請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94075完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 温進德 | zh_TW |
| dc.contributor.advisor | Jin-Der Wen | en |
| dc.contributor.author | 蘇名巧 | zh_TW |
| dc.contributor.author | Ming-Ciao Su | en |
| dc.date.accessioned | 2024-08-14T16:33:56Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-13 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-07 | - |
| dc.identifier.citation | Aitken, C.E., Marshall, R.A., and Puglisi, J.D. (2008). An oxygen scavenging system for improvement of dye stability in single-molecule fluorescence experiments. Biophysical journal 94, 1826-1835.
Bhatt, P.R., Scaiola, A., Loughran, G., Leibundgut, M., Kratzel, A., Meurs, R., Dreos, R., O’Connor, K.M., McMillan, A., and Bode, J.W. (2021). Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome. Science 372, 1306-1313. Binnig, G., Quate, C.F., and Gerber, C. (1986). Atomic force microscope. Physical review letters 56, 930. Caliskan, N., Peske, F., and Rodnina, M.V. (2015). Changed in translation: mRNA recoding by− 1 programmed ribosomal frameshifting. Trends in biochemical sciences 40, 265-274. Chang, K.-C. (2012). Revealing− 1 Programmed Ribosomal Frameshifting Mechanisms by Single‐Molecule Techniques and Computational Methods. Computational and Mathematical Methods in Medicine 2012, 569870. Chen, Y., Liu, Q., and Guo, D. (2020). Emerging coronaviruses: genome structure, replication, and pathogenesis. Journal of medical virology 92, 418-423. Clancy, S., and Brown, W. (2008). Translation: DNA to mRNA to. Nature Education. Doll, F., Hassenrück, J., Wittmann, V., and Zumbusch, A. (2018). Intracellular Imaging of Protein-Specific Glycosylation. In Methods in Enzymology, (Elsevier), pp. 283-319. Fish, K.N. (2009). Total internal reflection fluorescence (TIRF) microscopy. Current protocols in cytometry 50, 12.18. 11-12.18. 13. Green, R., and Noller, H.F. (1997). Ribosomes and translation. Annual review of biochemistry 66, 679-716. Haustein, E., and Schwille, P. (2004). Single-molecule spectroscopic methods. Current opinion in structural biology 14, 531-540. Milón, P., and Rodnina, M.V. (2012). Kinetic control of translation initiation in bacteria. Critical reviews in biochemistry and molecular biology 47, 334-348. Napthine, S., Hill, C.H., Nugent, H.C., and Brierley, I. (2021). Modulation of viral programmed ribosomal frameshifting and stop codon readthrough by the host restriction factor shiftless. Viruses 13, 1230. Pekarek, L., Zimmer, M.M., Gribling-Burrer, A.-S., Buck, S., Smyth, R., and Caliskan, N. (2023). Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function. Nucleic Acids Research 51, 728-743. Ray, P.C., Fan, Z., Crouch, R.A., Sinha, S.S., and Pramanik, A. (2014). Nanoscopic optical rulers beyond the FRET distance limit: fundamentals and applications. Chemical Society Reviews 43, 6370-6404. Rodriguez, W., and Muller, M. (2022). Shiftless, a critical piece of the innate immune response to viral infection. Viruses 14, 1338. Schafer, D.A., Gelles, J., Sheetz, M.P., and Landick, R. (1991). Transcription by single molecules of RNA polymerase observed by light microscopy. Nature 352, 444-448. V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., and Thiel, V. (2021). Coronavirus biology and replication: implications for SARS-CoV-2. Nature Reviews Microbiology 19, 155-170. Wang, X., Xuan, Y., Han, Y., Ding, X., Ye, K., Yang, F., Gao, P., Goff, S.P., and Gao, G. (2019). Regulation of HIV-1 Gag-Pol expression by shiftless, an inhibitor of programmed-1 ribosomal frameshifting. Cell 176, 625-635. e614. Zlatanova, J., and Van Holde, K. (2006). Single-molecule biology: what is it and how does it work? Molecular cell 24, 317-329. 許鈺婕,2023,國立臺灣大學分子與細胞生物學研究所碩士論文,以單分子螢光共振能量轉移觀測mRNA的長度對反義寡核苷酸以及30S核醣體次單元的交互作用影響 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94075 | - |
| dc.description.abstract | 許多細菌或病毒(例如SARS-CoV-2)利用-1 Programmed Ribosomal Frameshifting (-1PRF)的發生來改變開放閱讀框,進而重新排列下游密碼子以產生不同胺基酸。目前尚不清楚SARS-CoV-2 RNA在轉譯的過程中是否形成中間結構以及這些結構如何影響其-1PRF的效率,因此我們利用single-molecule FRET (smFRET)來觀察SARS-CoV-2 RNA可能形成的中間構形。透過strand displacement策略模擬mRNA在轉譯過程中結構依序由上游重新摺疊的情況,其中一種設計為將螢光分子標定在DNA handle上(CoV2PK74),另一種設計為直接在RNA上標定螢光分子,以去除額外DNA handle可能造成的影響。我們發現經過重新摺疊後的CoV2PK74中在FRET族群分布圖中出現新的族群,說明重新摺疊後的RNA可能形成中間構形。另外在螢光標定的RNA實驗中,我們發現有stem 2不穩定之中間構形。通過干擾stem 1並觀察結構穩定性,我們發現到中間構形的減少,說明干擾stem 1會誘導中間構形重新排列形成更穩定的偽結。
根據這些實驗結果,我們推論在SARS-CoV-2 RNA偽結的重新摺疊過程中會出現中間構形,而由上游逐漸接近的核醣體會干擾5’端stem 1之結構使RNA重新排列成穩定的偽結,最後造成閱讀框架的位移。 | zh_TW |
| dc.description.abstract | Many bacteria or viruses (such as SARS-CoV-2) rely on the occurrence of -1 Programmed Ribosomal Frameshifting (-1 PRF) events to shift the open reading frame, leading to the rearrangement of downstream codons necessary for producing the proteins of different sequences. Whether SARS-CoV-2 RNA forms intermediate structures and how they affect its -1 PRF remains unknown. We used single-molecule FRET to probe the potential structures formed by SARS-CoV-2 RNA. Using the strand displacement strategy, we can mimic the vectorial folding of mRNA strcutures during translation. One construct was labeled with dyes on the DNA handles (CoV2PK74) and the other constructs were directly labeled with dyes on the RNA to minimize the potential influence of artificial handles. We found that the FRET distribution in CoV2PK74 shows more than one population, suggesting there are intermediates. In dye-labeled RNA, we found intermediates with unstable structures in stem 2. By partially disrupting the upstream stem 1, we observed a reduction in the intermediate population, suggesting that the intermediates rearrange into a more stable pseudoknot.
Based on these experimental results, we propose that conformational intermediates are generated during the refolding process of SARS-CoV-2 RNA, and perturbation of the 5' structural domain by the translating ribosome allows the RNA to rearrange into a stable pseudoknot, resulting in -1 ribosomal frameshifting. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:33:56Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:33:56Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝辭 ii 摘要 iv Abstract v 目次 vi 圖次 viii 表次 ix 第一章 緒論 1 1.1 轉譯 1 1.2 計畫性核糖體框架位移 2 1.3 嚴重急性呼吸道症候群冠狀病毒2型(SARS-CoV-2) 2 1.4 單分子技術 3 1.5 螢光共振能量轉移 4 1.6 Shiftless Protein 5 1.7 研究動機與目的 5 第二章 材料與方法 7 2.1 材料 7 2.1.1. 溶液 7 2.1.2. 載體構築序列 8 2.2 方法 10 2.2.1 質體建構 10 2.2.2 螢光標定RNA 14 2.2.3 RNA製備 16 2.2.4 Shiftless (1-250aa) 蛋白純化 20 2.2.5 單分子螢光共振能量轉移實驗 (single-molecule FRET) 24 第三章 結果 27 3.1. RNA樣本製備 27 3.1.1. 不同5’ DNA handle與胞外轉錄CoV2PK74 RNA黏合反應 27 3.1.2. 不同螢光分子標定於CoV2u 28 3.1.3. 不同長度及序列之dyes on SARS-CoV-2 RNA接合反應 28 3.2. +7CoV2PK74在bulk實驗中取代反應 29 3.3. 設計不同SARS-CoV-2模擬轉譯過程以觀察FRET變化 30 3.3.1. SARS-CoV-2 RNA with dyes on DNA handle 32 3.3.2. Dye-labelled SARS-CoV-2 RNA 36 3.4. Shiftless (1-250)蛋白純化 41 第四章 討論 43 參考文獻 47 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | -1 PRF | zh_TW |
| dc.subject | SARS-CoV-2 | zh_TW |
| dc.subject | 單分子螢光共振能量轉移 | zh_TW |
| dc.subject | 中間構形 | zh_TW |
| dc.subject | 偽結 | zh_TW |
| dc.subject | pseudoknot | en |
| dc.subject | single-molecule FRET | en |
| dc.subject | -1 PRF | en |
| dc.subject | SARS-CoV-2 | en |
| dc.subject | intermediate | en |
| dc.title | 以單分子螢光共振能量轉移技術探討SARS-CoV-2引起框架轉移偽結在轉譯過程中可能形成之中間構形 | zh_TW |
| dc.title | Study of Intermediates of the SARS-CoV-2 Frameshift-Stimulating Pseudoknot by Single-Molecule FRET | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張功耀;楊立威 | zh_TW |
| dc.contributor.oralexamcommittee | Kung-Yao Chang;Lee-Wei Yang | en |
| dc.subject.keyword | SARS-CoV-2,-1 PRF,偽結,中間構形,單分子螢光共振能量轉移, | zh_TW |
| dc.subject.keyword | SARS-CoV-2,-1 PRF,pseudoknot,intermediate,single-molecule FRET, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202403740 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-11 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | - |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 13.4 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
