Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93992
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor廖文正zh_TW
dc.contributor.advisorWen-Cheng Liaoen
dc.contributor.author簡濂淞zh_TW
dc.contributor.authorLien-Sung Chienen
dc.date.accessioned2024-08-14T16:08:14Z-
dc.date.available2024-08-15-
dc.date.copyright2024-08-13-
dc.date.issued2024-
dc.date.submitted2024-08-08-
dc.identifier.citation[1] Mendis, P. and C. Panagopoulos. Applications of high strength concrete in seismic regions. in 12 th World Conference on Earthquake Engineering (12WCEE), Auckland, New Zealand. 2000.
[2] Aoyama, H., et al. Development of advanced reinforced concrete buildings with high-strength and high-quality materials. in Proceedings of the tenth world conference on earthquake engineering. 1992.
[3] David, A.F. and E.N. Antoine, Stress-Strain Properties of Fiber Reinforced Mortar in Compression. ACI Journal Proceedings. 82(4).
[4] Hsu, L.S. and C.T. Hsu, Stress-strain behavior of steel-fiber high-strength concrete under compression. Structural Journal, 1994. 91(4): p. 448-457.
[5] Bencardino, F., et al., Stress-strain behavior of steel fiber-reinforced concrete in compression. Journal of Materials in Civil Engineering, 2008. 20(3): p. 255-263.
[6] Song, P. and S. Hwang, Mechanical properties of high-strength steel fiber-reinforced concrete. Construction and Building Materials, 2004. 18(9): p. 669-673.
[7] Naaman, A.E. High performance fiber reinforced cement composites: classification and applications. in CBM-CI international workshop, Karachi, Pakistan. 2007. Citeseer.
[8] Fantilli, A.P., H. Mihashi, and P. Vallini, Multiple cracking and strain hardening in fiber-reinforced concrete under uniaxial tension. Cement and Concrete Research, 2009. 39(12): p. 1217-1229.
[9] Kim, D.J., S. El-Tawil, and A.E. Naaman, Loading rate effect on pullout behavior of deformed steel fibers. ACI Materials Journal, 2008. 105(6): p. 576.
[10] 吳勇福, 無腹筋高強度鋼纖維鋼筋混凝土梁撓曲與剪力強度之評估, in 土木工程學研究所. 2014, 國立臺灣大學: 台北市. p. 123.
[11] 林安理, 中剪跨鋼纖維混凝土梁剪力強度預測研究, in 土木工程學研究所. 2013, 國立臺灣大學: 台北市. p. 104.
[12] Committee, A.C.I., 408R-03: Bond and Development of Straight Reinforcing Bars in Tension. Technical Documents.
[13] Orangun, C., J. Jirsa, and J. Breen. A reevaulation of test data on development length and splices. in Journal Proceedings. 1977.
[14] Azizinamini, A., M. Chisala, and S. Ghosh, Tension development length of reinforcing bars embedded in high-strength concrete. Engineering Structures, 1995. 17(7): p. 512-522.
[15] Darwin, D. and E.K. Graham, Effect of deformation height and spacing on bond strength of reinforcing bars. 1993, University of Kansas Center for Research, Inc.
[16] Hamad, B.S., Bond strength improvement of reinforcing bars with specially designed rib geometries. ACI structural journal, 1995. 92: p. 3-3.
[17] Zuo, J., Bond strength of high relative rib area reinforcing bars. 1998: University of Kansas.
[18] Darwin, D., et al., Development length criteria for conventional and high relative rib area reinforcing bars. 1996. 93: p. 347-359.
[19] Darwin, D., et al. Development length criteria: bars not confined by transverse reinforcement. 1992. American Concrete Institute.
[20] Zuo, J. and D. Darwin. Splice strength of conventional and high relative rib area bars in normal and high-strength concrete. 2000. American Concrete Institute.
[21] Institute, A.C., ACI 318-14 Building Code Requirements for Structural Concrete and Commentary (Metric). 2014: American Concrete Institute.
[22] 紀凱甯, 林克強, and 邱建國, 螺紋節鋼筋直線伸展握裹研究. 中國土木水利工程學刊, 2018. 30(3): p. 171-179.
[23] 林垣諺, 高強度竹節鋼筋於混凝土之直線劈裂握裹行為研究. 國立中央大學土木工程學系碩士論文, 2021.
[24] Harajli, M.H., Development/splice strength of reinforcing bars embedded in plain and fiber reinforced concrete. Structural Journal, 1994. 91(5): p. 511-520.
[25] Harajli, M.H. and M. Mabsout, Evaluation of bond strength of steel reinforcing bars in plain and fiber-reinforced concrete. Structural Journal, 2002. 99(4): p. 509-517.
[26] Harajli, M., B. Hamad, and K. Karam, Bond-slip response of reinforcing bars embedded in plain and fiber concrete. Journal of materials in civil engineering, 2002. 14(6): p. 503-511.
[27] 中國土木水利工程學會混凝土工程委員會, 混凝土工程設計規範與解說(土木401-112). 2023: 科技圖書.
[28] Tóth, M., B. Bokor, and A. Sharma, Anchorage in steel fiber reinforced concrete – concept, experimental evidence and design recommendations for concrete cone and concrete edge breakout failure modes. Engineering Structures, 2019. 181: p. 60-75.
[29] Kocur, G.K., et al., Experimental investigations on the concrete breakout capacity of crimped sleeves in steel fiber-reinforced concrete. Engineering Structures, 2021. 244: p. 112758.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93992-
dc.description.abstract添加鋼纖維於混凝土之中可以提升混凝土抵抗開裂之性能,鋼纖維的橋接效應可以在混凝土開裂時轉移一些拉應力,因此鋼纖維能提供混凝土更高的斷裂能以及更好的圍束性能。在混凝土發生裂縫時,外力會部分轉移至鋼纖維上,使載重於混凝土和鋼纖維之間重分配,能有效防止混凝土開裂,隨著載重增加,則會出現更多的裂縫,直到不再有新的裂縫後,鋼纖維就會被拉拔破壞。而鋼筋與混凝土之間的握裹強度若是在沒有橫向箍筋配置時,通常在劈裂破壞發生時,其握裹強度主要是依混凝土的抗拉強度主控,而添加鋼纖維能顯著提高混凝土之抗拉強度,由以上可說明於混凝土中添加鋼纖維後,因鋼纖維之橋接效應,能夠增強鋼筋之握裹強度。本研究藉由12組直線鋼筋以及12組擴頭鋼筋進行梁端鋼筋握裹偏心拉拔實驗,期能釐清鋼筋與高強度鋼纖維混凝土間的握裹行為以及鋼纖維在握裹行為中扮演的角色。
直線鋼筋實驗中,通過實驗發現即便破壞模式為拉拔破壞其握裹應力仍然會上升,且鋼纖維於直線鋼筋握裹性能之效益提升顯著,最終本研究提出鋼筋適用於高強度鋼纖維混凝土的直線拉力伸展長度之設計公式,其中鋼筋有效計算強度以及混凝土強度可分別適用至690MPa以及80MPa。
而擴頭鋼筋實驗中,觀察到鋼纖維能提升混凝土拉破強度,並且能縮短擴頭鋼筋於鋼纖維混凝土中之錨定長度,證明鋼纖維對鋼筋於混凝土中錨定能力是有正面效益,最後本研究提出有關鋼纖維混凝土拉破強度公式之上限值建議以及擴頭鋼筋於鋼纖維混凝土中錨定長度之建議。
zh_TW
dc.description.abstractAdding steel fibers to concrete can enhance its crack resistance. The bridging effect of steel fibers can transfer some tensile stress when the concrete cracks, thus providing higher fracture energy and better confinement performance. When cracks appear in the concrete, the external force is partially transferred to the steel fibers, allowing the load to be redistributed between the concrete and the steel fibers, effectively preventing the concrete from cracking. As the load increases, more cracks will appear until no new cracks form, and the steel fibers are eventually pulled out and damaged. The bond strength between the rebar and concrete, in the absence of transverse stirrups, is primarily governed by the tensile strength of the concrete during splitting failure. Adding steel fibers significantly enhances the tensile strength of the concrete, indicating that the bridging effect of steel fibers in concrete can improve the bond strength of the rebar. This study involves eccentric pullout tests of 12 sets of straight bars and 12 sets of headed bars at beam ends, aiming to clarify the bond behavior between rebar and high-strength steel fiber concrete and the role of steel fibers in bond behavior.
In the straight bar tests, it was found that even if the failure mode was pullout failure, the bond stress still increased, and the benefits of steel fibers on the bond performance of straight bars were significant. The study ultimately proposed a design formula for the development length of bars suitable for high-strength steel fiber concrete, with applicable rebar effective strength and concrete strength up to 690 MPa and 90 MPa, respectively.
In the headed bar tests, it was observed that steel fibers greatly increased the breakout strength of the concrete and significantly shortened the anchorage length of headed bars in steel fiber concrete, proving that steel fibers positively impact the anchorage capacity of bars in concrete.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-14T16:08:14Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-14T16:08:14Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents謝辭 I
摘要 II
Abstract III
目次 V
圖次 IX
表次 XIII
第一章、緒論 1
1.1 研究動機與目的 1
1.2 研究方法與架構 2
1.3 研究流程圖 4
第二章、文獻回顧 5
2.1 高強度鋼筋混凝土 5
2.1.1 高強度混凝土 5
2.1.2 高強度鋼筋 6
2.2 鋼纖維混凝土特性 6
2.2.1 混凝土中添加鋼纖維之力學性質 6
2.2.2 鋼纖維混凝土受直拉作用下之力學行為 11
2.2.3 等效握裹強度 14
2.3 鋼纖維混凝土梁之力學行為 15
2.3.1 鋼纖維混凝土梁之撓曲強度 15
2.3.2 鋼纖維混凝土梁之剪力強度 16
2.4 鋼筋混凝土之握裹機制 18
2.5 影響握裹性能之因子 21
2.6 鋼筋於普通混凝土中之直線拉力伸展長度模型 24
2.6.1 Orangun, Jirsa, and Breen (1975, 1977) 24
2.6.2 Darwin等人 (1992, 1996) 26
2.6.3 Zuo and Darwin (1998, 2000) 27
2.6.4 ACI 408.3-01 29
2.6.5 ACI 318-14 30
2.6.6 螺紋節鋼筋於鋼筋混凝土之握裹行為研究 (紀凱甯) 31
2.6.7 高強度竹節鋼筋於混凝土之直線劈裂握裹行為研究 (林垣諺) 32
2.7 鋼筋於鋼纖維混凝土中之直線拉力伸展長度模型 33
2.7.1 Harajli and Mabsout 33
2.7.2 Harajli, hamad, and Karam 35
2.8 擴頭鋼筋錨定長度之規範 36
2.8.1 破壞模式 36
2.8.2 錨定長度 37
2.8.3 混凝土拉破強度 38
2.8.4 鋼纖維混凝土拉破強度 39
第三章、實驗計畫 41
3.1 實驗設計 41
3.1.1 試體設計 41
3.1.2 試體配比 45
3.1.3 試體施作過程 45
3.2 實驗程序 47
3.2.1 實驗系統 47
3.2.2 量測系統 49
3.3 量測儀器計畫 50
3.3.1 應變計粘貼 50
3.3.2 位移計之量測規劃 52
第四章、實驗結果 53
4.1 材料實驗 53
4.1.1 混凝土抗壓試驗 53
4.2 裂縫發展及破壞模式 55
第五章、分析與討論 80
5.1 直線鋼筋偏心拉拔實驗分析 80
5.1.1 破壞模式 80
5.1.2 鋼筋應力應變分析 85
5.1.3 握裹強度 87
5.1.4 鋼筋握裹應力與位移關係 90
5.1.5 鋼筋直線拉力伸展長度模型探討 93
5.2 擴頭鋼筋偏心拉拔實驗分析 105
5.2.1 破壞模式 105
5.2.2 握裹強度 107
5.2.3 鋼纖維混凝土拉破強度探討 108
5.2.4 擴頭鋼筋伸展長度建議 109
第六章、結論與建議 111
6.1 結論 111
6.1.1 直線鋼筋於鋼纖維混凝土中之握裹實驗 111
6.1.2 擴頭鋼筋於鋼纖維混凝土中之握裹實驗 112
6.2 建議 113
參考文獻 114
附錄A 握裹試體設計圖 117
-
dc.language.isozh_TW-
dc.subject高強度鋼纖維混凝土zh_TW
dc.subject握裹強度zh_TW
dc.subject伸展長度zh_TW
dc.subject擴頭鋼筋zh_TW
dc.subject拉破強度zh_TW
dc.subjectdevelopment lengthen
dc.subjecthigh-strength steel fiber concreteen
dc.subjectbreakout strengthen
dc.subjectheaded baren
dc.subjectbond strengthen
dc.title高強度鋼纖維混凝土之直線及擴頭鋼筋握裹行為與伸展長度研究zh_TW
dc.titleStudy on Bond Behaviors and Development Lengths of Straight and Headed Bars in High Strength Steel Fiber Reinforced Concreteen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee詹穎雯;胡瑋秀;林克強zh_TW
dc.contributor.oralexamcommitteeYin-Wen Chan;Wei-Hsiu Hu;Ker-Chun Linen
dc.subject.keyword高強度鋼纖維混凝土,握裹強度,伸展長度,擴頭鋼筋,拉破強度,zh_TW
dc.subject.keywordhigh-strength steel fiber concrete,bond strength,development length,headed bar,breakout strength,en
dc.relation.page140-
dc.identifier.doi10.6342/NTU202403385-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-12-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf11.09 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved