請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94030
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳育騏 | zh_TW |
dc.contributor.advisor | Yu-Chi Wu | en |
dc.contributor.author | 鄭承瀚 | zh_TW |
dc.contributor.author | Cheng-Han Cheng | en |
dc.date.accessioned | 2024-08-14T16:20:13Z | - |
dc.date.available | 2024-08-20 | - |
dc.date.copyright | 2024-08-13 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-06 | - |
dc.identifier.citation | Adams, A. (2019). Progress, challenges and opportunities in fish vaccine development. Fish & shellfish immunology, 90, 210-214.
Akira, S., Uematsu, S., & Takeuchi, O. (2006). Pathogen recognition and innate immunity [Review]. Cell, 124(4), 783-801. Aucouturier, J., Dupuis, L., & Ganne, V. (2001). Adjuvants designed for veterinary and human vaccines. Vaccine, 19(17-19), 2666-2672. Bøgwald, J., & Dalmo, R. A. (2019). Review on immersion vaccines for fish: An update 2019. Microorganisms, 7(12), 627. Bela-ong, D. B., Thompson, K. D., Kim, H. J., Park, S. B., & Jung, T. S. (2023). CD4+ T lymphocyte responses to viruses and virus-relevant stimuli in teleost fish. Fish & shellfish immunology, 142, 109007. Boshra, H., Li, J., & Sunyer, J. (2006). Recent advances on the complement system of teleost fish. Fish & shellfish immunology, 20(2), 239-262. Brito, L. A., Kommareddy, S., Maione, D., Uematsu, Y., Giovani, C., Scorza, F. B., Otten, G. R., Yu, D., Mandl, C. W., & Mason, P. W. (2015). Self-amplifying mRNA vaccines. Advances in genetics, 89, 179-233. Brudeseth, B. E., Wiulsrød, R., Fredriksen, B. N., Lindmo, K., Løkling, K.-E., Bordevik, M., Steine, N., Klevan, A., & Gravningen, K. (2013). Status and future perspectives of vaccines for industrialised fin-fish farming. Fish & shellfish immunology, 35(6), 1759-1768. Caipang, C. M. A., Hirono, I., & Aoki, T. (2006). Immunogenicity, retention and protective effects of the protein derivatives of formalin-inactivated red seabream iridovirus (RSIV) vaccine in red seabream, Pagrus major. Fish & shellfish immunology, 20(4), 597-609. Castro, R., Bernard, D., Lefranc, M., Six, A., Benmansour, A., & Boudinot, P. (2011). T cell diversity and TcR repertoires in teleost fish. Fish & shellfish immunology, 31(5), 644-654. Castro, R., Coll, J., Blanco, M. d. M., Rodriguez-Bertos, A., Jouneau, L., Fernández-Garayzábal, J. F., & Gibello, A. (2019). Spleen and head kidney differential gene expression patterns in trout infected with Lactococcus garvieae correlate with spleen granulomas. Veterinary research, 50, 1-14. Chambers, M. A., Graham, S. P., & La Ragione, R. M. (2016). Challenges in veterinary vaccine development and immunization. Vaccine Design: Methods and Protocols, Volume 2: Vaccines for Veterinary Diseases, 3-35. Chinchar VG, Waltzek T, Subramaniam K, Faria VG, Ebert D, Jancovich J, Hick P, Zhang QY, Marschang R, Whittington R, Williams T, Ince IA, & H, J. (2020). Create one new genus (Daphniairidovirus) including one new species in subfamily Betairidovirinae (Pimascovirales: Iridoviridae). ICTV. Chinchar, V. G., Hick, P., Ince, I. A., Jancovich, J. K., Marschang, R., Qin, Q., Subramaniam, K., Waltzek, T. B., Whittington, R., & Williams, T. (2017). ICTV virus taxonomy profile: Iridoviridae. Journal of General Virology, 98(5), 890-891. Cho, S. Y., Kim, H. J., Lan, N. T., Han, H.-J., Lee, D.-C., Hwang, J. Y., Kwon, M.-G., Kang, B. K., Han, S. Y., & Moon, H. (2017). Oral vaccination through voluntary consumption of the convict grouper Epinephelus septemfasciatus with yeast producing the capsid protein of red-spotted grouper nervous necrosis virus. Veterinary microbiology, 204, 159-164. Danilova, N., Bussmann, J., Jekosch, K., & Steiner, L. A. (2005). The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nature immunology, 6(3), 295-302. Duffus, A. L., Waltzek, T. B., Stöhr, A. C., Allender, M. C., Gotesman, M., Whittington, R. J., Hick, P., Hines, M. K., & Marschang, R. E. (2015). Distribution and host range of ranaviruses. Ranaviruses: Lethal pathogens of ectothermic vertebrates, 9-57. Elcombe, B. M., Chang, R. J., Taves, C. J., & Winkelhake, J. L. (1985). Evolution of antibody structure and effector functions: comparative hemolytic activities of monomeric and tetrameric IgM from rainbow trout, Salmo gairdnerii. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 80(4), 697-706. Erkinharju, T., Lundberg, M. R., Isdal, E., Hordvik, I., Dalmo, R. A., & Seternes, T. (2017). Studies on the antibody response and side effects after intramuscular and intraperitoneal injection of Atlantic lumpfish (Cyclopterus lumpus L.) with different oil‐based vaccines. Journal of Fish Diseases, 40(12), 1805-1813. Flügel, R. (1985). Lymphocystis disease virus. Iridoviridae, 133-150. Frenkel, V., Kimmel, E., & Iger, Y. (2000). Ultrasound-facilitated transport of silver chloride (AgCl) particles in fish skin. Journal of controlled release, 68(2), 251-261. Galindo-Villegas, J., García-Alcazar, A., Meseguer, J., & Mulero, V. (2019). Aluminum adjuvant potentiates gilthead seabream immune responses but induces toxicity in splenic melanomacrophage centers. Fish & shellfish immunology, 85, 31-43. Hølvold, L. B., Myhr, A. I., & Dalmo, R. A. (2014). Strategies and hurdles using DNA vaccines to fish. Veterinary research, 45, 1-11. Haller, O., Staeheli, P., & Kochs, G. (2007). Interferon-induced Mx proteins in antiviral host defense [Review]. Biochimie, 89(6-7), 812-818. Hansson, M., Nygren, P. A. k., & Sta˚ hl, S. (2000). Design and production of recombinant subunit vaccines. Biotechnology and applied biochemistry, 32(2), 95-107. Hitzfeld, B., & Assenmacher, M. (2005). Encyclopedic reference of immunotoxicology. Holten-Andersen, L., Doherty, T., Korsholm, K., & Andersen, P. (2004). Combination of the cationic surfactant dimethyl dioctadecyl ammonium bromide and synthetic mycobacterial cord factor as an efficient adjuvant for tuberculosis subunit vaccines. Infection and immunity, 72(3), 1608-1617. Huising, M. O., Guichelaar, T., Hoek, C., Verburg-van Kemenade, B. L., Flik, G., Savelkoul, H. F., & Rombout, J. H. (2003). Increased efficacy of immersion vaccination in fish with hyperosmotic pretreatment. Vaccine, 21(27-30), 4178-4193. Inouye, K., Yamano, K., Maeno, Y., Nakajima, K., Matsuoka, M., Wada, Y., & Sorimachi, M. (1992). Iridovirus infection of cultured red sea bream, Pagrus major. Fish Pathology, 27(1), 19-27. Kai, Y.-H., Chang, C.-K., Li, H.-Q., Chen, W.-H., Chi, S.-C., & Wu, Y.-C. (2024). Immune responses in giant groupers after vaccination with inactivated bivalent vaccine against betanodavirus and ranavirus. Aquaculture, 741179. Klesius, P. H., Shoemaker, C. A., & Evans, J. J. (2000). Efficacy of single and combined Streptococcus iniae isolate vaccine administered by intraperitoneal and intramuscular routes in tilapia (Oreochromis niloticus). Aquaculture, 188(3), 237-246. Koda, S. A., Subramaniam, K., Pouder, D. B., Yanong, R. P., & Waltzek, T. B. (2019). Phylogenomic characterization of red seabream iridovirus from Florida pompano Trachinotus carolinus maricultured in the Caribbean Sea. Archives of virology, 164, 1209-1212. Kurath, G. (2008). Biotechnology and DNA vaccines for aquatic animals. Revue scientifique et technique-Office international des épizooties, 27(1), 175. Kurita, J., & Nakajima, K. (2012). Megalocytiviruses. Viruses, 4(4), 521-538. Lee, W., & Suresh, M. (2022). Vaccine adjuvants to engage the cross-presentation pathway [Review]. Frontiers in immunology, 13. Levine, M. M., & Sztein, M. B. (2004). Vaccine development strategies for improving immunization: the role of modern immunology. Nature immunology, 5(5), 460-464. Lieschke, G. J., & Trede, N. S. (2009). Fish immunology. Current Biology, 19(16), R678-R682. Lillehaug, A. (2014). Vaccination strategies and procedures. Fish vaccination, 140-152. Ma, C., Ye, J., & Kaattari, S. L. (2013). Differential compartmentalization of memory B cells versus plasma cells in salmonid fish. European Journal of Immunology, 43(2), 360-370. Magnadóttir, B. (2006). Innate immunity of fish (overview). Fish & shellfish immunology, 20(2), 137-151. Makesh, M., & Rajendran, K. (2022). Fish immune system and vaccines. Springer. Masso-Silva, J. A., & Diamond, G. (2014). Antimicrobial peptides from fish. Pharmaceuticals, 7(3), 265-310. Maurice, S., Nussinovitch, A., Jaffe, N., Shoseyov, O., & Gertler, A. (2004). Oral immunization of Carassius auratus with modified recombinant A-layer proteins entrapped in alginate beads. Vaccine, 23(4), 450-459. Miller, D. L., Pessier, A. P., Hick, P., & Whittington, R. J. (2015). Comparative pathology of ranaviruses and diagnostic techniques. Ranaviruses: Lethal pathogens of ectothermic vertebrates, 171-208. Moore, J. D., Ototake, M., & Nakanishi, T. (1998). Particulate antigen uptake during immersion immunisation of fish: the effectiveness of prolonged exposure and the roles of skin and gill. Fish & shellfish immunology, 8(6), 393-408. Nakajima, K., Maeno, Y., Honda, A., Yokoyama, K., Tooriyama, T., & Manabe, S. (1999). Effectiveness of a vaccine against red sea bream iridoviral disease in a field trial test. Diseases of Aquatic Organisms, 36(1), 73-75. Nakanishi, T., Aoyagi, K., Xia, C., Dijkstra, J., & Ototake, M. (1999). Specific cell-mediated immunity in fish. Veterinary Immunology and Immunopathology, 72(1-2), 101-109. Nakanishi, T., Kiryu, I., & Ototake, M. (2002). Development of a new vaccine delivery method for fish: percutaneous administration by immersion with application of a multiple puncture instrument. Vaccine, 20(31-32), 3764-3769. Nakanishi, T., & Ototake, M. (1997). Antigen uptake and immune responses after immersion vaccination. Developments in biological standardization, 90, 59-68. Nguyen, H. T., Thu Nguyen, T. T., Tsai, M. A., Ya-Zhen, E., Wang, P. C., & Chen, S. C. (2017). A formalin-inactivated vaccine provides good protection against Vibrio harveyi infection in orange-spotted grouper (Epinephelus coioides). Fish Shellfish Immunol, 65, 118-126. Noad, R., & Roy, P. (2003). Virus-like particles as immunogens. Trends in microbiology, 11(9), 438-444. Novitasari, A., Desrina, & Agustini, T. (2019). Detection of The Red Sea Bream Iridovirus (RSIVD) and Quality of Frozen Mackerel (Scomber japonicus) Imported Through the Port of Tanjung Mas Semarang. IOP Conference Series: Earth and Environmental Science, Ou-Yang, Z., Wang, P., Huang, X., Cai, J., Huang, Y., Wei, S., Ji, H., Wei, J., Zhou, Y., & Qin, Q. (2012). Immunogenicity and protective effects of inactivated Singapore grouper iridovirus (SGIV) vaccines in orange-spotted grouper, Epinephelus coioides. Developmental & Comparative Immunology, 38(2), 254-261. Papp, T., Spann, D., Marschang, R. E., Mikrobiologie, F. Ä., & Reptilien, Z. (2014). Development and use of a real-time polymerase chain reaction for the detection of group II invertebrate iridoviruses in pet lizards and prey insects. Journal of Zoo and Wildlife Medicine, 219-227. Pardi, N., Hogan, M. J., Porter, F. W., & Weissman, D. (2018). mRNA vaccines—a new era in vaccinology. Nature reviews Drug discovery, 17(4), 261-279. Qiu, L., Chen, M.-M., Wan, X.-Y., Li, C., Zhang, Q.-L., Wang, R.-Y., Cheng, D.-Y., Dong, X., Yang, B., & Wang, X.-H. (2017). Characterization of a new member of Iridoviridae, Shrimp hemocyte iridescent virus (SHIV), found in white leg shrimp (Litopenaeus vannamei). Scientific reports, 7(1), 11834. Reed, L. J., & Muench, H. (1938). A SIMPLE METHOD OF ESTIMATING FIFTY PER CENT ENDPOINTS12. American Journal of Epidemiology, 27(3), 493-497. Rombout, J. H., Abelli, L., Picchietti, S., Scapigliati, G., & Kiron, V. (2011). Teleost intestinal immunology. Fish & shellfish immunology, 31(5), 616-626. Salinas, I. (2015). The mucosal immune system of teleost fish. Biology, 4(3), 525-539. Secombes, C., & Ellis, A. (2012). The immunology of teleosts. In Fish Pathology: Fourth Edition (pp. 144-166). Wiley-Blackwell. Secombes, C., & Wang, T. (2012). The innate and adaptive immune system of fish. In Infectious disease in aquaculture (pp. 3-68). Elsevier. Secombes, C., Wang, T., Hong, S., Peddie, S., Crampe, M., Laing, K., Cunningham, C., & Zou, J. (2001). Cytokines and innate immunity of fish. Developmental & Comparative Immunology, 25(8-9), 713-723. Seder, R. A., & Hill, A. V. (2000). Vaccines against intracellular infections requiring cellular immunity. Nature, 406(6797), 793-798. Seo, H., Kil, E.-J., Fadhila, C., Vo, T. T. B., Auh, C.-K., Lee, T.-K., & Lee, S. (2020). Rapid diagnosis of two marine viruses, red sea bream iridovirus and viral hemorrhagic septicemia virus by PCR combined with lateral flow assay. Virusdisease, 31, 251-256. Seppola, M., Larsen, A. N., Steiro, K., Robertsen, B., & Jensen, I. (2008). Characterisation and expression analysis of the interleukin genes, IL-1β, IL-8 and IL-10, in Atlantic cod (Gadus morhua L.) [Article]. Molecular immunology, 45(4), 887-897. Somamoto, T., Koppang, E. O., & Fischer, U. (2014). Antiviral functions of CD8+ cytotoxic T cells in teleost fish. Developmental & Comparative Immunology, 43(2), 197-204. Song, H., Santi, N., Evensen, Ø., & Vakharia, V. N. (2005). Molecular determinants of infectious pancreatic necrosis virus virulence and cell culture adaptation. Journal of Virology, 79(16), 10289-10299. Song, W. J., Qin, Q. W., Qiu, J., Huang, C. H., Wang, F., & Hew, C. L. (2004). Functional genomics analysis of Singapore grouper iridovirus: complete sequence determination and proteomic analysis. Journal of Virology, 78(22), 12576-12590. Soskic, B., Jeffery, L. E., Kennedy, A., Gardner, D. H., Hou, T. Z., Halliday, N., Williams, C., Janman, D., Rowshanravan, B., & Hirschfield, G. M. (2021). CD80 on human T cells is associated with FoxP3 expression and supports treg homeostasis. Frontiers in immunology, 11, 577655. Staeheli, P., Yu, Y. X., Grob, R., & Haller, O. (1989). A double-stranded RNA-inducible fish gene homologous to the murine influenza virus resistance gene Mx. Mol Cell Biol, 9(7), 3117-3121. Sun, L., Wang, X., Saredy, J., Yuan, Z., Yang, X., & Wang, H. (2020). Innate-adaptive immunity interplay and redox regulation in immune response [Review]. Redox Biology, 37, Article 101759. Thompson, A. L., & Staats, H. F. (2011). Cytokines: The Future of Intranasal Vaccine Adjuvants. Journal of Immunology Research, 2011(1), 289597. Tlaxca, J. L., Ellis, S., & Remmele Jr, R. L. (2015). Live attenuated and inactivated viral vaccine formulation and nasal delivery: potential and challenges. Advanced drug delivery reviews, 93, 56-78. Tsai, C.-T., Ting, J.-W., Wu, M.-H., Wu, M.-F., Guo, I.-C., & Chang, C.-Y. (2005). Complete Genome Sequence of the Grouper Iridovirus and Comparison of Genomic Organization with Those of Other Iridoviruses. Journal of Virology, 79(4), 2010-2023. Valero, Y., Arizcun, M., Cortés, J., Ramírez-Cepeda, F., Guzmán, F., Mercado, L., Esteban, M. Á., Chaves-Pozo, E., & Cuesta, A. (2020). NK-lysin, dicentracin and hepcidin antimicrobial peptides in European sea bass. Ontogenetic development and modulation in juveniles by nodavirus. Developmental & Comparative Immunology, 103, 103516. Verbeke, R., Lentacker, I., De Smedt, S. C., & Dewitte, H. (2019). Three decades of messenger RNA vaccine development. Nano Today, 28, 100766. Verhelst, J., Hulpiau, P., & Saelens, X. (2013). Mx proteins: antiviral gatekeepers that restrain the uninvited. Microbiol Mol Biol Rev, 77(4), 551-566. Wang, T., & Secombes, C. J. (2013). The cytokine networks of adaptive immunity in fish. Fish Shellfish Immunol, 35(6), 1703-1718. Weiner, D. B. (2008). DNA vaccines: Crossing a line in the sand introduction to special issue. Vaccine, 26(40), 5073. Wilson, M., Bengtén, E., Miller, N. W., Clem, L. W., Du Pasquier, L., & Warr, G. W. (1997). A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proceedings of the National Academy of Sciences, 94(9), 4593-4597. WOAH. (2021). RED SEA BREAM IRIDOVIRAL DISEASE. In Manual of Diagnostic Tests for Aquatic Animals, Chapter 2.3.7. Wong, C. K., Young, V. L., Kleffmann, T., & Ward, V. K. (2011). Genomic and proteomic analysis of invertebrate iridovirus type 9. Journal of Virology, 85(15), 7900-7911. Zapata, A., Diez, B., Cejalvo, T., Gutiérrez-De Frías, C., & Cortés, A. (2006). Ontogeny of the immune system of fish. Fish and Shellfish Immunology, Zapata, A., Diez, B., Cejalvo, T., Gutierrez-de Frias, C., & Cortés, A. (2006). Ontogeny of the immune system of fish. Fish & shellfish immunology, 20(2), 126-136. Zhang, Y.-A., Salinas, I., Li, J., Parra, D., Bjork, S., Xu, Z., LaPatra, S. E., Bartholomew, J., & Sunyer, J. O. (2010). IgT, a primitive immunoglobulin class specialized in mucosal immunity. Nature immunology, 11(9), 827-835. Zhang, Y.-B., & Gui, J.-F. (2012). Molecular regulation of interferon antiviral response in fish. Developmental & Comparative Immunology, 38(2), 193-202. Zhi, L., Wang, W., Zheng, J., Liu, S., Zhou, S., Qin, Q., Huang, Y., & Huang, X. (2022). Grouper TRIM23 exerts antiviral activity against iridovirus and nodavirus. Frontiers in immunology, 13, 985291. Zhu, L.-y., Nie, L., Zhu, G., Xiang, L.-x., & Shao, J.-z. (2013). Advances in research of fish immune-relevant genes: a comparative overview of innate and adaptive immunity in teleosts. Developmental & Comparative Immunology, 39(1-2), 39-62. 黃淑敏. (2013). 石斑魚虹彩病毒不活化疫苗之開發歷程. 農業生技產業季刊(31), 26-31. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94030 | - |
dc.description.abstract | 嘉鱲虹彩病毒 (Red sea bream iridovirus, RSIV) 及石斑魚虹彩病毒 (Grouper iridovirus, GIV) 感染常造成台灣養殖漁業的經濟損失,本研究以福馬林不活化RSIV及GIV製備成雙價疫苗,並以龍膽石斑魚苗評估其保護效果。疫苗以腹腔接種石斑魚,全程施打兩劑,兩劑間隔14天,於第二次施打後4週進行RSIV及GIV的攻毒試驗,實驗結果顯示施打兩劑疫苗2週後,魚隻皆存活無異常狀況,且各臟器組織切片結果皆正常無病變,顯示此對龍膽石斑魚是安全的,此雙價疫苗對RSIV及GIV攻毒後的相對存活率皆達60%以上。此外,雙價疫苗免疫後,於第6週分析血清中和抗體力價,RSIV中和抗體力價是131,而GIV中和抗體力價是128。頭腎與脾臟之免疫基因表現方面,IgM、IgT顯著高於對照組別,證實雙價疫苗誘發體液免疫反應,而MHC-I、CD8基因的上調,亦證實雙價疫能發誘發細胞免疫作用,並協同體液免應反應以較全面性之免疫力抵抗虹彩病毒感染,此結果顯示不活化虹彩病毒雙價疫苗可誘發龍膽石斑魚的專一性免疫力來抵抗病毒感染。 | zh_TW |
dc.description.abstract | Infections with red sea bream iridovirus (RSIV) and grouper iridovirus (GIV) often cause economic losses in aquaculture in Taiwan. In this study, formalin-inactivated RSIV and GIV were used to develop a bivalent vaccine, and its protective effect on giant grouper juveniles was evaluated. Groupers were intraperitoneally immunized with this bivalent vaccine twice. The interval between the two vaccinations was 14 days. RSIV and GIV challenge was conducted at 2 weeks post booster. The results showed that all the fish survived without abnormality after immunization and the tissue sections of organs were all normal and showed no histological change, revealing this vaccine is safe for groupers. After challenge with RSIV and GIV, the relative percent survival (RPS) in the immunized fish were >60%. In addition, the neutralizing antibody titers in serum were analyzed at 6 weeks post vaccination. The neutralizing antibody titer against RSIV was 131, while that against GIV was 128. In the analysis of immune gene expression in the head kidney and spleen, IgM and IgT gene expression were significantly higher than those in the control group, confirming that the bivalent vaccine induces humoral immunity. The upregulation of MHC-I and CD8 gene expression may induce cellular immunity, which could be cooperated with the humoral immune response to resist iridovirus infection with more comprehensive immunity. These results revealed that this inactivated iridovirus bivalent vaccine can induce the specific immunity of giant groupers against virus infection. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:20:13Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-14T16:20:13Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 摘要 i
Abstract ii 目次 iv 圖次 vii 表次 viii 附錄 ix 前言 1 1 文獻回顧 2 1.1 虹彩病毒之分類與簡介 2 1.1.1 虹彩病毒屬 2 1.1.2 綠病毒屬 2 1.1.3 十足目病毒屬 3 1.1.4 蛙病毒屬 3 1.1.5 巨大細胞病毒屬 3 1.1.6 淋巴囊腫病毒屬 4 1.2 虹彩病毒流行與感染狀況 4 1.2.1 嘉鱲虹彩病毒流行與感染狀況 4 1.2.2 石斑魚虹彩病毒流行與感染狀況 5 1.3 魚類之免疫生理 6 1.3.1 物理性屏障 6 1.3.2 先天性免疫 7 1.3.3 免疫器官 8 1.3.4 後天性免疫 9 1.4 水產疫苗之種類 10 1.4.1 不活化疫苗 (Inactivated vaccine) 10 1.4.2 減毒疫苗 (live attenuated vaccine) 10 1.4.3 次單位疫苗 (subunit vaccine) 11 1.4.4 DNA疫苗 (DNA vaccine) 11 1.4.5 RNA疫苗 (RNA vaccine) 12 1.5 疫苗接種方式 12 1.5.1 注射接種 12 1.5.2 浸泡接種 12 1.5.3 口服接種 13 2 材料與方法 14 2.1 實驗動物 14 2.2 細胞株與病毒株 14 2.3 RSIV病毒量產條件測試 14 2.4 病毒生產 15 2.5 雙價疫苗之製備 15 2.6 免疫試驗 16 2.7 組織病理切片 16 2.8 攻毒試驗 17 2.9 中和試驗 17 2.10 ELISA實驗 18 2.11 RNA萃取與反轉錄PCR 18 2.12 即時聚合酶鏈鎖反應 19 3 結果 20 3.1 疫苗殘留檢測與組織病理切片分析 20 3.2 雙價疫苗對魚體的保護效力 20 3.3免疫魚隻中和抗體力價 22 3.3 ELISA偵測抗病毒之抗體總量 23 3.4 免疫基因表現量變化 24 4 討論 27 4.1 疫苗殘留與副作用影響 27 4.2 RSIV-GIV雙價疫苗對龍膽石斑魚感染RSIV的保護力 28 4.3 RSIV-GIV雙價疫苗對龍膽石斑魚感染GIV的保護力 29 4.4 RSIV-GIV雙價疫苗對龍膽石斑魚免疫相關基因表現影響 31 4.5 結論 34 5 參考文獻 35 圖次 圖一、RSIV -GIV雙價疫苗免疫後不同週數魚體內疫苗佐劑殘留情形……………45 圖二、RSIV -GIV雙價疫苗免疫後之組織病理切片分析……………………………47 圖三、RSIV -GIV雙價疫苗免疫魚隻經高劑量RSIV攻毒之累積罹病率與死亡率.48 圖四、RSIV -GIV雙價疫苗免疫魚隻經低劑量RSIV攻毒之累積罹病率與死亡率.49 圖五、RSIV -GIV雙價疫苗免疫魚隻經高劑量GIV攻毒之累積罹病率與死亡率..50 圖六、RSIV -GIV雙價疫苗免疫魚隻經低劑量GIV攻毒之累積罹病率與死亡率..51 圖七、RSIV -GIV雙價疫苗免疫魚隻經高劑量GIV攻毒之累積罹病率與死亡率..52 圖八、RSIV -GIV雙價疫苗免疫魚隻經中劑量GIV攻毒之累積罹病率與死亡率..53 圖九、RSIV -GIV雙價疫苗免疫魚隻經低劑量GIV攻毒之累積罹病率與死亡率..54 圖十、ELSA檢測免疫組與對照組魚血清中GIV與RSIV之專一性抗體含量……55 圖十一、雙價疫苗免疫魚隻之脾臟與頭腎中IL-1β、TNF-α與Mx基因表現……56 圖十二、雙價疫苗免疫魚隻之脾臟與頭腎中IgM、IgT與CD4基因表現………..57 圖十三、雙價疫苗免疫魚隻之脾臟與頭腎中MHC-II、CD8α與MHC-I基因表現..58 圖十四、福馬林不活化RSIV與GIV病毒液中之DNA電泳圖……………………59 表次 表一、實驗使用之引子 60 表二、雙價疫苗第一次活體攻毒試驗之效力數據 61 表三、雙價疫苗第二次活體攻毒試驗之效力數據 62 表四、雙價疫苗免疫第6週中和抗體力價 (ND50) 63 表五、GIV攻毒殘活魚血清中之抗RSIV中和抗體力價 (ND50) 64 表六、RSIV病毒量產測試 65 附錄 實驗架構……………………………………………………………………………….66 實驗期程……………………………………………………………………………….66 實驗材料……………………………………………………………………………….66 實驗藥品……………………………………………………………………………….67 實驗儀器……………………………………………………………………………….68 | - |
dc.language.iso | zh_TW | - |
dc.title | 不活化虹彩病毒雙價疫苗對龍膽石斑魚保護效力評估 | zh_TW |
dc.title | Evaluation for the protective efficacy of inactivated iridovirus bivalent vaccine on giant grouper | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張麗冠;韓玉山;蓋玉軒 | zh_TW |
dc.contributor.oralexamcommittee | Li-Kwan Chang;Yu-San Han;Yu-Hsuan Kai | en |
dc.subject.keyword | 嘉鱲虹彩病毒,石斑魚虹彩病毒,雙價疫苗,體液免疫,細胞免疫, | zh_TW |
dc.subject.keyword | red sea bream iridovirus (RSIV),grouper iridovirus (GIV),bivalent vaccine,humoral immunity,cellular immunity, | en |
dc.relation.page | 68 | - |
dc.identifier.doi | 10.6342/NTU202403039 | - |
dc.rights.note | 同意授權(限校園內公開) | - |
dc.date.accepted | 2024-08-09 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 漁業科學研究所 | - |
dc.date.embargo-lift | 2029-08-09 | - |
顯示於系所單位: | 漁業科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 2.71 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。