請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94080
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 謝馬利歐 | zh_TW |
dc.contributor.advisor | Mario Hofmann | en |
dc.contributor.author | 莊儒哲 | zh_TW |
dc.contributor.author | Chuang Ju-Che | en |
dc.date.accessioned | 2024-08-14T16:35:25Z | - |
dc.date.available | 2024-08-15 | - |
dc.date.copyright | 2024-08-13 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-01 | - |
dc.identifier.citation | 1. Das, S., et al., Beyond Graphene: Progress in Novel Two-Dimensional Materials and van der Waals Solids. Annual Review of Materials Research, 2015. 45(Volume 45, 2015): p. 1-27.
2. Akinwande, D., et al., Graphene and two-dimensional materials for silicon technology. Nature, 2019. 573(7775): p. 507-518. 3. Liu, A., et al., The Roadmap of 2D Materials and Devices Toward Chips. Nano-Micro Letters, 2024. 16(1): p. 119. 4. Ajayan, P., P. Kim, and K. Banerjee, Two-dimensional van der Waals materials. Physics Today, 2016. 69(9): p. 38-44. 5. Wang, Q.H., et al., Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nature Nanotechnology, 2012. 7(11): p. 699-712. 6. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature Nanotechnology, 2011. 6(3): p. 147-150. 7. Das, S. and J. Appenzeller, WSe2 field effect transistors with enhanced ambipolar characteristics. Applied Physics Letters, 2013. 103(10). 8. Chuang, H.-J., et al., Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors. Nano Letters, 2016. 16(3): p. 1896-1902. 9. Huang, J.-K., et al., Large-Area Synthesis of Highly Crystalline WSe2 Monolayers and Device Applications. ACS Nano, 2014. 8(1): p. 923-930. 10. Gao, H., et al., Advancing Nanoelectronics Applications: Progress in Non-van der Waals 2D Materials. ACS Nano, 2024. 18(26): p. 16343-16358. 11. Chin, H.-T., et al., Tungsten Nitride (W5N6): An Ultraresilient 2D Semimetal. Nano Letters, 2024. 24(1): p. 67-73. 12. Chin, H.-T., et al., Confined VLS Growth of Single-Layer 2D Tungsten Nitrides. ACS Applied Materials & Interfaces, 2024. 16(1): p. 1705-1711. 13. Wang, H., et al., Elastic Properties of 2D Ultrathin Tungsten Nitride Crystals Grown by Chemical Vapor Deposition. Advanced Functional Materials, 2019. 29(31): p. 1902663. 14. Cao, J., et al., Realization of 2D crystalline metal nitrides via selective atomic substitution. Science Advances, 2020. 6(2): p. eaax8784. 15. del Corro, E., et al., Excited Excitonic States in 1L, 2L, 3L, and Bulk WSe2 Observed by Resonant Raman Spectroscopy. ACS Nano, 2014. 8(9): p. 9629-9635. 16. Campbell, P.M., et al., Field-effect transistors based on wafer-scale, highly uniform few-layer p-type WSe2. Nanoscale, 2016. 8(4): p. 2268-2276. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94080 | - |
dc.description.abstract | 自2004年石墨烯被發現以來,對二維材料(2D材料)的研究激增,促使了各種材料的發展,如過渡金屬二硫化物(TMDCs)、六方氮化硼(h-BN)和黑磷等。這些材料可以剝離成原子薄片,並且具有獨特的性質。在過去的二十年中,2D材料成為一個充滿活力的研究領域,因其獨特的電子、光學和機械特性,為量子資訊、奈米電子學、和可撓性電路等領域帶來了可預期重大進展的潛力。
我們的研究成功地利用限制的固相-液相-氣相生長方法合成了非凡德瓦二維材料氮化鎢(W5N6)。我們通過引入氬氣反應離子蝕刻(RIE)氧化原始的W5N6成為一種中間材料WOxNy,隨後使用化學氣相沉積(CVD)將其轉換為多層二硒化鎢(AS-WSe2)。拉曼光譜、XPS、TEM和AFM 等表徵技術確認了 AS-WSe2的多層特性,以及其三層組成。我們還研究了氫氣和溫度對原子置換過程的影響。這種穩定的多層 TMDCs 合成方法為開發具有最小接觸電阻的二維場效電晶體及其未來應用開啟了新的可能性。 | zh_TW |
dc.description.abstract | Since the discovery of graphene in 2004, research on two-dimensional (2D) materials has surged, leading to the development of diverse materials such as transition-metal dichalcogenides (TMDCs), hexagonal boron nitride (h-BN), and black phosphorus. These materials, which can be exfoliated into atomically thin sheets, offer unique properties. Over the past two decades, 2D materials have become a vibrant field of study, promising significant advancements in nanoelectronics, quantum information, and flexible electronics due to their unique electronic, optical, and mechanical properties.
Our research successfully synthesized the non-van-der-Waals 2D material W5N6 using a confined VLS growth method. We performed atomic substitution by introducing argon RIE to oxidize pristine W5N6 into an intermediate material, which was then converted into multi-layer WSe2 by CVD. Characterization techniques such as Raman spectroscopy, XPS, TEM, and AFM confirmed the multi-layer nature of AS-WSe2, consisting of three layers. We also investigated the effects of hydrogen and temperature on the atomic substitution process. This stable synthesis method for multi-layer TMDCs opens new possibilities for developing 2D FETs with minimal contact resistance and other future applications. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:35:25Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-14T16:35:25Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | Acknowledgement I
摘要 II ABSTRACT III CONTENTS IV LIST OF FIGURES VI Chapter 1 Introduction 1 1.1 Two-Dimensional (2D) Materials 1 1.1.1 2D Transition-Metal Dichalcogenides (TMDCs) 2 1.1.2 Tungsten Diselenide (WSe2) 4 1.1.3 Non-van der Waal (Non-VdW) 2D Materials 5 1.1.4 2D Tungsten Nitride (W5N6) 7 1.2 Chemical Vapor Deposition (CVD) 8 1.3 Atomic Substitution 10 1.4 Motivation 12 Chapter 2 Experimental Process and Apparatus 14 2.1 Experimental Process 14 2.1.1 2D Tungsten Nitrides (W5N6) Growth 14 2.1.2 RIE-Assisted Oxidation 15 2.1.3 Selenization Process 15 2.2 Apparatus 17 2.2.1 Chemical Vapor Deposition (CVD) 17 2.2.2 Reactive-Ion Etching (RIE) 18 2.2.3 Raman and Photoluminescence (PL) System 19 2.2.4 Atomic Force Microscope (AFM) 20 2.2.5 Focused Ion Beam (FIB) 21 2.2.6 Transmission Electron Microscopy (TEM) 21 2.2.7 Energy Dispersive X-ray Spectroscopy (EDX) 23 2.2.8 X-ray Photoelectron Spectroscopy (XPS) 24 2.2.9 Photolithography 25 2.2.10 Thermal Evaporator 26 2.2.11 Electrical Measurement System 27 Chapter 3 Result and Discussion 28 3.1 2D W5N6 Synthesis & Characterization 28 3.2 Intermediate Step Before Substitution 29 3.3 Atomic Substitution 31 3.3.1 Characterization of AS-WSe2 31 3.3.2 Characterization of Multi-layer Properties 35 3.3.3 Electrical Measurement 37 3.3.4 Hydrogen & Temperature Effects 38 Chapter 4 Conclusion 41 Reference 42 | - |
dc.language.iso | en | - |
dc.title | 從二維氮化鎢到多層二硒化鎢:原子置換研究 | zh_TW |
dc.title | From 2D W5N6 to Muti-layer WSe2: A Study of Atomic Substitution | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 梁啟德;陳永芳;謝雅萍 | zh_TW |
dc.contributor.oralexamcommittee | Chi-Te Liang;Yang-Fang Chen;Ya-Ping Hsieh | en |
dc.subject.keyword | 二維材料,非凡德瓦材料,原子置換,氮化鎢,過度金屬硫化物, | zh_TW |
dc.subject.keyword | 2D material,non-van-der-Waals,atomic substitution,tungsten nitride,TMDCs, | en |
dc.relation.page | 43 | - |
dc.identifier.doi | 10.6342/NTU202403056 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-05 | - |
dc.contributor.author-college | 理學院 | - |
dc.contributor.author-dept | 應用物理研究所 | - |
顯示於系所單位: | 應用物理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務) | 3.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。