Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94079
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉佩玲zh_TW
dc.contributor.advisorPei-Ling Liuen
dc.contributor.author高瑋澤zh_TW
dc.contributor.authorWEI-TSE KAOen
dc.date.accessioned2024-08-14T16:35:08Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-13-
dc.date.issued2024-
dc.date.submitted2024-08-10-
dc.identifier.citation[1]Sansalone, M. and Carino, N. J., “Impact-Echo: A Method for Flaw Detection in Concrete Using Transient Stress Waves.” NBSIR 86-3452., Gaithersburg, MD:National Bureau of Standard 222., 1986.
[2]Lin, Y., Sansalone, M. & Carino, N. J., “Finite Element Studies of the Transient Response of Plates Containing Thin Layers and Voids.” J. Nondestructive Evaluation, vol. 9(1): pp. 27-47., 1990.
[4]Lin, Y. and Sansalone, M., “Detecting Flaws in Concrete Beams and Columns Using the Impact-Echo Method.”Materials Journal of the American Concrete Institute, pp. 394-405., 1992.
[4]Lin, Y. and Sansalone, M., “Transient Response of Thick Circular and Square Bars Subjected to Transverse Elastic Impact.” J. Acoustical Society of America, vol. 91(2): pp. 885-893., 1992.
[5]Cheng, C. and Sansalone, M., “The Impact-Echo Response of Concrete Plates Containing Delaminations: Numerical, Experimental and Field Studies.” Material and Structures, vol. 26: pp. 274-285., 1992.
[6]Cheng, C. C., and Sansalone, M., 1993, "Effect on Impact-Echo Signals Caused by Steel Reinforcing Bars and Voids around Bars," ACI Materials Journal, 90(5), pp. 421-434.
[7]Chang, C.-C., et al., "Distinction between crack echoes and rebar echoes based on Morlet Wavelet Transform of impact echo signals." NDT & E International 108:102169.,2019.
[8]Xu, J. C., and Yu, X., 2021, "Detection of Concrete Structural Defects Using Impact Echo Based on Deep Networks," J Test Eval, 49(1), pp. 109-120.
[9]林昀儒,2020, "以CNN自動編碼器辨識敲擊回音試驗之異常訊號," 碩士, 國立臺灣大學,台北市.
[10]陳柏合,2021, "以深度學習判別鋼筋與裂縫之敲擊回音雙譜," 碩士, 國立臺灣大學,台北市.
[11]謝承展,2022, "以機器學習與主成分分析進行敲擊回音本質模態函數之分類," 碩士,國立臺灣大學, 台北市.
[12]張亘,2023, "應用深度學習判讀裂縫與鋼筋之敲擊回音小波普," 碩士,國立臺灣大學, 台北市.
[13]曾勁凱,2024, "以卷積自動編碼器進行敲擊回音深度頻譜斷層掃瞄之裂縫偵測," 碩士,國立臺灣大學, 台北市.
[14]Goldsmith, W. “Impact: The Theory and Physical Behavior of Colliding Solids.” London: Edward Arnold Ltd.,1965.
[15]Cohen L. “Time Frequency Analysis. New Jersey: Prentice Hall”,1995.
[16]Yeh, P.L. and P.L. Liu, “Application of the Wavelet Transform and the Enhanced Fourier Spectrum in the Impact Echo Test.” NDT & E International, vol. 41(5): pp.382-394.,2008.
[17]Jeong, J. and Williams, W.J., “Kernel design for reduced interference distributions”, 1992.
[18]Krizhevsky, A., Sutskever, I., and Hinton, G. E., 2017, "ImageNet Classification with Deep Convolutional Neural Networks," Commun Acm, 60(6), pp. 84-90.
[19]Haykin, S., 1998, Neural Network: A Comprehensive Foundation, Pearson Education.
[20]Yeh, P. L., and Liu, P. L., 2009, "Imaging of internal cracks in concrete structures using the surface rendering technique," NDT & E International, 42(3), pp. 181- 187.
[21]Kohavi, R., 1995, "A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection " International Joint Conference on Artificial Intelligence, pp. 1137-1143.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94079-
dc.description.abstract敲擊回音法是一種非破壞檢測技術,常用於檢測混凝土中之缺陷。鋼珠敲擊混凝土表面,量測到的時間域訊號經傅立葉轉換後可從頻譜中判讀回音尖峰,但僅透過傅立葉頻譜並無法判斷尖峰是由鋼筋或裂縫回音所造成。雖然過去曾有研究顯示以經驗模態分解或時頻分析對鋼筋與裂縫回音作判別,但仍存在一些限制。
為了解決鋼筋與裂縫回音判別的困難,本研究提出一個結合時頻分析與深度學習的判別方法。首先,將時間域訊號進行Reduced Interference Distribution (RID)轉換,並從時頻圖中擷取特徵訊號,再將特徵訊號輸入訓練過的深度學習模型進行分類,以判別特徵訊號屬於鋼筋回音、裂縫回音或其他。
特徵訊號的擷取是將時頻圖各頻率的時間訊號振幅加總,以找出尖峰頻率,以試體底部反射頻率作為分界點,在試體底部反射頻率以上的頻率區間中,取最高的尖峰頻率作為回音頻率,試體底部反射頻率以下的頻率區間中,則選取最高與次高尖峰作為其他類頻率,再將這些特徵頻率對應的時間域訊號擷取出來作為深度學習模型的輸入。
本研究發展兩個卷積神經網路(Convolutional Neural Network, CNN)分類模型,分別以單筆訊號輸入及三筆訊號作為輸入之模型,並對兩種模型進行比較。CNN分類模型皆以內含鋼筋或裂縫之無限平板的數值模擬訊號進行訓練,訓練完成後,以數值模擬和實驗數據訊號進行測試。在訓練過程中,考慮在模擬訊號中添加不同幅度的雜訊以及使用不同深度的卷積層之影響。
經過測試後,最佳的模型是以三筆訊號作為輸入,採用4層卷積層,並在訓練集數據添加標準差為0~5%表面波振幅之雜訊,其對於辨識整體模擬數據的準確率為98.8%,對於實驗數據辨識準確率為100%。
本文研究也對模型進行泛化性測試,儘管模型在模擬數據表現良好,但在辨識實驗訊號時,若未能擷取正確的特徵訊號模型仍然會發生誤判。
總而言之,本研究創立的分類模型能夠有效識別鋼筋、裂縫及其他類的敲擊回音時頻特徵訊號,但若實驗雜訊過多以致選取尖峰頻率有困難,仍可能失效。因此,在實際工程應用中,該模型的預測結果應僅作為輔助工具,供工程師參考。
zh_TW
dc.description.abstractThe impact echo method is a non-destructive testing technique and it is used to detect defects within concrete structure. As a steel ball strikes the concrete surface, the time-domain signals recorded can be analyzed through Fourier transform to identify echo peaks in the frequency spectrum. However, interpreting the presence of rebars or cracks solely based on these frequency peaks can be challenging. In previous work, our research group applied Empirical Mode Decomposition (EMD) directly to time-domain signals of impact echoes and successfully identified defect echoes. Nonetheless, this approach often results in signals containing unexpected features due to mode mixing, where the decomposition yields components that do not align with the original signal characteristics.

To address the issue of mode mixing, attempting to transform the time-domain signals into the time-frequency domain using a Reduced Interference Distribution (RID), and extract feature signals from the time-frequency representation. Since the energy decay rates of rebar and crack echoes differ over time, and the modal vibration responses persist throughout the entire sampling period, classification based on signal differences poses significant challenges for inspectors. Therefore, this study aims to develop deep learning techniques for classification, distinguishing between features associated with rebars, cracks, or other modes(including concrete bottom reflections and modal vibrations).

We developed two Convolutional Neural Network (CNN) classification models, using both single-signal input and multi-signal (three signals) input approaches for training. They are trained with numerical simulations of an infinite plate containing rebars or cracks. After training, the models were tested using both numerical simulations and experimental data. The numerical simulation data included specimens with rebars or cracks in an infinite plate, while the experimental data contained measurements from several concrete specimens. The training process considered the impact of different noise added to the simulated signals and varying convolutional layer depths on model performance.

Following a comprehensive evaluation, the best classification model architecture was determined to be a model with four convolutional layers, training data augmented with noise having a standard deviation of 0~5% of the surface wave amplitude, and inputting three signals simultaneously. This model achieved an accuracy of 98.8% for identifying simulated data and 100% for experimental data.

Although the model is highly advanced, the generalization tests revealed some risk of misclassification for experimental data. Therefore, in practical engineering applications, the model's predictions should be used as a auxiliary tool for engineers, and not as the good decisions, as it cannot entirely act for the professional engineers.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:35:08Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:35:08Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 II
摘要 III
Abstract V
目次 VII
圖次 X
表次 XIII
第一章 1
1-1 研究動機 1
1-2 文獻回顧 3
1-3 全文簡介 5
第二章 敲擊回音法 7
2-1 敲擊回音法原理 7
2-2 敲擊回音主要參數 12
2-2-1 敲擊源 12
2-2-2 取樣時間 14
2-2-3 取樣時距 15
2-3 時頻分析方法 16
2-3-1 Wignner-Ville Distribution 18
2-3-2 Reduced Interference Distribution 20
2-3-3 時頻圖特徵訊號擷取 24
第三章 深度學習模型 27
3-1 類神經網路 27
3-1-1 前向傳播 (Forward Propagation) 28
3-1-2 反向傳播 (Backward Propagation) 31
3-2 卷積神經網路 (Convolutional Neural Network) 33
3-2-1 卷積層 (Convolution Layer) 33
3-2-2 池化層 (Pooling Layer) 35
3-2-3 全連接層 (Fully Connected Layer) 35
3-3 本文預設 CNN分類模型架構 36
第四章 資料集 39
4-1 數值模擬資料介紹 39
4-1-1 數值模擬敲擊回音法步驟 39
4-1-2 數值模擬試體介紹 44
4-1-3 數值模擬訊號摻雜雜訊 48
4-2 實驗資料介紹 50
4-2-1 實驗硬體設備介紹 50
4-2-2 實驗接收與量測 53
4-2-3 實驗試體介紹 54
4-2-4 時間域訊號原點調整 59
4-3 訓練集與測試集 60
4-4 K-fold交叉驗證 65
4-5 模型訓練架構調整 66
第五章 結果與討論 67
5-1雜訊之影響 67
5-2卷積層深度之影響 85
5-3 泛化性測試 93
5-3-1 模型內外插數據測試 93
5-3-2尖峰頻率誤判 98
第六章 結論 103
參考資料 104
-
dc.language.isozh_TW-
dc.title以深度學習對敲擊回音時頻圖擷取之時間域訊號進行分類zh_TW
dc.titleClassification of Time Signals Extracted from Impact Echo Spectrograms Using Deep Learningen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee郭茂坤;孫嘉宏zh_TW
dc.contributor.oralexamcommitteeMao-Kuen Kuo;Jia-Hong Sunen
dc.subject.keyword敲擊回音法,時頻分析,非破壞性檢測技術,卷積神經網路,深度學習,zh_TW
dc.subject.keywordImpact Echo Method,Time-Frequency Analysis,Non-Destructive Testing,Convolutional Neural Networks,Deep Learning,en
dc.relation.page106-
dc.identifier.doi10.6342/NTU202402628-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
5.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved