Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94040
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭陳澔zh_TW
dc.contributor.advisorHao Kuo-Chenen
dc.contributor.author潘勝彥zh_TW
dc.contributor.authorSheng-Yan Panen
dc.date.accessioned2024-08-14T16:23:31Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-13-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citationAbadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Zheng, X. (2016). TensorFlow: a system for Large-Scale machine learning. In 12th USENIX symposium on operating systems design and implementation (OSDI 16) (pp. 265-283).
Akbar, A. F., Ryannugroho, R., Jousset, P., Gassner, A., Jaya, M., Sule, R., ... & Erbas, K. (2015). Study on Seismicity and Seismic Tomography on a Hydrothermal System in West Java. In World Geothermal Congress 2015.
Allen, R. V. (1978). Automatic earthquake recognition and timing from single traces. Bulletin of the Seismological Society of America, 68(5), 1521-1532.
Babu, V. G., Kumar, N., Verma, S. K., & Pal, S. K. (2023). An updated earthquake catalogue and seismic regimes in the northwest Himalaya: Seismic periodicity associated with strong earthquakes. Journal of Earth System Science, 132(4), 173.
Baroux, E., Béthoux, N., & Bellier, O. (2001). Analyses of the stress field in southeastern France from earthquake focal mechanisms. Geophysical Journal International, 145(2), 336-348.
Beyreuther, M., Barsch, R., Krischer, L., Megies, T., Behr, Y. & Wassermann, J., 2010. Obspy: a python toolbox for seismology, Seismological Research Letters, 81(3), 530–533.
Boettiger, C. (2015). An introduction to Docker for reproducible research. ACM SIGOPS Operating Systems Review, 49(1), 71-79.
Brodsky, E. E. (2019). The importance of studying small earthquakes. Science, 364(6442), 736-737.
Central Weather Administration. (CWA, Taiwan) (2012) Central Weather Administration Seismographic Network. International Federation of Digital Seismograph Networks. https://doi.org/10.7914/SN/T5
Chang, Y. H., Hung, S. H., and Chen, Y. L. (2019). A fast algorithmfor automatic phase picker and event location: Application to the 2018 Hualien earthquake sequences. Terrestrial, Atmospheric and Oceanic Sciences, 30, 435-448, doi: 10.3319/TAO.2018.12.23.01
Chen, C., & Holland, A. A. (2016). PhasePApy: A robust pure Python package for automatic identification of seismic phases. Seismological Research Letters, 87(6), 1384-1396.
Chen, Y. L., & Shin, T. C. (1998). Study on the earthquake location of 3-D velocity structure in the Taiwan area. Meteorol. Bull, 42(2), 135-169.
Copeland, R. (2008). Essential sqlalchemy. " O'Reilly Media, Inc.".
DuBois, P. (1999). MySQL. New riders publishing.
Ellsworth, W. L. (2013). Injection-induced earthquakes. Science, 341(6142), 1225942.
García, J. E., Fernández‐Prieto, L. M., Villaseñor, A., Sanz, V., Ammirati, J. B., Díaz Suárez, E. A., & García, C. (2022). Performance of deep learning pickers in routine network processing applications. Seismological Society of America, 93(5), 2529-2542.
GFZ, H. C., and Gempa, G. (2008). The SeisComP seismological software package, GFZ Data Services , doi: https://doi.org/10.5880/GFZ.2.4.2020.003.
Gillard, D., Rubin, A. M., & Okubo, P. (1996). Highly concentrated seismicity caused by deformation of Kilauea's deep magma system. Nature, 384(6607), 343-346.
Gritto, R., Yoo, S. H., & Jarpe, S. P. (2013). Three-dimensional seismic tomography at The Geysers geothermal field, CA, USA. Proceedings of the Thirty-Eighth Work-shop on Geothermal Reservoir Engineering, February, 1113, 1-12.
Havskov J., and Ottemoller L. 1999. SeisAn earthquake analysis software, Seismological Research Letters. 70, no. 5, 532–534.
Huang, C. M., Chang, L. H., Kuo-Chen, H., Zhuang, Y. Y. (2023) SeisBlue: a deep-learning data processing platform for seismology. EGU General Assembly, Vienna, pp 24–28. https://doi.org/10.5194/egusphere-egu23-13927 (EGU23-13927)
Huang, H. H., Wu, E. S., Lin, C. H., Ko, J. T., Shih, M. H., & Koulakov, I. (2021). Unveiling Tatun volcanic plumbing structure induced by post-collisional extension of Taiwan mountain belt. Scientific Reports, 11(1), 5286.
Institute of Earth Sciences, Academia Sinica, Taiwan (1996) Broadband array in Taiwan for seismology. Institute of Earth Sciences, Academia Sinica, Taipei City. https://doi.org/10.7914/SN/TW
Institute of Earth Sciences, Academia Sinica, Taiwan (2017) Formosa Array. Institute of Earth Sciences, Academia Sinica, Taipei City. https://doi.org/10.7914/SN/FM
Kissling, E., Ellsworth, W. L., Eberhart‐Phillips, D., & Kradolfer, U. (1994). Initial reference models in local earthquake tomography. Journal of Geophysical Research: Solid Earth, 99(B10), 19635-19646.
Kissling, E., Kradolfer, U., & Maurer, H. (1995). Program VELEST user’s guide-Short Introduction. Institute of Geophysics, ETH Zurich.
Klein, F. W. (2002). User's guide to HYPOINVERSE-2000, a Fortran program to solve for earthquake locations and magnitudes (No. 2002-171). US Geological Survey.
Kofler, M. (2005). phpMyAdmin. The Definitive Guide to MySQL5, 87-116.
Kubo, H., Naoi, M., & Kano, M. (2024). Recent advances in earthquake seismology using machine learning. Earth, Planets and Space, 76(1), 36.
Kuo‐Chen, H., Guan, Z. K., Sun, W. F., Jhong, P. Y., & Brown, D. (2019). Aftershock sequence of the 2018 Mw 6.4 Hualien earthquake in eastern Taiwan from a dense seismic array data set. Seismological Research Letters, 90(1), 60-67.
Kuo-Chen, H., Sun, W. F., Huang, C. M., Pan, S. Y. (2022) Near real-time seismic data processing helps scientist understand aftershocks. Temblor. https://doi.org/10.32858/temblor.276
Lienert, B. R., & Havskov, J. (1995). A computer program for locating earthquakes both locally and globally. Seismological Research Letters, 66(5), 26-36.
Lin, C. H., Shih, M. H., & Lai, Y. C. (2021). Mantle wedge diapirs detected by a dense seismic array in Northern Taiwan. Scientific Reports, 11(1), 1561.
Mousavi, S. M., Ellsworth, W. L., Zhu, W., Chuang, L. Y., & Beroza, G. C. (2020). Earthquake transformer—an attentive deep-learning model for simultaneous earthquake detection and phase picking. Nature communications, 11(1), 3952.
Münchmeyer, J., Woollam, J., Rietbrock, A., Tilmann, F., Lange, D., Bornstein, T., ... & Soto, H. (2022). Which picker fits my data? A quantitative evaluation of deep learning based seismic pickers. Journal of Geophysical Research: Solid Earth, 127(1), e2021JB023499.
Ross, Z. E., Meier, M. A., Hauksson, E., & Heaton, T. H. (2018). Generalized seismic phase detection with deep learning. Bulletin of the Seismological Society of America, 108(5A), 2894-2901.
Ross, Z. E., Yue, Y., Meier, M. A., Hauksson, E., & Heaton, T. H. (2019). PhaseLink: A deep learning approach to seismic phase association. Journal of Geophysical Research: Solid Earth, 124(1), 856-869.
Shih, M. H., Lai, Y. C., & Lin, C. H. (2022). Dramatic Change in Crustal Thickness across the Taiwan Orogeny Constrained by Moho-refraction Recorded by Formosa Array.
Smith, J. D., Ross, Z. E., Azizzadenesheli, K., & Muir, J. B. (2022). HypoSVI: Hypocentre inversion with Stein variational inference and physics informed neural networks. Geophysical Journal International, 228(1), 698-710.
Stork, A. L., Verdon, J. P., & Kendall, J. M. (2015). The microseismic response at the In Salah Carbon Capture and Storage (CCS) site. International Journal of Greenhouse Gas Control, 32, 159-171.
Sun, W. F., Pan, S. Y., Huang, C. M., Guan, Z. K., Yen, I. C., and Kuo-Chen, H.: Deep Learning-based earthquake catalog and tomography reveal the rupture process of the 2022 Mw 6.9 Chihshang earthquake sequence, EGU General Assembly 2023, Vienna, Austria, 24–28 Apr 2023, EGU23-7112, https://doi.org/10.5194/egusphere-egu23-7112, 2023. (oral section)
Sun, W. F., Pan, S. Y., Huang, C. M., Guan, Z. K., Yen, I. C., Ho, C. W., ... & Kuo-Chen, H. (2024). Deep learning-based earthquake catalog reveals the seismogenic structures of the 2022 MW 6.9 Chihshang earthquake sequence. Terrestrial, Atmospheric and Oceanic Sciences, 35(1), 5.
Trabant, C., Hutko, A. R., Bahavar, M., Karstens, R., Ahern, T., & Aster, R. (2012). Data products at the IRIS DMC: Stepping stones for research and other applications. Seismological Research Letters, 83(5), 846-854.
Trugman, D. T., & Shearer, P. M. (2017). GrowClust: A hierarchical clustering algorithm for relative earthquake relocation, with application to the Spanish Springs and Sheldon, Nevada, earthquake sequences. Seismological Research Letters, 88(2A), 379-391.
Van Rossum, G., & Drake Jr, F. L. (1995). Python tutorial.
Wadati, K. and Oki, S. (1933). On the travel time of earthquake waves. (Part II). J. Meteorol. Soc. Jpn., 11, 14- 28, doi: 10.2151/jmsj1923.11.1_14.
Waldhauser, F. (2001). HypoDD-A program to compute double-difference hypocenter locations (No. 2001-113).
Wech, A. G., & Thelen, W. A. (2015). Linking magma transport structures at Kīlauea volcano. Geophysical Research Letters, 42(17), 7090-7097.
Weller, O., Lange, D., Tilmann, F., Natawidjaja, D., Rietbrock, A., Collings, R., & Gregory, L. (2012). The structure of the Sumatran Fault revealed by local seismicity. Geophysical Research Letters, 39(1).
White, M. C., Ben‐Zion, Y., & Vernon, F. L. (2019). A detailed earthquake catalog for the San Jacinto fault‐zone region in southern California. Journal of Geophysical Research: Solid Earth, 124(7), 6908-6930.
Yoon, C. E., Cochran, E. S., Vanacore, E. A., Huerfano, V., Báez‐Sánchez, G., Wilding, J. D., & Smith, J. (2023). A detailed view of the 2020–2023 Southwestern Puerto Rico seismic sequence with deep learning. Bulletin of the Seismological Society of America, 113(6), 2377-2415.
Zang, A., Oye, V., Jousset, P., Deichmann, N., Gritto, R., McGarr, A., ... & Bruhn, D. (2014). Analysis of induced seismicity in geothermal reservoirs–An overview. Geothermics, 52, 6-21.
Zhang, M., Ellsworth, W. L., & Beroza, G. C. (2019). Rapid earthquake association and location. Seismological Research Letters, 90(6), 2276-2284.
Zhang, M., Liu, M., Feng, T., Wang, R., & Zhu, W. (2022). LOC‐FLOW: An end‐to‐end machine learning‐based high‐precision earthquake location workflow. Seismological Society of America, 93(5), 2426-2438.
Zhu, W., & Beroza, G. C. (2019). PhaseNet: A deep-neural-network-based seismic arrival-time picking method. Geophysical Journal International, 216(1), 261-273.
Zhu, W., McBrearty, I. W., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2022). Earthquake phase association using a Bayesian Gaussian mixture model. Journal of Geophysical Research: Solid Earth, 127(5), e2021JB023249.
Zhu, W., Hou, A. B., Yang, R., Datta, A., Mousavi, S. M., Ellsworth, W. L., & Beroza, G. C. (2023). QuakeFlow: a scalable machine-learning-based earthquake monitoring workflow with cloud computing. Geophysical Journal International, 232(1), 684-693.
Zoback, M. D., & Gorelick, S. M. (2012). Earthquake triggering and large-scale geologic storage of carbon dioxide. Proceedings of the National Academy of Sciences, 109(26), 10164-10168.
中央氣象署地震測報中心 (2009) 中央氣象署地震測報中心 20 週年專刊,中央氣象署 地震測報中心,http://scweb.cwb.gov.tw/Twenty.aspx?ItemId=8&loc=tw (2024年6月 查詢)
張立衡 (2022)。利用深度學習辨識地震波 P 與 S 到時以及後續關聯與定位(碩士論文)。國立中央大學地球科學系。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94040-
dc.description.abstract近年來,地震監測的應用越來越廣泛,不僅包含對地震災害的研究,像是地震序列來研究地震周期、孕震構造,或者是最近的重要議題:淨零排碳中的碳封存和地熱能源的探勘與開發,可以對碳封存時注入地下的二氧化碳與地熱電廠注入地下的水引起的地震起到提前警示的作用,也可以對二氧化碳的移棲情形或地下熱液的位置做觀測。地震監測的除了有很多的應用外,隨著時間進展,在世界各地布放的地震儀越來越多,儀器也越來越進步,所記錄到的地震資料的累積速度也越來越快,以人工的方式來處理地震會面臨效率嚴重不足的問題。因此對於地震資料處理的各項步驟已有很多研究研發不同的自動化的軟體來節省時間和人力。使用深度學習模組的地震監測系統SeisBlue,是由地震資料經過深度學習模型挑波、關聯、定位、建立地震目錄的自動化系統,而其中的深度學習模型是利用台灣的地震資料經過人工挑選的資料訓練的。本研究使用SeisBlue對三種不同地震觀測網的資料建立地震目錄,分別是在北台灣的Formosa Array、在池上地區的池上寬頻地震網和臨時密集地震網,用以了解SeisBlue對不同的測站數量、測站密度、測站分布、測站儀器的地震觀測網的處理效能。在實際處理資料時,根據測站網與地震分布調整所使用的參數是很重要的。SeisBlue在Formosa Array 2020年的資料,共偵測出5955筆地震;在池上寬頻地震網 2022/9/1~2022/10/31的資料共偵測出14462筆地震;在池上臨時密集地震網 2022/9/18~2022/10/25共偵測出45224筆地震。其中Formosa Array網內在2020期間沒有發生較大的地震,而池上地震網與臨時密集地震網有包含2022/9/18芮氏規模 6.9 池上地震的餘震序列。SeisBlue與中央氣象署的地震目錄一起做比較,SeisBlue和中央氣象署定位的地震位置分布相近但是能偵測到更多的數量,使用臨時密集地震網可以比池上寬頻地震網偵測出更小的地震,對於背景地震序列和餘震序列,SeisBlue都可以有效率的偵測地震,另外使用更加密集的地震網則可以偵測到更小的地震。本研究也成功將SeisBlue應用於近即時資料處理系統,可以發布近即時地震報告,未來將可以應用在其他地區方便做即時地震監測,例如對碳封存區域的誘發地震監測。zh_TW
dc.description.abstractRecently, the applications of earthquake monitoring are growing, which include the research of earthquake hazard, for example using earthquake sequences to find out earthquake cycle and the seismic structure. Earthquake monitoring is also necessary to the recently important issues, carbon capture and storage (CCS) and geothermal exploration. For CCS process, earthquake monitoring helps the observation of induced earthquakes and CO¬¬¬2 migration; for geothermal exploration, it helps finding out the geothermal reservoir and also the observation of induced earthquakes while geothermal power plant inject water. With more applications of earthquake monitoring, there are more and more seismometers placed around the world with better equipment, the accumulated seismic data grows faster and faster. Manual process can’t manage such great amount of data in efficiency. So, there are many studies have developed different automatic methods to decrease time and labor cost. SeisBlue, an earthquake monitoring system with Taiwan-data-training deep-learning model, can get earthquake catalog from earthquake data automatically, through the process of picking of deep-learning model, association, and locating. This research applies SeisBlue to three different seismic network to extract earthquake catalog, which is Formosa Array in northern Taiwan, Chihshang Seismic Network around Chihshang, and temporary dense nodal array around Chihshang, for the purpose of understanding the result of using SeisBlue to extract seismic catalog from different seismic network, with different station number, density, distribution, and instrument. When processing the data, adjusting the parameters according to the station and earthquake distribution is very important. As the result, SeisBlue extract 5955 events from Formosa Array within 2020; 14462 events from Chihshang Seismic Network during 2022/9/1~2022/10/31, 45224 events from Chihshang dense nodal array during 2022/9/18~2022/10/25. There is not large earthquake occurred during 2020 inside the Formosa Array, in contrast, Chihshang seismic network and dense nodal array contain the 2022/9/18 ML 6.9 Chihshang earthquake sequence. Compare to the catalog announced by Central Weather Administrator, the earthquake distribution of SeisBlue catalog has similar pattern to Central Weather Administrator catalog, but detect more earthquakes. With denser station distribution, SeisBlue can detect smaller earthquake and can detect earthquake efficiently both on background and aftershock seismicity. We also successfully apply SeisBlue to near realtime process system and can announce near realtime earthquake report, it can be used for realtime earthquake monitoring in the future, for example, the induced earthquake observation of the CCS region.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:23:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:23:31Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
目次 vii
圖次 ix
表次 xii
第一章 前言 1
1.1 研究動機與目的 1
1.2 文章架構 4
第二章 文獻回顧 5
2.1 地震監測 5
2.2 地震目錄自動化處理模組 7
2.2.1挑波模組 8
2.2.2關聯模組 8
2.3地震目錄自動化處理流程 9
2.3.1 LOC-FLOW 9
2.3.2 2020~2023波多黎各地震序列 11
2.3.3 QuakeFlow 13
第三章 研究方法與使用資料 15
3.1 SeisBlue自動化地震資料處理平台 15
3.1.1 SeisBlue架構 15
3.1.2 挑波模型 16
3.1.3 波相關聯 20
3.2 SeisBlue 工作流程 24
3.2.1建立地震波形資料庫 24
3.2.2波形預處理 25
3.2.3挑取波相到時 26
3.2.4波相關聯 27
3.2.5地震目錄的資料輸出及展示 29
3.3地震觀測網 31
3.3.1 台灣陣列 32
3.3.2池上寬頻地震聯網 33
3.3.3池上地震臨時網 34
第四章 結果 35
4.1 台灣陣列 35
4.1.1 關聯參數設定 37
4.1.2 與中央氣象署地震目錄比較 39
4.2池上寬頻地震聯網 41
4.2.1 測站包覆度與測站選擇 43
4.2.2 關聯參數設定 43
4.2.3 與中央氣象署地震目錄比較 45
4.2.4 近即時地震報告 46
4.3 池上地震臨時網 49
4.3.1 關聯參數設定 51
4.3.2 與池上寬頻地震聯網比較 51
4.4 運算時間 54
第五章 討論與結論 55
5.1 討論 55
5.1.1 關聯參數 55
5.2.2測站分布 58
5.2.3 餘震與背景地震 58
5.2.4 SeisBlue未來改進方向 59
5.2 結論 64
參考文獻 65
-
dc.language.isozh_TW-
dc.title深度學習地震監測系統SeisBlue應用在三個不同地震網的地震目錄zh_TW
dc.titleEarthquake Catalogs Extracted from Three Different Seismic Arrays by Deep Learning-Based System, SeisBlueen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.coadvisor陳達毅zh_TW
dc.contributor.coadvisorDa-Yi Chenen
dc.contributor.oralexamcommittee曾泰琳zh_TW
dc.contributor.oralexamcommitteeTai-Lin Tsengen
dc.subject.keywordAI 地震監測系統,深度學習,AI地震目錄,SeisBlue,自動挑波,zh_TW
dc.subject.keywordAI Earthquake Monitoring System,Deep Learning,AI Earthquake Catalog,SeisBlue,Automatic Waveform Picking,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU202402883-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college理學院-
dc.contributor.author-dept地質科學系-
dc.date.embargo-lift2027-09-01-
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  此日期後於網路公開 2027-09-01
8.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved