Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93998
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳炳煇zh_TW
dc.contributor.advisorPing-Hei Chenen
dc.contributor.author黃乂烜zh_TW
dc.contributor.authorYi-Xuan Huangen
dc.date.accessioned2024-08-14T16:10:23Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-13-
dc.date.issued2024-
dc.date.submitted2024-08-10-
dc.identifier.citation[1]R. N. Xu, G. Y. Wang, and P. X. Jiang, "Spray Cooling on Enhanced Surfaces: A Review of the Progress and Mechanisms," Journal of Electronic Packaging, vol. 144, no. 1, Mar 2022, Art no. 010802, doi: 10.1115/1.4050046.
[2]S. Nukiyama, "The maximum and minimum values of the heat-q transmitted from metal to boiling water under atmosoheric-pressure, " International Journal of Heat and Mass Transfer, vol. 27, no. 7, pp. 959-970, 1984. [Online]. Available: <Go to ISI>://WOS:A1984TC56100002.
[3]J. Kim, S. Jun, R. Laksnarain, and S. M. You, "Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability," International Journal of Heat and Mass Transfer, vol. 101, pp. 992-1002, Oct 2016, doi: 10.1016/j.ijheatmasstransfer.2016.05.067.
[4]J. S. Kim, A. Girard, S. C. Jun, J. Lee, and S. M. You, "Effect of surface roughness on pool boiling heat transfer of water on hydrophobic surfaces," International Journal of Heat and Mass Transfer, vol. 118, pp. 802-811, Mar 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.124.
[5]S. Sarangi, J. A. Weibel, and S. V. Garimella, "Effect of particle size on surface-coating enhancement of pool boiling heat transfer," International Journal of Heat and Mass Transfer, vol. 81, pp. 103-113, Feb 2015, doi: 10.1016/j.ijheatmasstransfer.2014.09.052.
[6]A. M. Gheitaghy, H. Saffari, D. Ghasimi, and A. Ghasemi, "Effect of electrolyte temperature on porous electrodeposited copper for pool boiling enhancement," Applied Thermal Engineering, vol. 113, pp. 1097-1106, Feb 2017, doi: 10.1016/j.applthermaleng.2016.11.106.
[7]N. Mascarenhas and I. Mudawar, "Analytical and computational methodology for modeling spray quenching of solid alloy cylinders," International Journal of Heat and Mass Transfer, vol. 53, no. 25-26, pp. 5871-5883, Dec 2010, doi: 10.1016/j.ijheatmasstransfer.2010.06.055.
[8]H. Liu, C. Cai, M. Jia, J. L. Gao, H. C. Yin, and H. Chen, "Experimental investigation on spray cooling with low-alcohol additives," Applied Thermal Engineering, vol. 146, pp. 921-930, Jan 2019, doi: 10.1016/j.applthermaleng.2018.10.054.
[9]J. D. Benther, J. D. Pelaez-Restrepo, C. Stanley, and G. Rosengarten, "Heat transfer during multiple droplet impingement and spray cooling: Review and prospects for enhanced surfaces," International Journal of Heat and Mass Transfer, vol. 178, Oct 2021, Art no. 121587, doi: 10.1016/j.ijheatmasstransfer.2021.121587.
[10]R. G. Jackson et al., "Effect of surface wettability on carbon nanotube water-based nanofluid droplet impingement heat transfer," in Journal of Physics: Conference Series, 2014, vol. 525, no. 1: IOP Publishing, p. 012024.
[11]Y. Hou, J. H. Liu, X. M. Su, Y. Qian, L. Q. Liu, and X. F. Liu, "Experimental study on the characteristics of a closed loop R134-a spray cooling," Experimental Thermal and Fluid Science, vol. 61, pp. 194-200, Feb 2015, doi: 10.1016/j.expthermflusci.2014.10.026.
[12]W. L. Cheng, F. Y. Han, Q. N. Liu, and H. L. Fan, "Spray characteristics and spray cooling heat transfer in the non-boiling regime," Energy, vol. 36, no. 5, pp. 3399-3405, May 2011, doi: 10.1016/j.energy.2011.03.039.
[13]S. J. Thiagarajan, S. Narumanchi, and R. G. Yang, "Effect of flow rate and subcooling on spray heat transfer on microporous copper surfaces," International Journal of Heat and Mass Transfer, vol. 69, pp. 493-505, Feb 2014, doi: 10.1016/j.ijheatmasstransfer.2013.09.033.
[14]N. Y. Zhou, F. J. Chen, Y. C. Cao, M. M. Chen, and Y. Wang, "Experimental investigation on the performance of a water spray cooling system," Applied Thermal Engineering, vol. 112, pp. 1117-1128, Feb 2017, doi: 10.1016/j.applthermaleng.2016.10.191.
[15]M. Visaria and I. Mudawar, "Theoretical and experimental study of the effects of spray inclination on two-phases spray cooling and critical heat flux," International Journal of Heat and Mass Transfer, vol. 51, no. 9-10, pp. 2398-2410, May 2008, doi: 10.1016/j.ijheatmasstransfer.2007.08.010.
[16]Y. Q. Wang, M. H. Liu, D. Liu, K. Xu, and Y. L. Chen, "Experimental study on the effects of spray inclination on water spray cooling performance in non-boiling regime," Experimental Thermal and Fluid Science, vol. 34, no. 7, pp. 933-942, Oct 2010, doi: 10.1016/j.expthermflusci.2010.02.010.
[17]M. R. Pais, L. C. Chow, and E. T. Mahefkey, "SURFACE-ROUGHNESS AND ITS EFFECTS ON THE HEAT-TRANSFER MECHANISM IN SPRAY COOLING," Journal of Heat Transfer-Transactions of the Asme, vol. 114, no. 1, pp. 211-219, Feb 1992, doi: 10.1115/1.2911248.
[18]Z. Zhang, J. Li, and P. X. Jiang, "Experimental investigation of spray cooling on flat and enhanced surfaces," Applied Thermal Engineering, vol. 51, no. 1-2, pp. 102-111, Mar 2013, doi: 10.1016/j.applthermaleng.2012.08.057.
[19]X. Zhao, H. F. Zhang, X. Z. Xi, F. Liu, and B. Zhang, "Effect of unidirectional surface roughness on heat transfer performance of spray cooling," Experimental Heat Transfer, vol. 36, no. 1, pp. 96-119, Jan 2023, doi: 10.1080/08916152.2022.2040653.
[20]J. N. Chen et al., "Phenomenon and Mechanism of Spray Cooling on Nanowire Arrayed and Hybrid Micro/Nanostructured Surfaces," Journal of Heat Transfer-Transactions of the Asme, vol. 140, no. 11, Nov 2018, Art no. 112401, doi: 10.1115/1.4039903.
[21]R. N. Xu, L. Cao, G. Y. Wang, J. N. Chen, and P. X. Jiang, "Experimental investigation of closed loop spray cooling with micro- and hybrid micro-/nano-engineered surfaces," Applied Thermal Engineering, vol. 180, Nov 2020, Art no. 115697, doi: 10.1016/j.applthermaleng.2020.115697.
[22]Y. Y. Hu, Y. F. Lei, X. L. Liu, and R. G. Yang, "Heat transfer enhancement of spray cooling by copper micromesh surface," Materials Today Physics, vol. 28, Nov 2022, Art no. 100857, doi: 10.1016/j.mtphys.2022.100857.
[23]P. C. Lin, H. C. Cheng, and P. H. Chen, "Effects of wide-range copper surface wettability on spray cooling heat transfer," Experimental Thermal and Fluid Science, vol. 143, May 2023, Art no. 110834, doi: 10.1016/j.expthermflusci.2022.110834.
[24]C. M. Patil, K. S. V. Santhanam, and S. G. Kandlikar, "Development of a two-step electrodeposition process for enhancing pool boiling," International Journal of Heat and Mass Transfer, vol. 79, pp. 989-1001, Dec 2014, doi: 10.1016/j.ijheatmasstransfer.2014.08.062.
[25]J. R. Taylor, "An introduction to error analysis: the study of uncertainties in physical measurements," (No Title), 1980.
[26]H. Wang, J. J. Wu, Q. Yang, X. Zhu, and Q. Liao, "Heat transfer enhancement of ammonia spray cooling by surface modification," International Journal of Heat and Mass Transfer, vol. 101, pp. 60-68, Oct 2016, doi: 10.1016/j.ijheatmasstransfer.2016.05.052.
[27]J. H. Kim, S. M. You, and S. U. S. Choi, "Evaporative spray cooling of plain and microporous coated surfaces," International Journal of Heat and Mass Transfer, vol. 47, no. 14-16, pp. 3307-3315, Jul 2004, doi: 10.1016/j.ijheatmasstransfer.2004.01.018.
[28]H. Bostanci, D. P. Rini, J. P. Kizito, V. Singh, S. Seal, and L. C. Chow, "High heat flux spray cooling with ammonia: Investigation of enhanced surfaces for CHF," International Journal of Heat and Mass Transfer, vol. 55, no. 13-14, pp. 3849-3856, Jun 2012, doi: 10.1016/j.ijheatmasstransfer.2012.03.040.
[29]K. A. Estes and I. Mudawar, "CORRELATION OF SAUTER MEAN DIAMETER AND CRITICAL HEAT-FLUX FOR SPRAY COOLING OF SMALL SURFACES," International Journal of Heat and Mass Transfer, vol. 38, no. 16, pp. 2985-2996, Nov 1995, doi: 10.1016/0017-9310(95)00046-c.
[30]L. C. Lin and R. Ponnappan, "Heat transfer characteristics of spray cooling in a closed loop," International Journal of Heat and Mass Transfer, vol. 46, no. 20, pp. 3737-3746, Sep 2003, doi: 10.1016/s0017-9310(03)00217-5.
[31]D. P. Rini, R. H. Chen, and L. C. Chow, "Bubble behavior and nucleate boiling heat transfer in saturated FC-72 spray cooling," Journal of Heat Transfer-Transactions of the Asme, vol. 124, no. 1, pp. 63-72, Feb 2002, doi: 10.1115/1.1418365.
[32]E. A. Silk, Investigation of enhanced surface spray cooling. University of Maryland, College Park, 2006.
[33]J. S. Coursey, J. G. Kim, and K. T. Kiger, "Spray cooling of high aspect ratio open microchannels," Journal of Heat Transfer-Transactions of the Asme, vol. 129, no. 8, pp. 1052-1059, Aug 2007, doi: 10.1115/1.2737476.
[34]R. Puterbaugh, K. Yerkes, T. Michalak, and S. Thomas, "Cooling performance of a partially-confined FC-72 spray: the effect of dissolved air," in 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, p. 199.
[35]E. A. Silk, J. Kim, and K. Kiger, "Spray cooling of enhanced surfaces: Impact of structured surface geometry and spray axis inclination," International Journal of Heat and Mass Transfer, vol. 49, no. 25-26, pp. 4910-4920, Dec 2006, doi: 10.1016/j.ijheatmasstransfer.2006.05.031.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93998-
dc.description.abstract本研究以不同電流密度所產生的不同微孔結構電鍍銅表面進行不同工作流體(水、Novec-7100)的噴霧冷卻實驗並探討其在單相及兩相區間的熱傳表現,本次噴霧冷卻的相關實驗參數如下:噴嘴距離測試表面高度為22 mm、噴嘴孔徑為0.51 mm、銅測試表面直徑為16 mm、工作流體採用去離子水以及介電溶液Novec-7100,有效體積流率為7.2×10-3 m3/m2‧s 以及1.2×10-3 m3/m2‧s 並利用熱電偶量測測試銅塊的溫度分布以計算實際熱通量、表面溫度等相關參數,並利用SEM 照片以及熱傳機制示意圖輔助討論實驗結果。整體而言,微孔結構表面相對於未改質的表面可以增加毛吸能力、增加表面成核點數量,使得熱傳係數以及臨界熱通量有所提升,在去離子水的噴霧冷卻實驗中,輸入電流密度為0.3 A/cm2 有最佳的熱傳係數增強效果,為未改質表面的1.29 倍,而在Novec-7100 的噴霧冷卻實驗中,輸入電流密度為1.5 A/cm2 有最佳的熱傳係數增強效果,為未改質表面的1.62 倍,最大臨界熱通量為1.66 倍。zh_TW
dc.description.abstractThis study conducts spray cooling experiments using copper surfaces with micro-porous structures generated under different electrodeposition current density, and investigates their heat transfer performance with different working fluids (water, Novec-7100). The parameters for these spray cooling experiments are as follows: the nozzle distance from the test surface is 22 mm, the nozzle aperture is 0.51 mm, the diameter of the copper test surface is 16 mm, and the working fluids used are deionized water and the dielectric solution Novec-7100. The effective volumetric flow rates of the DI water and Novec-7100 were 7.2×10-3 m3/m2‧s and 1.2×10-3 m3/m2‧s, respectively. The temperature distribution of the copper test blocks is measured using thermocouples to calculate actual heat flux, surface temperature, and other relevant parameters. The experimental results are discussed with the SEM images from different surfaces and schematic diagrams. Overall, compared to unmodified surfaces, microporous structured surfaces enhance wicking capabilities and increase the bubble nucleation sites, increasing the heat transfer coefficient and critical heat flux. In the spray cooling experiments using deionized water, the current density of 0.3 A/cm2 achieves the best heat transfer coefficient enhancement, 1.29 times that of the unmodified surface. In the experiments using Novec-7100, the current density of 1.5 A/cm2 results in the optimal enhancement of heat transfer coefficient, 1.62 times that of the unmodified surface, with a maximum critical heat flux of 1.66 times.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:10:22Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:10:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員審定書i
致謝 ii
摘要 iii
Abstract iv
Nomenclature v
Table of Contents x
List of Figures xii
List of Table xvi
Chapter 1 Introduction. 1
1.1 Literature review 1
1.2 Research objectives 32
Chapter 2 Theory 33
2.1 Surface energy 33
2.2 Wettability 34
2.3 Capillary 37
2.4 Electrodeposition 37
Chapter 3 Experimental approach 39
3.1 Experimental setup 39
3.2 Properties of working fluid 42
3.3 Surface preparation 44
3.4 Measurement of surface characteristic 47
3.5 Experimental procedure 52
3.6 Data reduction and uncertainty analysis 53
Chapter 4 Results and discussion 56
4.1 Validation of the experimental setup 56
4.2 Surface morphology 57
4.3 Heat transfer performance 62
4.4 Heat transfer enhancement mechanism 66
4.5 Comparison of two different working fluids on spray cooling 69
4.6 Empirical correlation 70
Chapter 5 Conclusions and Future Prospects 73
5.1 Conclusions 73
5.2 Future prospects 73
References 75
-
dc.language.isoen-
dc.subject噴霧冷卻zh_TW
dc.subject微孔結構zh_TW
dc.subject介電溶液zh_TW
dc.subject銅電鍍zh_TW
dc.subject表面改質zh_TW
dc.subjectMicroporous structureen
dc.subjectSpray coolingen
dc.subjectSurface modificationen
dc.subjectElectrodepositionen
dc.subjectDielectric liquiden
dc.title探討利用不同電流密度之電鍍銅表面對於去離子水 及介電溶液之噴霧冷卻熱傳影響zh_TW
dc.titleEffects of electrodeposition current density over a flat copper surface on spray cooling heat transfer of DI water and Novec-7100en
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee張天立;李達生zh_TW
dc.contributor.oralexamcommitteeTien-Li Chang;Da-Sheng Leeen
dc.subject.keyword噴霧冷卻,微孔結構,介電溶液,銅電鍍,表面改質,zh_TW
dc.subject.keywordSpray cooling,Microporous structure,Dielectric liquid,Electrodeposition,Surface modification,en
dc.relation.page78-
dc.identifier.doi10.6342/NTU202403738-
dc.rights.note未授權-
dc.date.accepted2024-08-13-
dc.contributor.author-college工學院-
dc.contributor.author-dept機械工程學系-
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
5.84 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved