請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94072完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管希聖 | zh_TW |
| dc.contributor.advisor | Hsi-Sheng Goan | en |
| dc.contributor.author | 黃靜嚴 | zh_TW |
| dc.contributor.author | Jing-Yan Huang | en |
| dc.date.accessioned | 2024-08-14T16:33:03Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-13 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-09 | - |
| dc.identifier.citation | [1] P. W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer”. In: SIAM Journal on Computing 26.5 (Oct. 1997), pp. 1484–1509. ISSN: 1095-7111. DOI: 10.1137/s0097539795293172. URL: http://dx.doi.org/10.1137/S0097539795293172.
[2] J. Preskill. “Quantum computing: pro and con”. In: Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 454.1969 (Jan. 1998), pp. 469–486. ISSN: 1471-2946. DOI: 10 . 1098 / rspa . 1998 . 0171. URL: http://dx.doi.org/10.1098/rspa.1998.0171. [3] V. E. Elfving et al. How will quantum computers provide an industrially relevant computational advantage in quantum chemistry? Sept. 2020. arXiv: 2009.12472 [quant-ph]. URL: https://arxiv.org/abs/2009.12472. [4] A. J. Daley et al. “Practical quantum advantage in quantum simulation”. In: Nature 607 (2022), pp. 667–676. URL: https://api.semanticscholar.org/CorpusID:251132664. [5] A. Freeman. “Materials by design and the exciting role of quantum computation/simulation”. In: Journal of Computational and Applied Mathematics 149.1 (2002), pp. 27–56. ISSN: 0377-0427. DOI: https://doi.org/10.1016/S0377-0427(02)00519-8. URL: https://www.sciencedirect.com/science/article/pii/S0377042702005198. [6] A. W. Harrow, A. Hassidim, and S. Lloyd. “Quantum Algorithm for Linear Systems of Equations”. In: Physical Review Letters 103 (15 Oct. 2009), p. 150502. DOI: 10.1103/PhysRevLett.103.150502. URL: https://link.aps.org/doi/10.1103/PhysRevLett.103.150502. [7] L. Wang, S. K. Kowk, and W. H. Ip. “Design of an improved quantum-inspired evolutionary algorithm for a transportation problem in logistics systems”. In: Journal of Intelligent Manufacturing 23.6 (Dec. 2012), pp. 2227–2236. ISSN: 0956-5515. DOI: 10.1007/s10845-011-0568-7. URL: https://doi.org/10.1007/s10845-011-0568-7. [8] D. Herman et al. A Survey of Quantum Computing for Finance. 2022. arXiv: 2201.02773 [quant-ph]. URL: https://arxiv.org/abs/2201.02773. [9] D. Peral-García, J. Cruz-Benito, and F. J. García-Peñalvo. “Systematic literature review: Quantum machine learning and its applications”. In: Computer Science Review 51 (2024), p. 100619. ISSN: 1574-0137. DOI: https://doi.org/10.1016/j.cosrev.2024.100619. URL: https://www.sciencedirect.com/science/article/pii/S1574013724000030. [10] J. Preskill. “Quantum Computing in the NISQ era and beyond”. In: Quantum 2 (Aug. 2018), p. 79. ISSN: 2521-327X. DOI: 10 . 22331 / q - 2018 - 08 - 06 - 79. URL: http://dx.doi.org/10.22331/q-2018-08-06-79. [11] K. Mitarai et al. “Quantum circuit learning”. In: Physical Review A 98.3 (Sept. 2018). ISSN: 2469-9934. DOI: 10.1103/physreva.98.032309. URL: http://dx.doi.org/10.1103/PhysRevA.98.032309. [12] A. Pérez-Salinas et al. “Data re-uploading for a universal quantum classifier”. In: Quantum 4 (Feb. 2020), p. 226. ISSN: 2521-327X. DOI: 10.22331/q-2020-02-06-226. URL: http://dx.doi.org/10.22331/q-2020-02-06-226. [13] N. Thumwanit et al. Trainable Discrete Feature Embeddings for Variational Quantum Classifier. 2021. arXiv: 2106.09415 [quant-ph]. [14] M. Schuld. Supervised quantum machine learning models are kernel methods. 2021. arXiv: 2101.11020 [quant-ph]. [15] T. Hofmann, B. Schölkopf, and A. J. Smola. “Kernel methods in machine learning”. In: The Annals of Statistics 36.3 (2008), pp. 1171–1220. DOI: 10.1214/009053607000000677. URL: https://doi.org/10.1214/009053607000000677. [16] C. Cortes and V. Vapnik. “Support-Vector Networks”. In: Machine Learning 20.3 (Sept. 1995), pp. 273–297. ISSN: 0885-6125. DOI: 10.1023/A:1022627411411. URL: https://doi.org/10.1023/A:1022627411411. [17] G. Wahba and Y. Wang. “Representer Theorem”. In: Wiley StatsRef: Statistics Reference Online. John Wiley & Sons, Ltd, 2019, pp. 1–11. ISBN: 9781118445112. DOI: https://doi.org/10.1002/9781118445112.stat08200. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781118445112.stat08200. URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118445112.stat08200. [18] G. S. Kimeldorf and G. Wahba. “A Correspondence Between Bayesian Estimation on Stochastic Processes and Smoothing by Splines”. In: The Annals of Mathematical Statistics 41.2 (1970), pp. 495–502. DOI: 10 . 1214 / aoms / 1177697089. URL: https://doi.org/10.1214/aoms/1177697089. [19] G. Kimeldorf and G. Wahba. “Some results on Tchebycheffian spline functions”. In: Journal of Mathematical Analysis and Applications 33.1 (1971), pp. 82–95. ISSN: 0022-247X. DOI: https : / / doi . org / 10 . 1016 / 0022 - 247X(71 ) 90184 - 3. URL: https://www.sciencedirect.com/science/article/pii/0022247X71901843. [20] B. Schölkopf, R. Herbrich, and A. J. Smola. “A Generalized Representer Theorem”. In: Computational Learning Theory. Ed. by D. Helmbold and B. Williamson. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 416–426. ISBN: 978-3-540-44581-4. [21] Y. Gujju, A. Matsuo, and R. Raymond. Quantum Machine Learning on Near-Term Quantum Devices: Current State of Supervised and Unsupervised Techniques for Real-World Applications. 2024. arXiv: 2307.00908 [quant-ph]. URL: https://arxiv.org/abs/2307.00908. [22] S. Jerbi et al. “Quantum machine learning beyond kernel methods”. In: Nature Communications 14.1 (Jan. 2023). ISSN: 2041-1723. DOI: 10.1038/s41467-023-36159-y. URL: http://dx.doi.org/10.1038/s41467-023-36159-y. [23] S. Wiesner. “Conjugate coding”. In: SIGACT News 15.1 (Jan. 1983), pp. 78–88. ISSN: 0163-5700. DOI: 10.1145/1008908.1008920. URL: https://doi.org/10.1145/1008908.1008920. [24] A. Ambainis et al. “Dense quantum coding and quantum finite automata”. In: Journal of the ACM 49.4 (July 2002), pp. 496–511. ISSN: 0004-5411. DOI: 10.1145/581771.581773. URL: https://doi.org/10.1145/581771.581773. [25] A. Ambainis et al. Dense Quantum Coding and a Lower Bound for 1-way Quantum Automata. 1998. arXiv: quant-ph/9804043 [quant-ph]. [26] H. Yano et al. “Efficient Discrete Feature Encoding for Variational Quantum Classifier”. In: IEEE Transactions on Quantum Engineering 2 (2021), pp. 1–14. ISSN: 2689-1808. DOI: 10.1109/tqe.2021.3103050. URL: http://dx.doi.org/10.1109/TQE.2021.3103050. [27] D. Herman et al. “Expressivity of Variational Quantum Machine Learning on the Boolean Cube”. In: IEEE Transactions on Quantum Engineering 4 (2023), pp. 1–18. ISSN: 2689-1808. DOI: 10.1109/tqe.2023.3255206. URL: http://dx.doi.org/10.1109/TQE.2023.3255206. [28] U. Ullah et al. “A Fully Connected Quantum Convolutional Neural Network for Classifying Ischemic Cardiopathy”. In: IEEE Access 10 (2022), pp. 134592–134605. DOI: 10.1109/ACCESS.2022.3232307. [29] S. Y.-C. Chen et al. “Variational Quantum Circuits for Deep Reinforcement Learning”. In: IEEE Access 8 (2020), pp. 141007–141024. DOI: 10.1109/ACCESS.2020.3010470. [30] V. Mnih et al. “Human-level control through deep reinforcement learning”. In: Nature 518.7540 (Feb. 2015), pp. 529–533. ISSN: 00280836. URL: http://dx.doi.org/10.1038/nature14236. [31] V. Havlíček et al. “Supervised learning with quantum-enhanced feature spaces”. In: Nature 567.7747 (Mar. 2019), pp. 209–212. ISSN: 1476-4687. DOI: 10.1038/s41586-019-0980-2. URL: http://dx.doi.org/10.1038/s41586-019-0980-2. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94072 | - |
| dc.description.abstract | 量子運算在機器學習領域的應用越來越受到關注。在各種量子學習模型中,變分量子電路因其易於實作的特性而顯得尤其突出。透過了解這個模型的數學特性,可以發現具有可訓練的量子核函數的模型似乎有提升表現的潛力。我針對不同的問題測試了幾種具有此特性的方法,結果證實這些方法確實提高了模型的表達能力,也突破了使用固定核函數的模型的表現限制。 | zh_TW |
| dc.description.abstract | The application of quantum computing to machine learning problems has grown increasingly popular. Among the various quantum models, variational quantum circuits are particularly notable for their ease of implementation. Investigating the mathematical properties of such models reveals that those equipped with trainable quantum kernels may achieve enhanced performance. We tested several methods possessing this characteristic across different problems, and the results confirm that such methods not only improve model expressibility but also surpass the performance limits of models with fixed kernels. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:33:03Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:33:03Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
Acknowledgements ii 摘要 iii Abstract iv Contents v List of Figures viii Chapter 1 Intrduction 1 Chapter 2 Motivation 4 2.1 Variational Quantum Circuits . . . . . . . . . 4 2.2 Kernel Methods . . . . . . . . . . . . . . . . 6 2.3 Representer Theorem . . . . . . . . . . . . . 7 2.4 VQCs are Kernel Methods . . . . . . . . . . . 8 2.5 Quantum Advantage . . . . . . . . . . . . . . 10 2.6 Increasing Models Complexity . . . . . . . . . 11 Chapter 3 Data Encoding Methods 13 3.1 Quantum Random Access Codes . . . . . . . . . 13 3.2 Trainable Embeddings . . . . . . . . . . . . . 14 3.3 Reduced Trainable Embeddings . . . . . . . . . 16 3.4 Data reuploading . . . . . . . . . . . . . . . 16 Chapter 4 Experiments 18 4.1 Frozen Lakes . . . . . . . . . . . . . . . . . 18 4.1.1 Environment . . . . . . . . . . . . . . . . 19 4.1.2 Training and Performance Estimation . . . . 20 4.1.3 Deep Q-Network . . . . . . . . . . . . . . . 20 4.1.4 Data Encoding . . . . . . . . . . . . . . . 23 4.2 MNIST Handwritten Digits . . . . . . . . . . . 23 4.2.1 Environment . . . . . . . . . . . . . . . . 23 4.2.2 Training and Performance Estimation . . . . 24 4.2.3 Algorithm . . . . . . . . . . . . . . . . . 25 4.2.4 Data Encoding . . . . . . . . . . . . . . . 26 4.3 Breast Cancer Dataset . . . . . . . . . . . . 27 4.3.1 Environment . . . . . . . . . . . . . . . . 27 4.3.2 Training and Performance Estimation . . . . 27 4.3.3 Algorithm . . . . . . . . . . . . . . . . . 28 4.3.4 Data Encoding . . . . . . . . . . . . . . . 28 Chapter 5 Results 29 5.1 Frozen Lake . . . . . . . . . . . . . . . . . 29 5.2 MNIST Handwritten Digits . . . . . . . . . . . 31 5.3 Breast Cancer Dataset . . . . . . . . . . . . 33 Chapter 6 Discussion 36 Chapter 7 Conclusion 38 References 40 | - |
| dc.language.iso | en | - |
| dc.subject | 量子機器學習 | zh_TW |
| dc.subject | 離散資料 | zh_TW |
| dc.subject | 量子變分線路 | zh_TW |
| dc.subject | 量子編碼 | zh_TW |
| dc.subject | 核方法 | zh_TW |
| dc.subject | quantum machine learning | en |
| dc.subject | quantum encoding | en |
| dc.subject | variational quantum circuit | en |
| dc.subject | kernel method | en |
| dc.subject | discrete data | en |
| dc.title | 可訓練的核函數在量子變分線路中的效益 | zh_TW |
| dc.title | Benefits of Trainable Kernels in Variational Quantum Circuits | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林澤;林俊達;劉子毓 | zh_TW |
| dc.contributor.oralexamcommittee | Che Lin;Guin-Dar Lin;Tzu-Yu Liu | en |
| dc.subject.keyword | 量子機器學習,量子編碼,量子變分線路,核方法,離散資料, | zh_TW |
| dc.subject.keyword | quantum machine learning,quantum encoding,variational quantum circuit,kernel method,discrete data, | en |
| dc.relation.page | 43 | - |
| dc.identifier.doi | 10.6342/NTU202402911 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-12 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 物理學系 | - |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 5 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
