Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93994
Title: 生成函數的Kitaev模型譜函數研究
Generating Function Study of Kitaev Model Spectral Function
Authors: 林昶滕
Chang-Teng Lin
Advisor: 高英哲
Ying-Jer Kao
Keyword: 蜂巢結構Kitaev模型,生成函數,譜函數,投影糾纏對態,轉角轉移矩陣,範數矩陣,有效漢密爾頓矩陣,廣義特徵值問題,靜態結構因子,激發譜,自動微分,維度截斷,
Honeycomb Kitaev Model,Generating Function,Spectral Function,Projected Entangled-Pair States,Corner Transfer Matrix,Norm Matrix,Effective Hamiltonian Matrix,Generalized Eigenvalue Problem,Static Structure Factor,Excitation Spectrum,Automatic Differentiation,Dimension Truncation,
Publication Year : 2024
Degree: 碩士
Abstract: 在強相關系統的領域中,計算二維系統基態的2點函數是一項具有挑戰性的任務。這尤其適用於蜂巢結構的Kitaev模型,其中較大的鍵結維度和漢密爾頓量的複雜性,使得該模型不能僅使用實數進行計算。我們選擇在投影糾纏對態(PEPS)上的生成函數來計算有限晶格2點函數收縮,而無需手動進行容易出錯的張量網絡收縮,並在進行收縮時減小中間張量的大小。在這項工作中,我們將原始生成函數方法從實張量擴展到複張量微分,並計算蜂巢結構Kitaev模型的激發譜,靜態結構因子,和譜函數。對於激發譜,確定截斷Norm矩陣的正確維度一直是一個問題。我們提出利用譜函數和靜態結構因子之間的關係,找到符合總和規則的最佳截斷維度,並成功確定了蜂巢結構Kitaev模型等向點的截斷維度。
In the realm of strongly correlated systems, the calculation of the 2-point function of the underlying state in two-dimensional systems is a challenging task. This is especially true for the Honeycomb Kitaev Model, where the larger bond dimension and the fact that the model cannot be calculated using only real numbers due to the complexity of the Hamiltonian. Without approximating the two-dimensional system on the one-dimensional cylinder, we choose the generating function on Projected Entangled-Pair State(PEPS) to calculate the finite lattice 2-point function contraction without the need to conduct error-prone tensor network contraction by hand and reduce the size of intermediate tensor when doing the contraction. In this work, we extend the original generating function method from real tensor to complex tensor differentiation and calculate the excitation spectrum, static structure factor, and spectral function of the Honeycomb Kitaev model. For the excitation spectrum, it has been a problem to determine the correct dimension to truncate the Norm matrix. We purposed to exploit the relation between spectral function and static structure factor, finding the best truncation dimension that meets the sum rule, and we succeeded in determining the truncation dimension in the isotropic point of the Honeycomb Kitaev model.
URI: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93994
DOI: 10.6342/NTU202403459
Fulltext Rights: 同意授權(全球公開)
Appears in Collections:物理學系

Files in This Item:
File SizeFormat 
ntu-112-2.pdf7.21 MBAdobe PDFView/Open
Show full item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved