.4.3 相關儀器及人力準備 39 3.4.4 起飛前檢查 39 3.4.5 執行飛行任務 39 3.5 飛行後影像處理 40 3.5.1 匯入影像與影像品質挑選 42 3.5.2 鏡頭參數較正 43 3.5.3 影像對齊 44 3.5. 4 匯入地面控制點座標 46 3.5.5 建立密點雲 47 3.5.6 建立三維模型 48 3.6 模型分析 51 第四章 研究結果 52 4.1 野外工作成果 52 4.1.1 第一期影像(2021.10.23) 53 4.1.2 第二期影像(2022.03.29) 56 4.1.3 第三期影像(2022.05.27) 60 4.1.4 第一次野外調查(2022.06.04) 61 4.1.5 第二次野外調查(2022.07.08) 62 4.1.6 第四期影像(2022.08.06) 64 4.1.7 第五期影像(2022.10.01) 67 4.1.8 第六期影像(2022.11.13) 70 4.2 影像處理 73 4.2.1 影像數值高程模型對比 74 4.2.2 剖面繪製 78 第五章 討論 81 5.1 礦場邊坡變化 81 5.1.1 西北側(C區)邊坡變化 81 5.1.2 西南側(B區)邊坡變化 88 5.1.3 東南側(A區)邊坡變化 90 5.2 桃源興業礦場兩次崩塌事件機制討論 98 5.2.1 2022年3月份潛在崩塌事件機制討論 100 5.2.2 2021年1月份崩塌事件機制討論 103 5.3 我國礦場邊坡崩塌的共通性 106 5.3.1 緩衝帶所面臨的問題 106 5.3.2 礦場邊坡坡度所面臨的問題 109 5.4 使用無人飛行載具之優劣 111 第六章 結論與展望 113 參考文獻 114 | - |
dc.language.iso | zh_TW | - |
dc.title | 無人飛行載具於露天礦場邊坡監測之應用 | zh_TW |
dc.title | Application of unmanned aerial vehicles in slope monitoring of open-pit mines | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 王昱;郭昱廷;楊哲銘 | zh_TW |
dc.contributor.oralexamcommittee | Yu Wang;Yu-Ting Kuo;Che-Ming Yang | en |
dc.subject.keyword | 無人飛行載具,數位攝影測量,運動恢復結構,礦場邊坡監測,Agisoft Metashape Pro, | zh_TW |
dc.subject.keyword | Unmanned Aerial Vehicle (UAV),Digital Photogrammetry,Structure from Motion (SfM),Mine Slope Monitoring,Agisoft Metashape Pro, | en |
dc.relation.page | 121 | - |
dc.identifier.doi | 10.6342/NTU202403768 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-10 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 地質科學系 | - |
dc.date.embargo-lift | 2029-08-06 | - |
顯示於系所單位: | 地質科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 26.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。