請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94007完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳希立 | zh_TW |
| dc.contributor.advisor | Sih-Li Chen | en |
| dc.contributor.author | 吳崑銘 | zh_TW |
| dc.contributor.author | Kun-Ming Wu | en |
| dc.date.accessioned | 2024-08-14T16:13:12Z | - |
| dc.date.available | 2024-08-15 | - |
| dc.date.copyright | 2024-08-13 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | [1] IPCC, "IPCC 氣候變遷第六次評估報告 總結報告重點摘要," in TCCiP, ed, 2023.
[2] (2023). 臺灣2050淨零排放. [Online] Available: https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/7a65a06e-3f71-4c68-b368-85549fbca5d1 [3] 財團法人台灣綠色生產力基金會. 辦公室節能應用技術手冊. (2017). [4] 葉韋辰, "全球酷暑!台灣歷史紀錄將打破?氣象局:入夏最大規模高溫來了," in TVBS新聞網, ed. Yahoo!新聞, 2023. [5] M. Kauffeld and S. Gund, "Ice slurry - History, current technologies and future developments," (in English), Int. J. Refrig.-Rev. Int. Froid, Review vol. 99, pp. 264-271, Mar 2019, doi: 10.1016/j.ijrefrig.2019.01.010. [6] L. G. Zou, X. L. Zhang, and Q. Y. Zheng, "Research progress on preparation of binary ice by vacuum flash evaporation: A review," (in English), Int. J. Refrig., Review vol. 121, pp. 72-85, Jan 2021, doi: 10.1016/j.ijrefrig.2020.10.005. [7] W. Samah, P. Clain, F. Rioual, L. Fournaison, and A. Delahaye, "Review on ice crystallization and adhesion to optimize ice slurry generators without moving components," (in English), Appl. Therm. Eng., Review vol. 223, p. 25, Mar 2023, Art no. 119974, doi: 10.1016/j.applthermaleng.2023.119974. [8] H. Kumano, T. Asaoka, A. Saito, and S. Okawa, "Study on latent heat of fusion of ice in aqueous solutions," (in English), Int. J. Refrig.-Rev. Int. Froid, vol. 30, no. 2, pp. 267-273, Mar 2007, doi: 10.1016/j.ijrefrig.2006.07.008. [9] X. Liu, K. Zhuang, S. Lin, Z. Zhang, and X. Li, "Determination of supercooling degree, nucleation and growth rates, and particle size for ice slurry crystallization in vacuum," Crystals, vol. 7, no. 5, p. 128, 2017. [10] X. L. Zhang, Z. Han, and Z. W. Li, "Analysis on IPF influencing factors for vacuum binary ice making method," (in English), Int. J. Therm. Sci., vol. 67, pp. 210-216, May 2013, doi: 10.1016/j.ijthermalsci.2012.11.006. [11] -. Z. Kaixuan, -. Z. Jianfu, -. C. Shuling, and -. D. Wangfang, "- Thermodynamics of Flashing/Freezing Process of a Droplet in Vacuum," - Chinese Journal of Space Science, vol. - 31, no. - 1, pp. - 57, - 1900-01-01 2011, doi: - 10.11728/cjss2011.01.057. [12] R. W. Schrage, A theoretical study of interphase mass transfer. Columbia University Press, 1953. [13] R. Clift, J. R. Grace, and M. E. Weber, "Bubbles, drops, and particles," 2013. [14] H. T. Shin, Y. P. Lee, and J. Jurng, "Spherical-shaped ice particle production by spraying water in a vacuum chamber," (in English), Appl. Therm. Eng., vol. 20,61 no. 5, pp. 439-454, Apr 2000, doi: 10.1016/s1359-4311(99)00035-6. [15] D. T. Shaw and D. T. Shaw, Fundamentals of Aerosol Science. Wiley, 1978, pp. 135-164. [16] W. C. Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. Wiley, 1999, pp. 249-273. [17] T. Friese, P. Ulbig, S. Schulz, and K. Wagner, "Effect of NaCl or KCl on the excess enthalpies of alkanol plus water mixtures at various temperatures and salt concentrations," (in English), J. Chem. Eng. Data, vol. 44, no. 4, pp. 701-714, Jul-Aug 1999, doi: 10.1021/je980303x. [18] C. Kracht, P. Ulbig, and S. Schulz, "Measurement and correlation of excess molar enthalpies for (ethanediol, or 1,2-propanediol, or 1,2-butanediol plus water) at the temperatures (285.65, 298.15, 308.15, 323.15, and 338.15) K," (in English), J. Chem. Thermodyn., vol. 31, no. 9, pp. 1113-1127, Sep 1999, doi: 10.1006/jcht.1999.0511. [19] N. Hubert, R. Solimando, A. Pere, and L. Schuffenecker, "Dissolution enthalpy of NaCl in water at 25° C, 45° C and 60° C. Determination of the Pitzer's parameters of the {H2O NaCl} system and the molar dissolution enthalpy at infinite dilution of NaCl in water between 25° C and 100° C," Thermochimica acta, vol. 294, no. 2, pp. 157-163, 1997. [20] T. Khrenova, E. Akhumov, and L. Zhilina, "Integral heats of solution of sodium nitrate in water at 18 and 25 C in the region of metastable concentrations," Russian J. Appl. Chem, vol. 43, no. 7, pp. 1599-1602, 1970. [21] N. E. Dorsey, "Properties of ordinary water-substance in all its phases: water-vapor, water, and all the ices," (No Title), 1940. [22] C. A. Angell, M. Oguni, and W. J. Sichina, "HEAT-CAPACITY OF WATER AT EXTREMES OF SUPERCOOLING AND SUPERHEATING," (in English), J. Phys. Chem., vol. 86, no. 6, pp. 998-1002, 1982, doi: 10.1021/j100395a032. [23] F. A. Rayhan, Yanuar, and A. S. Pamitran, "Effect of ice mass fraction on ice slurry flow for cold energy storage application," (in English), Energy Rep., ; Proceedings Paper vol. 6, pp. 790-794, Feb 2020, doi: 10.1016/j.egyr.2019.11.159. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94007 | - |
| dc.description.abstract | 本研究旨在改善真空製冰泥系統在運輸冰泥過程中所遇到的問題。具體而言,當冰泥在閃蒸槽中生成後,如何避免冰泥卡在閃蒸桶內並能順利運輸至儲冰桶,而不使冰泥融化,成為本研究的主要挑戰。研究顯示,在純水中加入適量的乙二醇,不僅可以改善冰泥的聚合現象,還能使冰泥更容易運輸。
實驗結果表明,噴霧系統的引入顯著提高了製冰效果。加入噴霧裝置後,同樣20分鐘下的製冰,製冰量可增加1.527公斤。在固定側邊噴流流量的條件下,調整上方噴霧的流量,發現上方噴霧2LPM時製冰效果最佳。同樣,在固定上方噴霧流量的條件下,側邊噴流3LPM時製冰效果最佳。 乙二醇濃度對冰泥的運輸具有顯著影響。當濃度為1.5%時,大量冰泥會卡在閃蒸桶內,無法運輸至儲冰桶,導致製冰量減少。而在濃度2%至3%之間,冰泥運輸順暢,無明顯卡冰泥現象,且濃度變化對製冰量影響不大。然而當濃度超過3%時,製冰壓力過低,水泵難以將水打至閃蒸桶,導致噴頭結冰,造成冰塞現象。 本研究所開發的噴霧式真空製冰泥技術,在理想情況下的COP可達13.9。然而,實際應用中因存在熱損失和冰泥搬運損失,實際COP僅為7.4。 根據本研究結果,乙二醇濃度在2%至3%之間對製冰量影響不大。而文獻回顧顯示,乙二醇濃度越高會導致結冰壓力和潛熱下降。在相同製冰量下,潛熱越大越好,且低濃度的乙二醇在經濟上也是較優的選擇。因此,未來實驗可優先考慮添加2%濃度的乙二醇。 總結來說,本研究成功開發了一套高效的噴霧式真空製冰泥技術,並通過實驗驗證了其在不同條件下的製冰性能與效率。未來將致力於進一步優化系統設計,提高製冰效率,降低運行成本,以期在實際應用中取得更好的效果。 | zh_TW |
| dc.description.abstract | This study aims to address the challenges encountered in the vacuum ice slurry system during the transportation of ice slurry. Specifically, the main challenge of this research is to prevent ice slurry from getting stuck in the flash chamber after being generated and to ensure its smooth transport to the ice storage bucket without melting. The research shows that adding an appropriate amount of ethylene glycol to pure water not only improves the aggregation of ice slurry but also makes it easier to transport.
Experimental results indicate that the introduction of a spray system significantly enhances the ice-making effect. With the addition of the spray device, the ice production increased by 1.527 kg within the same 20-minute period. By adjusting the flow rate of the upper spray while keeping the side spray flow rate constant, it was found that the ice-making effect is optimal at 2 LPM for the upper spray. Similarly, when the upper spray flow rate is fixed, the best ice-making effect is achieved at a side spray flow rate of 3 LPM. The concentration of ethylene glycol has a significant impact on the transportation of ice slurry. At a concentration of 1.5%, a large amount of ice slurry gets stuck in the flash chamber and cannot be transported to the ice storage bucket, reducing the ice production. However, at concentrations between 2% and 3%, the ice slurry is transported smoothly without significant blockage, and the change in concentration has little effect on ice production. When the concentration exceeds 3%, the ice-making pressure is too low, making it difficult for the water pump to deliver water to the flash chamber, causing the spray nozzle to freeze and resulting in ice blockage. The spray-type vacuum ice slurry technology developed in this study can achieve a COP of up to 13.9 under ideal conditions. However, due to heat losses and ice slurry handling losses in practical applications, the actual COP is only 7.4. Based on the results of this study, the ethylene glycol concentration between 2% and 3% has little effect on ice production. Literature review shows that higher ethylene glycol concentrations lead to a decrease in freezing pressure and latent heat. Under the same ice production, higher latent heat is preferable, and low concentrations of ethylene glycol are also more economical. Therefore, future experiments should prioritize the addition of 2% ethylene glycol concentration. In summary, this study successfully developed an efficient spray-type vacuum ice slurry technology and experimentally verified its ice-making performance and efficiency under different conditions. Future efforts will focus on further optimizing system design, improving ice-making efficiency, and reducing operational costs to achieve better results in practical applications. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:13:12Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-14T16:13:12Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
謝詞 ii 中文摘要 iii ABSTRACT iv 目次 vi 表次 ix 圖次 x 符號說明 xii 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 3 1.3 研究動機 7 第二章 基礎理論 9 2.1 冰泥產生原理 9 2.1.1閃蒸液滴製冰模型 9 2.1.2液滴處於全液態階段 12 2.1.3液滴處於固-液共存階段 14 2.1.4液滴處於全固態階段 15 2.1.5液滴質量減少率 17 2.2 添加醇類抗凍劑對冰生成影響 18 2.2.1稀釋熱的影響 19 2.2.2有效熔化潛熱 19 2.2.3不同濃度乙二醇溶液在水平圓形管內部冰泥流動情形 20 2.3 質量守恆與能量守恆 21 2.3.1質量守恆 21 2.3.2能量守恆 22 2.4 COP計算 24 第三章 研究方法 25 3.1 實驗簡介 25 3.2 實驗架構與器材 25 3.2.1閃蒸槽 26 3.2.2 儲冰槽 27 3.2.3油式泵浦 29 3.2.4真空微壓縮機 30 3.2.5殼管式熱交換器 31 3.2.6磁力泵浦 31 3.2.7噴霧噴頭 33 3.3 量測儀器 34 3.3.1真空壓力計 34 3.3.2熱電偶溫度計和資料紀錄儀 36 3.3.3渦輪流量計 37 3.4噴霧式真空製冰泥技術研究實驗流程 39 第四章 結果與討論 40 4.1單一閃蒸桶槽未噴霧之真空製冰泥實驗 40 4.1.1單一閃蒸桶槽未噴霧之真空製冰泥實驗數據 40 4.2單一閃蒸桶加入噴霧之真空製冰泥實驗 41 4.2.1單一閃蒸桶槽未噴霧之真空製冰泥實驗數據 41 4.3變更噴霧流量之真空製冰泥實驗 44 4.3.1變更噴霧流量之真空製冰泥實驗數據 44 4.4變更噴流流量之真空製冰泥實驗 45 4.4.1變更噴流流量之真空製冰泥實驗數據 45 4.5儲冰桶槽外界熱增量問題 45 4.5.1儲冰桶槽外界熱增量問題實驗數據調整 46 4.6不同濃度之真空製冰泥實驗 49 4.6.1不同濃度之真空製冰泥實驗數據 49 4.7實驗與理論分析 52 4.7.1計算質量守恆計算過程 53 4.7.2計算能量守恆計算過程 54 4.7.3水泵熱增量計算過程 56 4.7.4搬運過程熱增量及儲冰桶熱增量計算過程 56 4.8計算系統COP 57 4.8.1計算系統COP計算過程 57 第五章 未來展望 58 5.1結論 58 5.2未來建議與展望 59 參考文獻 60 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 真空 | zh_TW |
| dc.subject | 閃蒸製冰 | zh_TW |
| dc.subject | 冰泥 | zh_TW |
| dc.subject | 噴霧 | zh_TW |
| dc.subject | 乙二醇 | zh_TW |
| dc.subject | Flash Ice-Making | en |
| dc.subject | Ethylene Glycol | en |
| dc.subject | Spray-Mist | en |
| dc.subject | Ice Slurry | en |
| dc.subject | Vacuum | en |
| dc.title | 噴霧式真空製冰泥技術研究 | zh_TW |
| dc.title | Spray-Mist Vacuum Ice Slurry Technology Research for Air Conditioning Systems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 李文興;江沅晉;王榮昌 | zh_TW |
| dc.contributor.oralexamcommittee | Wen-Shing Lee;Yuan-Chin Chiang;Jung-Chang Wang | en |
| dc.subject.keyword | 真空,噴霧,乙二醇,閃蒸製冰,冰泥, | zh_TW |
| dc.subject.keyword | Vacuum,Spray-Mist,Ethylene Glycol,Flash Ice-Making,Ice Slurry, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU202403467 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| dc.date.embargo-lift | 2029-08-05 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 5.03 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
