請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94054完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳示國 | zh_TW |
| dc.contributor.advisor | Shih-Kuo Chen | en |
| dc.contributor.author | 梁啟雯 | zh_TW |
| dc.contributor.author | Chi Wen Liong | en |
| dc.date.accessioned | 2024-08-14T16:27:37Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-13 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-26 | - |
| dc.identifier.citation | Keeler, Clyde E. (1927). "Iris movements in blind mice". American Journal of Physiology. 81 (1): 107–112
DAVID M. BERSON, FELICE A. DUNN, AND MOTOHARU TAKAOSCIENCE (8 Feb 2002). Phototransduction by Retinal Ganglion Cells That Set the Circadian Clock Vol 295, Issue 5557 S. HATTAR, H.-W. LIAO, M. TAKAO, D. M. BERSON, AND K.-W. YAU (2002). Melanopsin-Containing Retinal Ganglion Cells: Architecture, Projections, and Intrinsic Photosensitivity Vol 295, Issue 5557 J J Gooley 1, J Lu, T C Chou, T E Scammell, C B Saper (2001). Melanopsin in cells of origin of the retinohypothalamic tract Nat Neurosci S Hattar, et al., (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 76–81 H Wässle, (2004). Parallel processing in the mammalian retina. Nat Rev Neurosci 5, 747–757 Ignacio Provencio, Ignacio R. Rodriguez, Guisen Jiang, William Pär Hayes, Ernesto F. Moreira and Mark D. Rollag (2000). A Novel Human Opsin in the Inner Retina Journal of Neuroscience I Provencio 1, G Jiang, W J De Grip, W P Hayes, M D Rollag (1998). Melanopsin: An opsin in melanophores, brain, and eye Jens Hannibal 1, Peter Hindersson, Sanne M Knudsen, Birgitte Georg, Jan Fahrenkrug (2002). The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract Abrahamson EE and Moore RY (2001) Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res 916:172-191 Moore R., Speh JC, and Card JP (1995) The retinohypothalamic tract originates from a distinct subset of retinal ganglion cells. J Comp Neurol 352:351-366 M S Freedman, R J Lucas, B Soni, M von Schantz, M Muñoz, Z David-Gray, R Foster (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. SCIENCE R. Lane Brown and Phyllis R. Robinson (2004) Melanopsin—Shedding Light on the Elusive Circadian Photopigment. The Journal of Biological and Medical Rhythm Research Volume 21, 2004 - Issue 2 TM Schmidt, SK Chen, S Hattar (2011), Intrinsically photosensitive retinal ganglion cells: Many subtypes, diverse functions. Trends Neurosci 34, 572–580. AD Güler, et al. (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453, 102–105 Caiping Hu, Dijon D Hill, Kwoon Y Wong (2013) Intrinsic physiological properties of the five types of mouse ganglion-cell photoreceptors. J Neurophysiol. Berson DM, Dunn FA, Takao M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295: 1070–1073 Samer Hattar, et al., (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol Aranda ML, Schmidt TM. (2020) Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell Mol Life Sci. R Y Moore, V B Eichler. (1972) Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat M Lokshin, J LeSauter, R Silver. (2015) Selective distribution of retinal input to mouse SCN revealed in analysis of sagittal sections Lowrey PL, Takahashi JS. 2004. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. DK Welsh et al., 2010. Suprachiasmatic Nucleus: Cell Autonomy and Network Properties. Annu Rev Physiol Eric E Abrahamson and R Y Moore. 2001. Suprachiasmatic nucleus in the mouse: retinal innervation, intrinsic organization and efferent projections. Brain Res Vallath Reghunandanan and Rajalaxmy Reghunandanan. 2006 Neurotransmitters of the suprachiasmatic nuclei. J Circadian Rhythms. Kallo I, et al. 2004. Transgenic approach reveals expression of the VPAC2 receptor in phenotypically defined neurons in the mouse suprachiasmatic nucleus and in its efferent target sites. Eur J Neurosci. Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. 2005. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci. Erik D. Herzog, Tracey Hermanstyne, Nicola J. Smyllie, and Michael H. Hastings. 2017. Regulating the Suprachiasmatic Nucleus (SCN) Circadian Clockwork: Interplay between Cell-Autonomous and Circuit-Level Mechanisms. Cold Spring Harb Perspect Biol. Jin X, Shearman LP, Weaver DR, Zylka MJ, de Vries GJ, Reppert SM. 1999. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96: 57–68 Yamaguchi Y, Suzuki T, Mizoro Y, Kori H, Okada K, Chen Y, Fustin JM, Yamazaki F, Mizuguchi N, Zhang J, et al. 2013. Mice genetically deficient in vasopressin V1a and V1b receptors are resistant to jet lag. Science 342: 85–90. Hamada T, LeSauter J, Venuti JM, Silver R. 2001. Expression of Period genes: rhythmic and nonrhythmic compartments of the suprachiasmatic nucleus pacemaker. J Neurosci. Nakamura W, Honma S, Shirakawa T, Honma K. 2001. Regional pacemakers composed of multiple oscillator neurons in the rat suprachiasmatic nucleus. Eur J Neurosci. J.S. Takahashi. 2017. Transcriptional architecture of the mammalian circadian clock Nat. Rev. Genet. Trey K Sato et al., 2006 Feedback repression is required for mammalian circadian clock function. Nat Genet. C. Lee, J.P. Etchegaray, F.R.A. Cagampang, A.S.I. Loudon, S.M. Reppert. 2001. Posttranslational mechanisms regulate the mammalian circadian clock Cell, 107 Gekakis, N. et al. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280, 1564–1569. Lee, C., Etchegaray, J. P., Cagampang, F. R., Loudon, A. S. & Reppert, S. M. 2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107, 855–867. Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, et al. 2004. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. LeGates TA, Fernandez DC, Hattar S. 2014. Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 15: 443–454 Michel, S., Itri, J., Han, J.H. et al. 2006. Regulation of glutamatergic signalling by PACAP in the mammalian suprachiasmatic nucleus. BMC Neurosci 7, 15 DeVries MJ, Cardozo BN, van der Want J, de Wolf A, Meijer JH. 1993. Glutamate immunoreactivity in terminals of the retinohypothalamic tract of the brown Norwegian rat. Brain Res. Takuma Sonoda et al., 2020. A non-canonical inhibitory circuit dampens behavioral sensitivity to light, Science. Jeff R. Jones et al., 2018. SCN VIP Neurons Are Essential for Normal Light-Mediated Resetting of the Circadian System, J Neurosci. Christopher S Colwell et al., 2003. Disrupted circadian rhythms in VIP- and PHI-deficient mice. Am J Physiol Regul Integr Comp Physiol. Cristina Mazuski et al., 2018. Entrainment of circadian rhythms depends on firing rates and neuropeptide release of VIP SCN neurons. Neuron. Yusuke Tsuno,Yubo Peng,Shin-ichi Horike,Mohan Wang,Ayako Matsui,Kanato Yamagata,Mizuki Sugiyama,Takahiro J. Nakamura,Takiko Daikoku,Takashi Maejima,Michihiro Mieda. 2023. In vivo recording of suprachiasmatic nucleus dynamics reveals a dominant role of arginine vasopressin neurons in circadian pacesetting. PLOS Biology. Adam Stowie, Zhimei Qiao, 2023. Arginine–vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo. Neuroscience Makoto Endo, 2006. Calcium Ion as a Second Messenger With Special Reference to Excitation-Contraction Coupling, J Pharmacol Sci Jihae Oh, Chiwoo Lee, and Bong-Kiun Kaang, 2019. Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors Korean J Physiol Pharmacol. Atsushi Miyawaki et al., 1997. Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin, nature Tian, L. et al. 2009. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–88. Yuste, R., and Denk, W. (1995) Nature 375, 682–684. Christine Grienberger et al., 2012. Imaging Calcium in Neurons, Neuron Kozloski, J., Hamzei-Sichani, F., and Yuste, R. (2001). Stereotyped position of local synaptic targets in neocortex. Science 293 Chen, T.-W. et al. 2013. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 Liqun Luo, Edward M. Callaway, and Karel Svoboda,2008 Genetic Dissection of Neural Circuits, neuron. John G. Partridge, 2015. Utilizing GCaMP transgenic mice to monitor endogenous Gq/11-coupled receptors, Front. Pharmacol. Sofroniew, N. J., Flickinger, D., King, J. & Svoboda, K. 2016. A large field of view two-photon mesoscope with subcellular resolution for in vivo imaging. eLife 5 Dana, H. et al. 2019. High-performance calcium sensors for imaging activity in neuronal populations and microcompartments. Nat. Methods 16 Sverre Grødem, Ingeborg Nymoen, etc, 2023. An updated suite of viral vectors for in vivo calcium imaging using intracerebral and retro-orbital injections in male mice. Nature Communications Y. Zhou and N. C. Danbolt, 2014. Glutamate as a neurotransmitter in the healthy brain, J Neural Transm (Vienna). Brian S. 2000. Glutamate as a Neurotransmitter in the Brain: Review of Physiology and Pathology, J Nutr. Hannibal J. 2002. Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res. Golombek DA, Rosenstein RE (2010) Physiology of circadian entrainment. Physiol Rev 90: 1063–1102. Jorge Alberto Perez-Leon, Erin J. Warren, Charles N. Allen, David W. Robinson, R. Lane Brown 2006. Synaptic inputs to retinal ganglion cells that set the circadian clock. Eur J Neurosci. Mikkelsen JD, Larsen PJ, Ebling FJP. 1993. Distribution of N-methyl-d-aspartate (NMDA) receptor mRNAs in the rat suprachiasmatic nucleus. Brain Res. Kim YI, Dudek FE. 1991. Intracellular electrophysiological study of suprachiasmatic nucleus neurons in rodents: excitatory synaptic mechanisms. J. Physiol. (Lond) Colwell CS. 2001. NMDA-evoked calcium transients and currents in the suprachiasmatic nucleus: gating by the circadian system Eur J Neurosci Colwell CS. 2000. Circadian modulation of calcium levels in cells in the suprachiasmatic nucleus. Eur J Neurosci 12: 571–576. Michael G. Moldavan, Patricia J. Sollars, Michael R. Lasarev, Charles N. Allen and Gary, 2018. Circadian Behavioral Responses to Light and Optic Chiasm-Evoked Glutamatergic EPSCs in the Suprachiasmatic Nucleus of ipRGC Conditional vGlut2 Knock-Out Mice Nicole Purrier, William C. Engeland, and Paulo Kofuji *, 2014. Mice Deficient of Glutamatergic Signaling from Intrinsically Photosensitive Retinal Ganglion Cells Exhibit Abnormal Circadian Photoentrainment G E Truett, 2000. Preparation of PCR-quality mouse genomic DNA with hot sodium hydroxide and tris (HotSHOT). Biotechniques Jyotsna Joshi et al., 2020. Optogenetics: Background, Methodological Advances and Potential Applications for Cardiovascular Research and Medicine, Front. Bioeng. Biotechnol Kato, H. E., Zhang, F., Yizhar, O., Ramakrishnan, C., Nishizawa, T., Hirata, K., et al. (2012). Crystal structure of the channelrhodopsin light-gated cation channel. Nature. Govorunova, E. G., Sineshchekov, O. A., Li, H., and Spudich, J. L. (2017). Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. Annu. Rev. Biochem. Hamid Gholami Pourbadie and Mohammad Sayyah, 2018. Optogenetics: Control of Brain Using Light, Iran Biomed J. Georg Nagel et al., 2003. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel Proc Natl Acad Sci U S A. Zaglia, T., Pianca, N., Borile, G., Da Broi, F., Richter, C., Campione, M., et al. (2015). Optogenetic determination of the myocardial requirements for extrasystoles by cell type-specific targeting of ChannelRhodopsin-2. Proc. Natl. Acad. Sci. U.S.A. Guru, A., Post, R. J., Ho, Y.-Y., and Warden, M. R. (2015). Making sense of optogenetics. Int. J. Neuropsychopharmacol. Park, S. A., Lee, S.-R., Tung, L., and Yue, D. T. (2014). Optical mapping of optogenetically shaped cardiac action potentials. Sci. I-Wen Chen et al., 2019. In Vivo Submillisecond Two-Photon Optogenetics with Temporally Focused Patterned Light. J Neurosci. Wen, Gang et al., 2020. Evaluation of Direct Grafting Strategies via Trivalent Anchoring for Enabling Lipid Membrane and Cytoskeleton Staining in Expansion Microscopy. ACS Nano Andrew M Sydor et al., 2015 Super-Resolution Microscopy: From Single Molecules to Supramolecular Assemblies Trends Cell Biol. Asmamaw T Wassie et al., 2018. Expansion Microscopy: Principles and Uses in Biological Research. Nature Methods Fei Chen et al., 2015. Expansion Microscopy. Science Gang Wen et al., 2023. Current Progress in Expansion Microscopy: Chemical Strategies and Applications. Chem Rev. Tillberg, Paul et al., 2016. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat Biotechnol Zwettler, Fabian U. et al., 2020. Molecular resolution imaging by post-labeling expansion single-molecule localization microscopy (Ex-SMLM). Nature Communications Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Andreas Reiner and Joshua Levitz. Neuron. 2018 Molecular pharmacology of metabotropic receptors targeted by neuropsychiatric drugs. Bryan L Roth. Nat Struct Mol Biol. 2019 M Tanaka, et al., Direct retinal projections to GRP neurons in the suprachiasmatic nucleus of the rat. Neuroreport 8, 2187–2191 (1997) M Tanaka, Y Ichitani, H Okamura, Y Tanaka, Y Ibata, The direct retinal projection to VIP neuronal elements in the rat SCN. Brain Res Bull 31, 637–640 (1993). Y Ibata, et al., Vasoactive intestinal peptide (VIP)-like immunoreactive neurons located in the rat suprachiasmatic nucleus receive a direct retinal projection. Neurosci Lett 97, 1–5 (1989). H.J. Romijn et al., 1999. Colocalization of VIP with AVP in neurons of the human paraventricular, supraoptic and suprachiasmatic nucleus. Brain research. Jennifer A. Evans. 2016. Collective timekeeping among cells of the master circadian clock. Journal of Endocrinology. Casper Schwartz Riedel et al., 2024. Phenotyping of light-activated neurons in the mouse SCN based on the expression of FOS and EGR1. Front. Physiol. Yusuke Tsuno et al., 2023. In vivo recording of suprachiasmatic nucleus dynamics reveals a dominant role of arginine vasopressin neurons in circadian pacesetting. PLOS Biology Jihwan Myung et al., 2015. GABA-mediated repulsive coupling between circadian clock neurons in the SCN encodes seasonal time. PNAS Chen Liu and Steven M Reppert. 2000. GABA Synchronizes Clock Cells within the Suprachiasmatic Circadian Clock. Neuron Michael A. Belenky, Yosef Yarom, Gary E. Pickard. 2008. Heterogeneous expression of γ-aminobutyric acid and γ-aminobutyric acid-associated receptors and transporters in the rat suprachiasmatic nucleus. J Comp Neurol G Mark Freeman Jr et al., 2013. GABA networks destabilize genetic oscillations in the circadian pacemaker. Neuron. Michihiro Mieda et al., 2015. Cellular Clocks in AVP Neurons of the SCN Are Critical for Interneuronal Coupling Regulating Circadian Behavior Rhythm. Neuron Lina Schlaeger et al., 2024. Estrogen-mediated coupling via gap junctions in the suprachiasmatic nucleus. Eur J Neurosci. Kazuto Watanabe et al., 1998. Melatonin inhibits spontaneous and VIP-induced vasopressin release from suprachiasmatic neurons. Brain research | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94054 | - |
| dc.description.abstract | 生理時鐘調控我們的行為週期和身體的機制,例如代謝作用和內分泌系統的調節。我們的日常作息,代謝作用以及睡眠週期都是按照24小時為一周期。腦部的下視丘的上視神經交叉核(suprachiasmatic nuclei, SCN)是哺乳動物的生理時鐘的主要調控中心。為了與外界的光暗週期同步,光的訊息會通過視網膜上的內發性感光視網膜神經節細胞(intrinsically photosensitive retinal ganglion cells, ipRGCs)傳遞到上視神經交叉核。在收到光的刺激後,ipRGCs會釋放麩氨酸(glutamate)到上視神經交叉核以傳遞訊息。ipRGCs和上視神經交叉核的連接也透過追踪特定基因表現的研究中得以證實。上視神經交叉核的構造可分為腹外側(ventral lateral)和背外側(dorsal medial),並由多種神經細胞所構成。在眾多神經細胞中,對於生理時鐘的形成有著重要影響的是表現血管活性腸肽(vascular intestinal peptide,VIP)和精胺酸血管加壓素(arginine vasopressin peptide, AVP)。腹外側主要由表現VIP的神經細胞組成,而背外側由表現AVP 的神經細胞所分佈。在過去的研究中,視神經交叉核的神經同步以及訊息的整合是由於表現VIP的神經細胞接受ipRGCs所傳遞的光訊號。之後生理時鐘的訊息會由表現AVP 的神經傳到其他腦區。然而,單一ipRGCs追踪法讓我們發現ipRGCs並非如一般認知僅限傳遞到表現VIP的神經細胞,實際上ipRGCs會分佈到整個上視神經交叉核。現如今的研究中,上視神經交叉上視神經交叉核的神經細胞之間如何運作產生生理時鐘仍然處於探討的階段。於是我們使用鈣離子影像記錄方式,發現上視神經交叉核中表現AVP的神經細胞在河魨毒素(tetrodotoxin,TTX)下(動作電位在其他神經中受阻截)依然會受到麩氨酸,N-甲基-D-天門冬胺酸受體(N-methyl-D-aspartate receptor,NMDA)和代谢型谷氨酸(metabotropic glutamate,mGlu)的促效劑所活化。因此我們推測ipRGCs的訊息會被上視神經交叉核中表現AVP的神經細胞所接受。為了證實這項猜想,我們把表現AVP的神經細胞攜帶感知鈣離子濃度的熒光蛋白---GCaMP7f,並利用光調控的方式激發ipRGCs,並觀察神經細胞的變化。實驗結果顯示AVP 的神經細胞會接受來自ipRGC的訊息並表現出多種鈣離子濃度變化的反應,因此AVP的神經細胞可能會透過ipRGC受到外界的刺激進而影響生理時鐘。 | zh_TW |
| dc.description.abstract | Circadian rhythms modulate our daily activity patterns and other body mechanisms, such as metabolic and neuroendocrine rhythms. It controls our daily behavior, metabolism, and sleep-wake cycle for a period of about 24 hours. Suprachiasmatic nucleus (SCN) in the hypothalamus is known as the central clock that controls circadian rhythms in mammals. The external light signal could entrain SCN through intrinsically photosensitive retinal ganglion cells (ipRGCs) by releasing glutamate. The ipRGC is a type of neurons in the retinal of mammalian eyes. The innervation of ipRGCs to SCN has been revealed by using genetic tracing techniques and contributes to the synchronization of the circadian rhythm. SCN is a heterogenous structure that contains different neurons, while the networking of circadian rhythm is prevalently related to AVP and VIP neurons. The shell region of SCN mainly consists of AVP neurons, while VIP neurons are major in the core region. In previous studies, VIP neurons are suggested as light signal-receiving neurons from ipRGCs, and AVP neurons are the primary output neurons for the SCN. However, in single ipRGC tracing study suggested that ipRGCs innervation is not limited to VIP neurons specifically but throughout the whole SCN. In addition, the mechanisms of communication within SCN neurons are still unrevealed in recent studies. By using in vitro calcium imaging, here we showed that glutamate, NMDA, and metabotropic glutamate agonists activated AVP neurons in SCN under the application of TTX to block multi-synaptic activation. To know whether ipRGC and AVP neurons in SCN are a monosynaptic pathway, we use a calcium sensor, GCaMP7f, to image the neural activity in SCN and stimulated by optogenetic simultaneously. The results show that AVP neurons receive signals from ipRGCs and exhibit different responses. Our results suggested that AVP neurons may also receive direct ipRGC input from the retina for circadian clock regulation. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:27:37Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:27:37Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract V Chapter I Introduction 1 1.1 Intrinsically photosensitive retinal ganglion cell (ipRGC) 1 1.1.1 The properties of ipRGCs 2 1.1.2 The projection of ipRGCs to the brain region 3 1.2 Suprachiasmatic nucleus 4 1.2.1 SCN Neurons 5 1.2.2 The coupling of SCN neurons 6 1.2.3 Molecular Clock 8 1.2.4 ipRGCs and SCN 9 1.3 GCaMP 11 1.4 Glutamate receptor 13 1.5 Optogenetics 15 1.6 Brain expansion microscopy 17 Statement of the Purpose 20 Chapter II Method and Material 21 2.1 Animals 21 2.2. DNA isolation 22 2.2.1 Polymerase chain reaction 22 2.3 Two-photon microscopic calcium imaging 22 2.3.1 Experimental design 23 2.3.2 Optogenetics 24 2.3.3 Analysis 24 2.3.4 Correlation analysis 25 2.4 Surgery 25 2.4.1 Eye Injection Surgery 26 2.4.2 Acute Brain Slice 26 2.4.3 Stereotaxic surgery 27 2.5 Immunohistochemistry staining 28 Chapter III Results 30 3.1 Distribution of ipRGC to AVP neurons in SCN 30 3.2 Activation of ipRGC induces different responses in AVP neurons 30 3.3 AVP neurons were activated in TTX and 4AP when ipRGCs were stimulated 31 3.4 Correlation coefficient of AVP neurons 32 Chapter IV Discussion 34 4.1 IpRGCs contact with AVP neurons in SCN 34 4.2 Activation of ipRGC induces different responses in AVP neurons 36 4.3 Direct innervation of ipRGC to AVP neurons 37 4.4 AVP neurons are involved in networking and synchronizing SCN neurons 40 Chapter V Significance of work 42 Chapter VI Reference 44 Figure 1. The representative distribution of ipRGCs to AVP neurons in SCN 57 Figure 2. Activation of ipRGC induces different responses in AVP neurons 59 Figure 3. Response of AVP neurons under light stimulation can be differentiated into 2 groups 61 Figure 4. The majority of activated neurons under light conditions without drugs fell into group 2 62 Figure 5. AVP neurons were activated in TTX and 4AP when ipRGCs were stimulated 64 Figure 6. Activation patterns of neurons under normal light conditions and in the presence of TTX and 4AP 65 Figure 7. Correlation coefficient of AVP neurons 67 Figure 8. Representative picture of AVP-Cre mice with GCaMP7f injection for calcium imaging recording 69 Figure 9. Representative picture of an inhibitory loop in ipRGCs and AVP neurons 71 Appendix Abstract and poster 72 Abstract of FENS 2024 72 Poster of FENS 2024 73 | - |
| dc.language.iso | en | - |
| dc.subject | 感知鈣離子濃度的熒光蛋白 | zh_TW |
| dc.subject | 生理時鐘 | zh_TW |
| dc.subject | 內發性感光視網膜神經節細胞 | zh_TW |
| dc.subject | 精胺酸血管加壓素 | zh_TW |
| dc.subject | 上視神經交叉核 | zh_TW |
| dc.subject | suprachiasmatic nucleus | en |
| dc.subject | GCaMP7f | en |
| dc.subject | intrinsically photosensitive retinal ganglion cells (ipRGCs) | en |
| dc.subject | arginine vasopressin peptide (AVP)) | en |
| dc.subject | circadian rhythms | en |
| dc.title | 探討生理時鐘中區精胺酸血管加壓素的神經連結迴路 | zh_TW |
| dc.title | Mapping the functional circuitry of AVP neurons in the central clock | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 徐經倫;閔明源;周銘翊 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Lung Hsu;Ming-Yuan Min;Ming-Yi Chou | en |
| dc.subject.keyword | 生理時鐘,上視神經交叉核,精胺酸血管加壓素,內發性感光視網膜神經節細胞,感知鈣離子濃度的熒光蛋白, | zh_TW |
| dc.subject.keyword | circadian rhythms,suprachiasmatic nucleus,arginine vasopressin peptide (AVP)),intrinsically photosensitive retinal ganglion cells (ipRGCs),GCaMP7f, | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU202400703 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-30 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 2 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
