請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94083完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 詹魁元 | zh_TW |
| dc.contributor.advisor | Kuei-Yuan Chan | en |
| dc.contributor.author | 劉怡葶 | zh_TW |
| dc.contributor.author | YI-TING LIU | en |
| dc.date.accessioned | 2024-08-14T16:36:19Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-13 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | [1] K. Goniewicz, M. Goniewicz, W. Pawłowski, and P. Fiedor, “Road accident rates: strategies and programmes for improving road traffic safety,” European journal of trauma and emergency surgery, vol. 42, pp. 433–438, 2016.
[2] W. H. Organization, Global status report on road safety 2018. World Health Organization, 2019. [3] V. K. Kukkala, J. Tunnell, S. Pasricha, and T. Bradley, “Advanced Driver-Assistance Systems: A path toward autonomous vehicles,” IEEE Consumer Electronics Magazine, vol. 7, no. 5, pp. 18–25, 2018. [4] S. Khastgir, S. Birrell, G. Dhadyalla, H. Sivencrona, and P. Jennings, “Towards increased reliability by objectification of Hazard Analysis and Risk Assessment (HARA) of automated automotive systems,” Safety Science, vol. 99, pp. 166–177, 2017. [5] Advanced Mechanical Technology, Inc., “Autonomous Emergency Braking System Market Research Report Information By Technology (Forward Collision Warning, Dynamic Brake Support, Crash Imminent Braking), By System (Low Speed System, Higher Speed System, Pedestrian System), By Vehicle Type (Passenger Vehicles, Commercial Vehicles) And By Region (North America, Europe, Asia-Pacific, And Rest Of The World) –Market Forecast Till 2032,” WebPage, online available at: https://www.marketresearchfuture.com/reports/autonomous- emergency-braking-system-market-4665; accessed at 18/4/2024. [6] A. Koehler and B. Bertsche, “An approach of fail operational power supply for next generation vehicle powernet architectures,” in Proc. 30th Eur. Saf. Rel. Conf. 15th Probabilistic Saf. Assessment Manage. Conf.(ESREL-PSAM), 2020, pp. 60–67. [7] Road vehicles —Functional safety —Part 3: Concept phase, Std. ISO 26 262- 3:2011, 2011. [8] Road vehicles —Functional safety —Part 3: Concept phase, Std. ISO 26 262- 3:2018, 2018. [9] A. H. M. Rubaiyat, Y. Qin, and H. Alemzadeh, “Experimental resilience assessment of an open-source driving agent,” in 2018 IEEE 23rd Pacific rim international symposium on dependable computing (PRDC). IEEE, 2018, pp. 54–63. [10] J. Cui, L. S. Liew, G. Sabaliauskaite, and F. Zhou, “A review on safety failures, security attacks, and available countermeasures for autonomous vehicles,” Ad Hoc Networks, vol. 90, p. 101823, 2019. [11] K. Ni, N. Ramanathan, M. N. H. Chehade, L. Balzano, S. Nair, S. Zahedi, E. Kohler, G. Pottie, M. Hansen, and M. Srivastava, “Sensor network data fault types,” ACM Transactions on Sensor Networks (TOSN), vol. 5, no. 3, pp. 1–29, 2009. [12] R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler, “Lessons from a sensor network expedition,” in Wireless Sensor Networks: First EuropeanWorkshop, EWSN 2004, Berlin, Germany, January 19-21, 2004. Proceedings 1. Springer, 2004, pp. 307–322. [13] N. Ramanathan, L. Balzano, M. Burt, D. Estrin, T. Harmon, C. Harvey, J. Jay, E. Kohler, S. Rothenberg, and M. Srivastava, “Rapid deployment with confidence: Calibration and fault detection in environmental sensor networks,” 2006. [14] A. Sharma, L. Golubchik, and R. Govindan, “On the prevalence of sensor faults in real-world deployments,” in 2007 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks. IEEE, 2007, pp. 213–222. [15] E. Elnahrawy and B. Nath, “Cleaning and querying noisy sensors,” in Proceedings of the 2nd ACM international conference on Wireless sensor networks and applications, 2003, pp. 78–87. [16] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess, T. Daw- son, P. Buonadonna, D. Gay et al., “A macroscope in the redwoods,” pp. 51–63, 2005. [17] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, “MODIFI: a MODel- implemented fault injection tool,” in Computer Safety, Reliability, and Security: 29th International Conference, SAFECOMP 2010, Vienna, Austria, September 14- 17, 2010. Proceedings 29. Springer, 2010, pp. 210–222. [18] Y. Liu, Y. Peng, B. Wang, S. Yao, and Z. Liu, “Review on cyber-physical systems,” IEEE/CAA Journal of Automatica Sinica, vol. 4, no. 1, pp. 27–40, 2017. [19] L. da Silva Azevedo, D. Parker, M. Walker, Y. Papadopoulos, and R. E. Araújo, “Assisted assignment of automotive safety requirements,” IEEE software, vol. 31, no. 1, pp. 62–68, 2013. [20] G. Bahig and A. El-Kadi, “Formal verification of automotive design in compliance with iso 26262 design verification guidelines,” IEEE Access, vol. 5, pp. 4505–4516, 2017. [21] K. Chitnis, M. Mody, P. Swami, R. Sivaraj, C. Ghone, M. Biju, B. Narayanan, Y. Dutt, and A. Dubey, “Enabling functional safety ASIL compliance for autonomous driving software systems,” Electronic Imaging, vol. 29, pp. 35–40, 2017. [22] L. S. Azevedo, D. Parker, M. Walker, Y. Papadopoulos, and R. E. Araujo, “Automatic decomposition of safety integrity levels: Optimization by tabu search,” in SAFECOMP 2013-Workshop CARS (2nd Workshop on Critical Automotive applications: Robustness & Safety) of the 32nd International Conference on Computer Safety, Reliability and Security, 2013, p. NA. [23] K.-L. Lu and Y.-Y. Chen, “ISO 26262 ASIL-oriented hardware design framework for safety-critical automotive systems,” in 2019 IEEE International Conference on Connected Vehicles and Expo (ICCVE). IEEE, 2019, pp. 1–6. [24] S.-H. Jeon, J.-H. Cho, Y. Jung, S. Park, and T.-M. Han, “Automotive hardware development according to ISO 26262,” in 13th international conference on advanced communication technology (ICACT2011). IEEE, 2011, pp. 588–592. [25] P. Kafka, “The automotive standard iso 26262, the innovative driver for enhanced safety assessment & technology for motor cars,” Procedia Engineering, vol. 45, pp. 2–10, 2012. [26] L. Sun, Y.-F. Li, and E. Zio, “Comparison of the HAZOP, FMEA, FRAM, and STPA methods for the hazard analysis of automatic emergency brake systems,” ASCE- ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, vol. 8, no. 3, p. 031104, 2022. [27] N. G. Leveson, Engineering a safer world: Systems thinking applied to safety. The MIT Press, 2016. [28] A. Abdulkhaleq and S. Wagner, “Experiences with applying STPA to software-intensive systems in the automotive domain,” 2013. [29] W. Young and N. G. Leveson, “Inside Risks An Integrated Approach to Safety and Security Based on Systems Theory,” 2013, accessed: 2024-05-30. [Online]. Available: https://api.semanticscholar.org/CorpusID:9382100 [30] A. Abdulkhaleq, S. Wagner, and N. G. Leveson, “A comprehensive safety engineering approach for software-intensive systems based on STPA,” ArXiv, vol. abs/1612.03109, 2015, accessed: 2024-05-30. [Online]. Available: https://api.semanticscholar.org/CorpusID:2906917 [31] T. Stolte, G. Bagschik, A. Reschka, and M. Maurer, “Hazard analysis and risk assessment for an automated unmanned protective vehicle,” in 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017, pp. 1848–1855. [32] C. Bensaci, Y. Zennir, and D. Pomorski, “A comparative study of STPA hierarchical structures in risk analysis: The case of a complex multi-robot mobile system,” in 2018 2nd European Conference on Electrical Engineering and Computer Science (EECS). IEEE, 2018, pp. 400–405. [33] G. C. Kölln, M. Klicker, and S. Schmidt, “Comparison of hazard analysis methods with regard to the series development of autonomous vehicles,” in 2019 IEEE Intelligent Transportation Systems Conference (ITSC). IEEE, 2019, pp. 2969–2975. [34] S. Friedmann and J. Ott, “Linking of ISO 26262 and System-theoretic Process Analysis,” ATZelectronics worldwide, vol. 16, no. 6, pp. 44–47, 2021. [35] A. Laureshyn, Å. Svensson, and C. Hydén, “Evaluation of traffic safety, based on micro-level behavioural data: Theoretical framework and first implementation,” Accident Analysis & Prevention, vol. 42, no. 6, pp. 1637–1646, 2010. [36] Å. Svensson and C. Hydén, “Estimating the severity of safety related behaviour,”Accident Analysis & Prevention, vol. 38, no. 2, pp. 379–385, 2006. [37] G. A. Davis, “Possible aggregation biases in road safety research and a mechanism approach to accident modeling,” Accident Analysis & Prevention, vol. 36, no. 6, pp. 1119–1127, 2004. [38] E. Hauer, “Cause, effect and regression in road safety: A case study,” Accident Analysis & Prevention, vol. 42, no. 4, pp. 1128–1135, 2010. [39] C. Hydén, “The development of a method for traffic safety evaluation: The swedish traffic conflicts technique,” Bulletin Lund Institute of Technology, Department, no. 70, 1987. [40] N. Kronprasert, C. Sutheerakul, T. Satiennam, and P. Luathep, “Intersection safety assessment using video-based traffic conflict analysis: The case study of Thailand,” Sustainability, vol. 13, no. 22, p. 12722, 2021. [41] F. H. Amundsen and H. O. Larsen, “Traffic conflicts technique-status in norway,” in Proceedings of the 1st Workshop on Traffic Conflicts, Oslo, Norway, 1977. [42] H. Kataoka, T. Suzuki, S. Oikawa, Y. Matsui, and Y. Satoh, “Drive video analysis for the detection of traffic near-miss incidents,” in 2018 IEEE International Conference on robotics and automation (ICRA). IEEE, 2018, pp. 3421–3428. [43] T. Sayed and S. Zein, “Traffic conflict standards for intersections,” Transportation Planning and Technology, vol. 22, no. 4, pp. 309–323, 1999. [44] T. Q. Vuong, “Traffic conflict technique development for traffic safety evaluation under mixed traffic conditions of Developing Countries,” Journal of Traffic and Transportation Engineering, vol. 5, no. 4, pp. 228–235, 2017. [45] A. R. A. Van der Horst, “A time-based analysis of road user behaviour in normal and critical encounters.” 1991. [46] D. Gettman, L. Pu, T. Sayed, S. G. Shelby, S. Energy et al., “Surrogate safety assessment model and validation,” Turner-Fairbank Highway Research Center, Tech. Rep., 2008. [47] A. P. Tarko, “Use of crash surrogates and exceedance statistics to estimate road safety,” Accident Analysis & Prevention, vol. 45, pp. 230–240, 2012. [48] N. Saunier and T. Sayed, “Automated analysis of road safety with video data,” Transportation Research Record, vol. 2019, no. 1, pp. 57–64, 2007. [49] L. Zheng, K. Ismail, and X. Meng, “Traffic conflict techniques for road safety analysis: open questions and some insights,” Canadian journal of civil engineering, vol. 41, no. 7, pp. 633–641, 2014. [50] Å. Svensson, “A method for analysing the traffic process in a safety perspective,” 1998. [51] L. Evans and M. C. Frick, “Mass ratio and relative driver fatality risk in two-vehicle crashes,” Accident Analysis & Prevention, vol. 25, no. 2, pp. 213–224, 1993. [52] L. Evans, “Driver injury and fatality risk in two-car crashes versus mass ratio inferred using Newtonian mechanics,” Accident Analysis & Prevention, vol. 26, no. 5, pp. 609–616, 1994. [53] D. P. Wood and C. K. Simms, “Car size and injury risk: a model for injury risk in frontal collisions,” Accident Analysis & Prevention, vol. 34, no. 1, pp. 93–99, 2002. [54] H. Burg and A. Moser, Handbuch Verkehrsunfallrekonstruktion: Unfallaufnahme—Fahrdynamik—Simulation. Springer, 2007. [55] O. Bagdadi, “Estimation of the severity of safety critical events,” Accident Analysis & Prevention, vol. 50, pp. 167–174, 2013. [56] S. G. Shelby et al., “Delta-V as a measure of traffic conflict severity,” in 3rd International Conference on Road Safety and Simulati. September, 2011, pp. 14–16. [57] D. W. Kononen, C. A. Flannagan, and S. C. Wang, “Identification and validation of a logistic regression model for predicting serious injuries associated with motor vehicle crashes,” Accident Analysis & Prevention, vol. 43, no. 1, pp. 112–122, 2011. [58] A. Laureshyn, T. De Ceunynck, C. Karlsson, Å. Svensson, and S. Daniels, “In search of the severity dimension of traffic events: Extended Delta-V as a traffic conflict indicator,” Accident Analysis & Prevention, vol. 98, pp. 46–56, 2017. [59] T. Gennarelli and E. Wodzin, “Association for the advancement of automotive medicine. The abbreviated injury scale,” 1990. [60] K. L. Loftis, J. Price, and P. J. Gillich, “Evolution of the abbreviated injury scale: 1990–2015,” Traffic injury prevention, vol. 19, no. sup2, pp. S109–S113, 2018. [61] T. A. Gennarelli, E. Wodzin et al., “Abbreviated injury scale 2005: update 2008,” Russ Reeder, vol. 200, p. 2008, 2008. [62] J.-S. Wang, “MAIS (05/08) Injury probability curves as functions of Delta V,” 2022. [63] K. D. Kusano and H. C. Gabler, “Potential occupant injury reduction in pre-crash system equipped vehicles in the striking vehicle of rear-end crashes,” in Annals of Advances in Automotive Medicine/Annual Scientific Conference, vol. 54. Association for the Advancement of Automotive Medicine, 2010, p. 203. [64] S. D. Doecke, J. K. Dutschke, M. R. Baldock, and C. N. Kloeden, “Travel speed and the risk of serious injury in vehicle crashes,” Accident Analysis & Prevention, vol. 161, p. 106359, 2021. [65] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997. [66] G. Juez, E. Amparan, R. Lattarulo, A. Ruíz, J. Pérez, and H. Espinoza, “Early safety assessment of automotive systems using sabotage simulation-based fault injection framework,” in Computer Safety, Reliability, and Security: 36th International Conference, SAFECOMP 2017, Trento, Italy, September 13-15, 2017, Proceedings 36. Springer, 2017, pp. 255–269. [67] H. Ziade, R. A. Ayoubi, R. Velazco et al., “A survey on fault injection techniques,” Int. Arab J. Inf. Technol., vol. 1, no. 2, pp. 171–186, 2004. [68] H. Madeira, M. Rela, F. Moreira, and J. G. Silva, “RIFLE: A general purpose pin- level fault injector,” in Dependable Computing—EDCC-1: First European Dependable Computing Conference Berlin, Germany, October 4–6, 1994 Proceedings 1. Springer, 1994, pp. 197–216. [69] G. S. Choi and R. K. Iyer, “FOCUS: An experimental environment for fault sensitivity analysis,” IEEE Transactions on Computers, vol. 41, no. 12, pp. 1515–1526, 1992. [70] J. Karlsson, P. Liden, P. Dahlgren, R. Johansson, and U. Gunneflo, “Using heavy-ion radiation to validate fault-handling mechanisms,” IEEE micro, vol. 14, no. 1, pp. 8–23, 1994. [71] S. Jha, S. S. Banerjee, J. Cyriac, Z. T. Kalbarczyk, and R. K. Iyer, “Avfi: Fault injection for autonomous vehicles,” in 2018 48th annual ieee/ifip international conference on dependable systems and networks workshops (dsn-w). IEEE, 2018, pp. 55–56. [72] G. A. Kanawati, N. A. Kanawati, and J. A. Abraham, “FERRARI: A Tool for The Validation of System Dependability Properties.” in FTCS, 1992, pp. 336–344. [73] T. K. Tsai, R. K. Iyer, and D. Jewitt, “An approach towards benchmarking of fault-tolerant commercial systems,” in Proceedings of annual symposium on fault tolerant computing. IEEE, 1996, pp. 314–323. [74] Z. Segall, D. Vrsalovic, D. Siewiorek, D. Ysskin, J. Kownacki, J. Barton, R. Dancey, A. Robinson, and T. Lin, “Fiat-fault injection based automated testing environment,” in Twenty-Fifth International Symposium on Fault-Tolerant Computing, 1995,’ Highlights from Twenty-Five Years’. IEEE, 1995, p. 394. [75] S. Trivedi, “Using Simulation-Based Testing to Evaluate the Safety Impact of Network Disturbances for Remote Driving,” 2023. [76] V. Sieh, O. Tschache, and F. Balbach, “VERIFY: Evaluation of reliability using VHDL-models with embedded fault descriptions,” in Proceedings of IEEE 27th International Symposium on Fault Tolerant Computing. IEEE, 1997, pp. 32–36. [77] J. C. Baraza, J. Gracia, D. Gil, and P. J. Gil, “A prototype of a VHDL-based fault injection tool,” in Proceedings IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems. IEEE, 2000, pp. 396–404. [78] L. Entrena, C. López, and E. Olías, “Automatic generation of fault tolerant VHDL designs in RTL,” in FDL (Forum on Design Languages), 2001. [79] L. Entrena, C. López-Ongil, M. García-Valderas, M. Portela-García, and M. Nicolaidis, Hardware Fault Injection. Boston, MA: Springer US, 2011, pp. 141–166, accessed: 2024-05-30. [Online]. Available: https://doi.org/10.1007/978- 1-4419-6993-4_6 [80] M. Kooli and G. Di Natale, “A survey on simulation-based fault injection tools for complex systems,” in 2014 9th IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS). IEEE, 2014, pp. 1–6. [81] D. Ferraretto and G. Pravadelli, “Simulation-based fault injection with QEMU for speeding-up dependability analysis of embedded software,” Journal of Electronic Testing, vol. 32, pp. 43–57, 2016. [82] A. M. Amendola, L. Impagliazzo, P. Marmo, and F. Poli, “Experimental evaluation of computer-based railway control systems,” in Proceedings of IEEE 27th International Symposium on Fault Tolerant Computing. IEEE, 1997, pp. 380–384. [83] G. Juez, E. Amparan, R. Lattarulo, J. P. Rastelli, A. Ruiz, and H. Espinoza, “Safety assessment of automated vehicle functions by simulation-based fault injection,” in 2017 IEEE International Conference on Vehicular Electronics and Safety (ICVES). IEEE, 2017, pp. 214–219. [84] T. Gillespie, Fundamentals of Vehicle Dynamics. Warrendale, PA: Society of Automotive Engineers (SAE), 1992. [85] EUROPEAN NEW CAR ASSESSMENT PROGRAMME (Euro NCAP) TEST PRO- TOCOL–AEB VRU systems, Euro NCAP, Brussels, Belgium, Feb. 2019, accessed: 2024-06-09. [86] W. G. Najm, J. D. Smith, M. Yanagisawa et al., “Pre-crash scenario typology for crash avoidance research,” United States. Department of Transportation. National Highway Traffic Safety …, Tech. Rep., 2007. [87] MathWorks, “Autonomous Emergency Braking with Sensor Fusion - MAT- LAB & Simulink,” https://www.mathworks.com/help/driving/ug/autonomous- emergency-braking-with-sensor-fusion.html, 2024, accessed: 2024-05-30. [88] T. Fabarisov, I. Mamaev, A. Morozov, and K. Janschek, “Model-based fault injection experiments for the safety analysis of exoskeleton system,” arXiv preprint arXiv:2101.01283, 2021. [89] MathWorks, “Simulink Fault Analyzer - MATLAB - MathWorks,” 2024, accessed: 2024-05-26. [Online]. Available: https://www.mathworks.com/products/simulink- fault-analyzer.html [90] D. Gettman and L. Head, “Surrogate safety measures from traffic simulation models,” Transportation research record, vol. 1840, no. 1, pp. 104–115, 2003. [91] Y. Peng, Y. Chen, J. Yang, D. Otte, and R. Willinger, “A study of pedestrian and bicyclist exposure to head injury in passenger car collisions based on accident data and simulations,” Safety science, vol. 50, no. 9, pp. 1749–1759, 2012. [92] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: Association for Computing Machinery, 2016, p. 785–794. [Online]. Available: https://doi.org/10.1145/2939672.2939785 [93] L. M. Demajo, V. Vella, and A. Dingli, “Explainable ai for interpretable credit scoring,” arXiv preprint arXiv:2012.03749, 2020. [94] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of online learning and an application to boosting,” Journal of computer and system sciences, vol. 55, no. 1, pp. 119–139, 1997. [95] V. Vovk, “Kernel ridge regression,” in Empirical inference: Festschrift in honor of vladimir n. vapnik. Springer, 2013, pp. 105–116. [96] Y. Freund, R. E. Schapire et al., “Experiments with a new boosting algorithm,” in icml, vol. 96. Citeseer, 1996, pp. 148–156. [97] D. H. Wolpert, “Stacked generalization,” Neural networks, vol. 5, no. 2, pp. 241– 259, 1992. [98] S. Džeroski and B. Ženko, “Is combining classifiers with stacking better than selecting the best one?” Machine learning, vol. 54, pp. 255–273, 2004. [99] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn: Machine Learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825– 2830, 2011. [100] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’16. New York, NY, USA: ACM, 2016, pp. 785–794. [Online]. Available: http://doi.acm.org/10.1145/2939672.2939785 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94083 | - |
| dc.description.abstract | 本研究提出一種使用故障注入和傷害等級模型來評估自動煞車系統(AEB)風險的方法。研究的主要目標是建立一套針對先進駕駛輔助系統/自動駕駛系統的量化風險評估方法。研究方法包括構建AEB系統和故障模型,其中包括感測器、控制器和通訊網絡的故障注入模型;採用基於系統理論過程分析(STPA)的策略性故障注入方法,以提高危害事件觸發效率;在歐盟新車安全評鑑協會之測試場景下進行模擬,包括行人縱向行走和後車追尾兩種情況;使用擴展Delta-V估算速度變化量,並結合過往研究和新開發的傷害等級模型,評估危害事件的嚴重性和可控性。
主要研究結果顯示,基於STPA的故障注入方法能觸發更多危害事件,且形成更危險的情況。通訊網絡延遲、控制器運算位元翻轉和運算延遲是導致最多危害事件的三種故障類型。使用機器學習方法(如隨機森林、自適應增強和堆疊模型)開發的新傷害等級模型表現較好。大多數單一故障導致的危害事件嚴重程度為無傷害(AIS 0)。在有人為操作的情況下,大多數危害事件被評估為完全可控(C0)。 本研究為AEB系統的風險評估提供了一種新的量化方法,可幫助提高系統安全性。未來研究可進一步改進傷害等級模型和擴展到更多場景,以更全面地評估自動駕駛系統的安全性。 | zh_TW |
| dc.description.abstract | This study proposes a method for evaluating the risks of Automated Emergency Braking (AEB) systems using fault injection and injury severity models. The main objective is to establish a quantitative risk assessment approach for advanced driver assistance systems and autonomous driving systems. The research methodology includes constructing AEB system and fault models, encompassing fault injection models for sensors, controllers, and communication networks; adopting a strategic fault injection method based on System-Theoretic Process Analysis (STPA) to enhance the efficiency of hazard event triggering; conducting simulations in Euro NCAP test scenarios, including pedestrian walking and rear-end collision situations; and using extended Delta-V to estimate velocity changes, combined with existing research and newly developed injury severity models to assess the severity and controllability of hazard events.
The main findings indicate that the STPA-based fault injection method triggers more hazard events and creates more dangerous situations. Communication network delays, controller bit-flip errors, and computational delays are the three fault types causing the most hazard events. New injury severity models developed using machine learning methods (such as Random Forest, AdaBoost, and Stacking Classifier) show better performance. Most single faults lead to hazard events with no injuries (AIS 0). In scenarios with human operation, most hazard events are assessed as controllable in general (C0). This study provides a new quantitative method for risk assessment of AEB systems, which can help improve system safety. Future research could further improve the injury severity models and extend the approach to more scenarios, enabling a more comprehensive safety assessment of autonomous driving systems. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:36:19Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:36:19Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iv Abstract v 目次 vii 圖次 ix 表次 xi 第一章 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 2 1.3 論文架構 3 第二章 文獻回顧 4 2.1 自動駕駛組件常見之故障現象 4 2.2 ISO 26262 道路車輛功能安全國際標準概述 7 2.2.1 簡介 7 2.2.2 汽車安全完整性等級 8 2.3 危害分析與風險評估 10 2.3.1 危害分析方法 10 2.3.2 風險評估方法 12 2.4 故障注入方法 19 2.5 小結 20 第三章 研究方法 22 3.1 系統模型建構 23 3.1.1 系統架構 23 3.1.2 車輛動態與道路環境模型 23 3.1.3 系統控制策略 28 3.1.4 故障注入模型 31 3.2 基於系統理論過程分析的故障注入方法 34 3.2.1 系統理論過程危害分析 34 3.2.2 基於STPA的故障注入方法 35 3.3 模擬流程說明 39 3.4 危害事件風險評估 42 3.4.1 速度變化量之估計方法 42 3.4.2 傷害等級模型建構 43 3.4.3 危害事件嚴重型和可控性評估 58 3.5 小結 60 第四章 模擬結果與討論 61 4.1 故障注入方法之比較 61 4.2 碰撞速度變化量估計結果 70 4.3 傷害等級模型效能評估 70 4.4 危害事件風險評估 75 4.4.1 危害事件的嚴重性評估 75 4.4.2 危害事件之可控性評估 81 4.5 失效對策方法探討 86 第五章 結論與未來工作 87 5.1 研究成果與貢獻 87 5.2 未來工作 88 參考文獻 89 附錄A 附錄 100 A.1 NASS/CDS 資料資訊 100 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 自動煞車系統 | zh_TW |
| dc.subject | 故障注入 | zh_TW |
| dc.subject | 基於機器學習之傷害等級模型 | zh_TW |
| dc.subject | Delta-V | zh_TW |
| dc.subject | 危害事件嚴重性與可控性量化評估方法 | zh_TW |
| dc.subject | machine learning-based injury severity model | en |
| dc.subject | quantitative assessment of hazard event severity and controllability | en |
| dc.subject | Automated Emergency Braking (AEB) system | en |
| dc.subject | fault injection | en |
| dc.subject | Delta-V | en |
| dc.title | 以故障注入與傷害等級模型評估自動煞車系統之風險 | zh_TW |
| dc.title | Risk Assessment of Automated Braking Systems Using Fault Injection and Injury Severity Models | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳文方;蘇偉儁 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Fang Wu;Wei-Jiun Su | en |
| dc.subject.keyword | 自動煞車系統,故障注入,基於機器學習之傷害等級模型,Delta-V,危害事件嚴重性與可控性量化評估方法, | zh_TW |
| dc.subject.keyword | Automated Emergency Braking (AEB) system,fault injection,machine learning-based injury severity model,Delta-V,quantitative assessment of hazard event severity and controllability, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202403590 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 工業工程學研究所 | - |
| 顯示於系所單位: | 工業工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 20.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
