Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94003
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor毛明華zh_TW
dc.contributor.advisorMing-Hua Maoen
dc.contributor.author楊成億zh_TW
dc.contributor.authorCheng-Yi Yangen
dc.date.accessioned2024-08-14T16:12:01Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-13-
dc.date.issued2024-
dc.date.submitted2024-08-09-
dc.identifier.citation[1] Vahala, Kerry J. "Optical microcavities." nature 424.6950 (2003): 839-846.
[2] S. Hoogland, “The fuss about quantum dots,” Photonics Spectra, vol. 42, pp. 80-+, 2008
[3] A. M. Smith and S. Nie, “Semiconductor nanocrystals: structure, properties, and band gap engineering.” Acc. Chem. Res., vol. 43, pp. 190–200, 2010.
[4] Benson, Trevor M., et al. "Micro-optical resonators for microlasers and integrated optoelectronics." Frontiers in Planar Lightwave Circuit Technology: Design, Simulation, and Fabrication. Springer Netherlands, 2006.
[5] 鄭智怡,「硒化鎘/硫化鋅膠狀量子點光穩定性及其應用於微碟共振腔雷射 之研究」國立台灣大學博士論文 (2017)
[6] L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits. Hoboken, NJ, USA: Wiley, 1995.
[7] Ancey, S., A. Folacci, and P. Gabrielli. "Whispering-gallery modes and resonances of an elliptic cavity." Journal of Physics A: Mathematical and General 34.7 (2001): 1341.
[8] Rahachou, A. I., and I. V. Zozoulenko. “Effects of boundary roughness on a Q factor of whispering-gallery-mode lasing microdisk cavities.” Journal of applied physics 94.12 (2003): 7929-7931.
[9] Gorodetsky, Mikhail L., Anatoly A. Savchenkov, and Vladimir S. Ilchenko. “Ultimate Q of optical microsphere resonators.” Optics letters 21.7 (1996): 453-455.
[10] Kippenberg, Tobias Jan August. “Nonlinear optics in ultra-high Q whispering-gallery optical microcavities”. Diss. California Institute of Technology, 2004.
[11] V. B. Braginsky, M. L. Gorodetsky, and V. S. Ilchenko, “Quality-factor and nonlinear properties of optical whispering-gallery modes,” Phys. Lett. A, vol. 137, pp. 393–397, 1989.
[12] Cai, Ming, et al. “Fiber-coupled microsphere laser.” Optics letters 25.19 (2000): 1430-1432.
[13] Ido, Yasuki, et al. “Reduced lasing threshold in thiophene/phenylene co-oligomer crystalline microdisks.” Applied physics express 3.1 (2009): 012702
[14] Novotny, Lukas. "From near-field optics to optical antennas." Physics today 64.7 (2011): 47-52.
[15] Yan, Chang-ling, et al. "Directional emission micro-cavity lasers with different device structures." Optoelectronic Devices and Integration VI. Vol. 10019. SPIE, 2016.
[16] Zeng, Qingji, et al. "Spectral and directional properties of elliptical quantum-dot microlasers." Journal of Photonics for Energy 8.3 (2018): 032218-032218.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/94003-
dc.description.abstract本論文中,我們研究微碟的幾何形狀與遠場的關係,以達成指向性的控制。我們研究的微碟形狀包括:主要作為對照組的圓形微碟、具有不同長短軸比例的橢圓微碟,以及半圓半橢的非對稱形狀。
在頻譜量測時,雖觀察到量子點的發光,但並未從圓形微碟觀察到迴音廊模態,可能是因為量子點材料經長期儲放後已劣化;在長短軸比為1.25的橢圓與1.125之半圓半橢頻譜量測中,當激發光源分別聚焦於長軸或短軸時,訊號會有強弱之分,乃因為長軸相比於短軸,其激發後穿越共振腔的距離較短,訊號衰減程度較少。在長短軸比為2.5的橢圓,因其形狀已不利於全反射的產生,故訊號極微弱;至於長短軸比為1.75的半圓半橢,因具有半圓的結構,使得光仍能一定程度沿週邊運行,故能區分訊號與雜訊。
除了進行不同形狀共振腔的頻譜量測外,我們同時也進行了遠場場型的量測。使用532 nm綠光雷射激發量子點,通過550nm濾波片後,由Si photodetector收光,再經由Lock-in Amplifier放大,最後由Labview程式讀取。因遠場量測時,發光並未經單光儀濾光,且共振腔本身的形狀也不完美,因此圓形微碟的遠場場型並非完美的圓。
橢圓微碟中因曲率大的地方容易以切線的方向漏光,故在傾向垂直長軸的方向有較大的光強度;在半圓半橢中,因曲率最大的地方只有一處,位於橢圓長軸邊上的端點,故只有此點的切線方向光強度明顯較大,其遠場場型具備顯著的指向性。此外,我們刻意改變長短軸比為1.75的半圓半橢的0度位置,證實光強度確實與曲率大小有關連。
zh_TW
dc.description.abstractIn this paper, we studied the relationship between the geometry of microdisks and their far-field properties to achieve directional control. The microdisk shapes we studied include: the circular microdisk, which serves as the primary control group, elliptical microdisks with different aspect ratios, and an asymmetric semi-circle-ellipse shape.
During spectral measurements, although the quantum dot luminescence was observed, no whispering-gallery modes were detected in the circular microdisk. This might be due to degradation of the quantum dot after prolonged storage. In the case of elliptical microdisks with an aspect ratio of 1.25 and the semi-circle-ellipse shape with an aspect ratio of 1.125, the signal intensity varied depending on whether the excitation light was focused on the long axis or the short axis. The reason is the excitation light travels a shorter distance through the cavity along the long axis compared to the short axis, leading to less signal attenuation. For the elliptical microdisk with an aspect ratio of 2.5, the shape was unfavorable for total internal reflection, resulting in a very weak signal. On the other hand, there is the semicircular structure in the semi-circle-ellipse shape with an aspect ratio of 1.75 and it allows the light to propagate along the periphery so that we can enable differentiation between signal and noise.
In addition to spectral measurements of various cavity shapes, we also performed far-field pattern measurements. Quantum dots were excited with a 532 nm green laser, and the emitted light was filtered through a 550 nm filter before being detected by a Si photodetector. The signal was then amplified by a lock-in amplifier and read by a Labview program. In the far-field measurement, because we didn’t use the monochromator for filtering and the cavity shapes were imperfect, the far-field pattern of the circular microdisk was not a perfect circle.
In elliptical microdisks, the light tends to leak out more at regions with larger curvature, leading to higher intensity along directions perpendicular to the long axis. The point with maximum curvature is only one and located at the end of the ellipse’s long axis in the semi-circle-ellipse shape, and thus the light intensity is significantly higher at this point, resulting in the obvious directional far-field pattern. Additionally, we deliberately varied the 0 degree position of the semi-circle-ellipse with an aspect ratio of 1.75 to confirm that the light intensity is indeed related to the curvature size.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:12:01Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:12:01Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝 i
摘要 iii
Abstract v
圖次 ix
1 第一章 序論 1
1.1 光學微共振腔(Optical Microcavities) 1
1.2 量子點(Quantum Dots, QDs) 2
1.2.1 膠狀量子點(Colloidal Quantum Dots) 3
1.3 量子點微碟雷射(Quantum-Dot Microdisk Laser) 4
1.4 論文架構 5
2 第二章 理論介紹 6
2.1 幾何光學模型 6
2.2 迴音廊模態 7
2.2.1 圓形結構 7
2.2.2 橢圓結構 12
2.3 共振腔相關參數。 17
2.3.1 自由光譜區 17
2.3.2 品質因子 17
2.3.3 損耗機制 18
2.3.4 模態體積 19
2.4 場型 20
3 第三章 樣品介紹 21
3.1 樣品製程 21
3.2 樣品光學顯微鏡照 22
4 第四章 實驗架構與量測結果 24
4.1 微碟共振腔頻譜量測架構 24
4.2 不同形狀的微碟遠場場型量測架構 25
4.3 不同形狀的微碟頻譜量測結果 26
4.4 不同形狀的微碟遠場量測結果 28
5 第五章 結論 31
Reference 33
-
dc.language.isozh_TW-
dc.subject指向性zh_TW
dc.subject曲率zh_TW
dc.subject橢圓zh_TW
dc.subject遠場場型zh_TW
dc.subject微碟共振腔zh_TW
dc.subject膠狀量子點zh_TW
dc.subjectColloidal quantum qotsen
dc.subjectEllipseen
dc.subjectFar-field patternen
dc.subjectDirectionalityen
dc.subjectCurvatureen
dc.subjectMicrodisk resonatorsen
dc.title圓形及橢圓之微碟共振腔的遠場量測與分析zh_TW
dc.titleMeasurement and Analysis of Far-Field Emission from Circular and Elliptical Microdisk Resonatorsen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee林浩雄;張子璿zh_TW
dc.contributor.oralexamcommitteeHao-Hsiung Lin;Tzu-Hsuan Changen
dc.subject.keyword膠狀量子點,微碟共振腔,遠場場型,橢圓,指向性,曲率,zh_TW
dc.subject.keywordColloidal quantum qots,Microdisk resonators,Far-field pattern,Ellipse,Directionality,Curvature,en
dc.relation.page34-
dc.identifier.doi10.6342/NTU202404148-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college電機資訊學院-
dc.contributor.author-dept光電工程學研究所-
dc.date.embargo-lift2027-08-13-
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
4.3 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved