請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93965
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 侯嘉洪 | zh_TW |
dc.contributor.advisor | Chia-Hung Hou | en |
dc.contributor.author | 王柏硯 | zh_TW |
dc.contributor.author | Po-Yen Wang | en |
dc.date.accessioned | 2024-08-09T16:47:28Z | - |
dc.date.available | 2024-08-10 | - |
dc.date.copyright | 2024-08-09 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-02 | - |
dc.identifier.citation | 1. Wu, L., C. Zhang, S. Kim, T.A. Hatton, H. Mo, and T.D. Waite, Lithium recovery using electrochemical technologies: Advances and challenges. Water Research, 221 118822 (2022).
2. Degen, F., M. Winter, D. Bendig, and J. Tübke, Energy consumption of current and future production of lithium-ion and post lithium-ion battery cells. Nature Energy, 8 1284-1295 (2023). 3. Farahbakhsh, J., F. Arshadi, Z. Mofidi, M. Mohseni-Dargah, C. Kök, M. Assefi, A. Soozanipour, M. Zargar, M. Asadnia, Y. Boroumand, V. Presser, and A. Razmjou, Direct lithium extraction: A new paradigm for lithium production and resource utilization. Desalination, 575 (2024). 4. Kim, S., J. Lee, J.S. Kang, K. Jo, S. Kim, Y.E. Sung, and J. Yoon, Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system. Chemosphere, 125 50-56 (2015). 5. Haddad, A.Z., L. Hackl, B. Akuzum, G. Pohlman, J.F. Magnan, and R. Kostecki, How to make lithium extraction cleaner, faster and cheaper - in six steps. Nature, 616 245-248 (2023). 6. Vera, M.L., W.R. Torres, C.I. Galli, A. Chagnes, and V. Flexer, Environmental impact of direct lithium extraction from brines. Nature Reviews Earth & Environment, 4 149-165 (2023). 7. Azevedo, M., M. Baczyńska, K. Hoffman, and A. Krauze, Lithium mining: How new production technologies could fuel the global EV revolution. McKinsey & Company, (2022). 8. Zhao, R., S. Porada, P.M. Biesheuvel, and A. Van der Wal, Energy consumption in membrane capacitive deionization for different water recoveries and flow rates, and comparison with reverse osmosis. Desalination, 330 35-41 (2013). 9. Zhang, C.Y., L. Wu, J.X. Ma, A.N. Pham, M. Wang, and T.D. Waite, Integrated flow-electrode capacitive deionization and microfiltration system for continuous and energy-efficient brackish water desalination. Environmental Science & Technology, 53 13364-13373 (2019). 10. Gendel, Y., A.K.E. Rommerskirchen, O. David, and M. Wessling, Batch mode and continuous desalination of water using flowing carbon deionization (FCDI) technology. Electrochemistry Communications, 46 152-156 (2014). 11. Park, H.R., J. Choi, S. Yang, S.J. Kwak, S.I. Jeon, M.H. Han, and D.K. Kim, Surface-modified spherical activated carbon for high carbon loading and its desalting performance in flow-electrode capacitive deionization. RSC Advances, 6 69720-69727 (2016). 12. Cho, Y., C.Y. Yoo, S.W. Lee, H. Yoon, K.S. Lee, S. Yang, and D.K. Kim, Flow-electrode capacitive deionization with highly enhanced salt removal performance utilizing high-aspect ratio functionalized carbon nanotubes. Water Research, 151 252-259 (2019). 13. Cai, Y.M., X.T. Zhao, Y. Wang, D.Y. Ma, and S.C. Xu, Enhanced desalination performance utilizing sulfonated carbon nanotube in the flow-electrode capacitive deionization process. Separation and Purification Technology, 237 (2020). 14. Tang, K.X., S. Yiacoumi, Y.P. Li, and C. Tsouris, Enhanced water desalination by increasing the electroconductivity of carbon powders for high-performance flow-electrode capacitive deionization. ACS Sustainable Chemistry & Engineering, 7 1085-1094 (2019). 15. Xu, Y., F. Duan, Y. Li, H. Cao, J. Chang, H. Pang, and J. Chen, Enhanced desalination performance in asymmetric flow electrode capacitive deionization with nickel hexacyanoferrate and activated carbon electrodes. Desalination, 514 (2021). 16. Mansoor, N.E., L.A. Diaz, C.E. Shuck, Y. Gogotsi, T.E. Lister, and D. Estrada, Removal and recovery of ammonia from simulated wastewater using Ti3C2Tx MXene in flow electrode capacitive deionization. npj Clean Water, 5 (2022). 17. Chang, J., F. Duan, H. Cao, K. Tang, C. Su, and Y. Li, Superiority of a novel flow-electrode capacitive deionization (FCDI) based on a battery material at high applied voltage. Desalination, 468 (2019). 18. Lim, J., H. Lee, S. Lee, and S. Hong, Capacitive deionization incorporating a fluidic MOF-CNT electrode for the high selective extraction of lithium. Desalination, 578 (2024). 19. Zhu, Q.P., X.Y. Yu, Y.Z. Liu, Y.F. Wang, P.H. Yang, and K. Liu, Electrochemical lithium extraction with continuous flow electrodes. Desalination, 574 (2024). 20. Lu, S. and J. Frith, Will the real lithium demand please stand up? Challenging the 1Mt-by-2025 orthodoxy. Bloomberg NEF, 28 (2019). 21. Zhao, Z.W., X.F. Si, X.H. Liu, L.H. He, and X.X. Liang, Li extraction from high Mg/Li ratio brine with LiFePO4/FePO4 as electrode materials. Hydrometallurgy, 133 75-83 (2013). 22. Battistel, A., M.S. Palagonia, D. Brogioli, F. La Mantia, and R. Trócoli, Electrochemical methods for lithium recovery: A comprehensive and critical review. Advanced Materials, 32 (2020). 23. Flexer, V., C.F. Baspineiro, and C.I. Galli, Lithium recovery from brines: A vital raw material for green energies with a potential environmental impact in its mining and processing. Science of the Total Environment, 639 1188-1204 (2018). 24. Swain, B., Recovery and recycling of lithium: A review. Separation and Purification Technology, 172 388-403 (2017). 25. Krishnan, R. and G. Gopan, A comprehensive review of lithium extraction: From historical perspectives to emerging technologies, storage, and environmental considerations. Cleaner Engineering and Technology, 20 (2024). 26. Zhang, Y., Y.H. Hu, L. Wang, and W. Sun, Systematic review of lithium extraction from salt-lake brines via precipitation approaches. Minerals Engineering, 139 (2019). 27. Fuentealba, D., C. Flores-Fernández, E. Troncoso, and H. Estay, Technological tendencies for lithium production from salt lake brines: Progress and research gaps to move towards more sustainable processes. Resources Policy, 83 (2023). 28. Nicolaci, H., P. Young, N. Snowdon, A. Rai, T. Chen, J. Zhang, Y. Lin, E. Bailey, R. Shi, and N. Zheng, Direct lithium extraction: A potential game changing technology. Goldman Sachs Equity Research, (2023). 29. Murphy, O. and M.N. Haji, A review of technologies for direct lithium extraction from low Li concentration aqueous solutions. Frontiers in Chemical Engineering, 4 (2022). 30. Kanagasundaram, T., O. Murphy, M.N. Haji, and J.J. Wilson, The recovery and separation of lithium by using solvent extraction methods. Coordination Chemistry Reviews, 509 (2024). 31. Cox, M. and J. Rydberg, Introduction to solvent extraction, in Solvent Extraction Principles and Practice, Revised and Expanded. CRC Press. 13-36 (2004). 32. Xu, P., J. Hong, X.M. Qian, Z.W. Xu, H. Xia, X.C. Tao, Z.Z. Xu, and Q.Q. Ni, Materials for lithium recovery from salt lake brine. Journal of Materials Science, 56 16-63 (2021). 33. Liu, G., Z.W. Zhao, and A. Ghahreman, Novel approaches for lithium extraction from salt-lake brines: A review. Hydrometallurgy, 187 81-100 (2019). 34. Li, X.H., Y.H. Mo, W.H. Qing, S.L. Shao, C.Y.Y. Tang, and J.X. Li, Membrane-based technologies for lithium recovery from water lithium resources: A review. Journal of Membrane Science, 591 (2019). 35. Xu, X., Y. Chen, P. Wan, K. Gasem, K. Wang, T. He, H. Adidharma, and M. Fan, Extraction of lithium with functionalized lithium ion-sieves. Progress in Materials Science, 84 276-313 (2016). 36. Orooji, Y., Z. Nezafat, M. Nasrollahzadeh, N. Shafiei, M. Afsari, K. Pakzad, and A. Razmjou, Recent advances in nanomaterial development for lithium ion-sieving technologies. Desalination, 529 (2022). 37. Kim, N., X. Su, and C. Kim, Electrochemical lithium recovery system through the simultaneous lithium enrichment via sustainable redox reaction. Chemical Engineering Journal, 420 (2021). 38. Weng, D., H.Y. Duan, Y.C. Hou, J. Huo, L. Chen, F. Zhang, and J.D. Wang, Introduction of manganese based lithium-ion Sieve-A review. Progress in Natural Science-Materials International, 30 139-152 (2020). 39. Kim, S., H. Yoon, D. Shin, J. Lee, and J. Yoon, Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide. Journal of Colloid and Interface Science, 506 644-648 (2017). 40. Singh, K., Z.X. Qian, P.M. Biesheuvel, H. Zuilhof, S. Porada, and L.C.P.M. de Smet, Nickel hexacyanoferrate electrodes for high mono/divalent ion-selectivity in capacitive deionization. Desalination, 481 (2020). 41. Kim, T., C.A. Gorski, and B.E. Logan, Ammonium removal from domestic wastewater using selective battery electrodes. Environmental Science & Technology Letters, 5 578-583 (2018). 42. Srimuk, P., X. Su, J. Yoon, D. Aurbach, and V. Presser, Charge-transfer materials for electrochemical water desalination, ion separation and the recovery of elements. Nature Reviews Materials, 5 517-538 (2020). 43. Wang, Q.F., Q.H. Wu, S.J. Meng, H.J. Liu, and D.W. Liang, Selective removal of ammonium ions with transition metal hexacyanoferrate (MHCF) electrodes. Desalination, 558 (2023). 44. Tsai, S.W., D.V. Cuong, and C.H. Hou, Selective capture of ammonium ions from municipal wastewater treatment plant effluent with a nickel hexacyanoferrate electrode. Water Research, 221 (2022). 45. Pasta, M., A. Battistel, and F. La Mantia, Batteries for lithium recovery from brines. Energy & Environmental Science, 5 9487-9491 (2012). 46. Shang, X., J. Liu, B. Hu, P. Nie, J. Yang, B. Zhang, Y. Wang, F. Zhan, and J. Qiu, CNT-strung LiMn2O4 for lithium extraction with high selectivity and stability. Small Methods, 6 e2200508 (2022). 47. Zhou, G.L., L.L. Chen, X.W. Li, G.L. Luo, Z.D. Yu, J.Z. Yin, L. Fan, Y.H. Chao, L. Jiang, and W.S. Zhu, Construction of truncated-octahedral LiMn2O4 for battery-like electrochemical lithium recovery from brine. Green Energy & Environment, 8 1081-1090 (2023). 48. Jang, Y.J., C.H. Hou, S. Park, K. Kwon, and E. Chung, Direct electrochemical lithium recovery from acidic lithium-ion battery leachate using intercalation electrodes. Resources Conservation and Recycling, 175 (2021). 49. Lawagon, C.P., G.M. Nisola, R.A.I. Cuevas, R.E.C. Torrejos, H. Kim, S.P. Lee, and W.J. Chung, Li1-xNi0.5Mn1.5O4/Ag for electrochemical lithium recovery from brine and its optimized performance via response surface methodology. Separation and Purification Technology, 212 416-426 (2019). 50. Zhao, X.Y., M.H. Feng, Y.X. Jiao, Y.B. Zhang, Y.F. Wang, and Z.L. Sha, Lithium extraction from brine in an ionic selective desalination battery. Desalination, 481 (2020). 51. Baum, Z.J., R.E. Bird, X. Yu, and J. Ma, Lithium-ion battery recycling-overview of techniques and trends. ACS Energy Letters, 7 712-719 (2022). 52. Xu, M.L., S.M. Kang, F. Jiang, X.Y. Yan, Z.B. Zhu, Q.P. Zhao, Y.X. Teng, and Y. Wang, A process of leaching recovery for cobalt and lithium from spent lithium-ion batteries by citric acid and salicylic acid. RSC Advances, 11 27689-27700 (2021). 53. Arby, D.S., E. Chung, Y. Jang, and J. Lee, LiNixMn2-xO4 for multicycle electrochemical selective recovery of lithium from lithium-ion battery leachate. Separation and Purification Technology, 323 (2023). 54. Joo, H., S.Y. Jung, S. Kim, K.H. Ahn, W.S. Ryoo, and J. Yoon, Application of a flow-type electrochemical lithium recovery system with λ-MnO2/LiMn2O4: Experiment and simulation. ACS Sustainable Chemistry & Engineering, 8 9622-9631 (2020). 55. Kim, S., H. Joo, T. Moon, S.H. Kim, and J. Yoon, Rapid and selective lithium recovery from desalination brine using an electrochemical system Electronic supplementary information (ESI) available. See DOI: 10.1039/c8em00498f. Environmental Science-Processes & Impacts, 21 667-676 (2019). 56. Trócoli, R., C. Erinmwingbovo, and F. La Mantia, Optimized lithium recovery from brines by using an electrochemical ion-pumping process based on λ-MnO2 and nickel hexacyanoferrate. Chemelectrochem, 4 143-149 (2017). 57. Zhao, M.Y., Z.Y. Ji, Y.G. Zhang, Z.Y. Guo, Y.Y. Zhao, J. Liu, and J.S. Yuan, Study on lithium extraction from brines based on LiMn2O4/Li1-xMn2O4 by electrochemical method. Electrochimica Acta, 252 350-361 (2017). 58. Mu, Y.X., C.Y. Zhang, W. Zhang, and Y.X. Wang, Electrochemical lithium recovery from brine with high Mg/Li ratio using mesoporous λ-MnO2/LiMn2O4 modified 3D graphite felt electrodes. Desalination, 511 (2021). 59. Zhao, X., Y. Jiao, P. Xue, M. Feng, Y. Wang, and Z. Sha, Efficient lithium extraction from brine using a three-dimensional nanostructured hybrid inorganic-gel framework electrode. ACS Sustainable Chemistry & Engineering, 8 4827-4837 (2020). 60. Zhao, X.Y., L.X. Zheng, Y.D. Hou, Y.F. Wang, and L. Zhu, Pulsed electric field controlled lithium extraction process by LMO/MXene composite electrode from brines. Chemical Engineering Journal, 450 (2022). 61. Wu, Y., P.T. Shi, Y.J. Zhong, and R. Cai, Improved performance of a Ni, Co-Doped LiMn2O4 electrode for lithium extraction from brine. Energy & Fuels, 37 4083-4093 (2023). 62. Jeon, S.I., H.R. Park, J.G. Yeo, S. Yang, C.H. Cho, M.H. Han, and D.K. Kim, Desalination via a new membrane capacitive deionization process utilizing flow-electrodes. Energy & Environmental Science, 6 1471-1475 (2013). 63. Ma, J.X., C. He, D. He, C.Y. Zhang, and T.D. Waite, Analysis of capacitive and electrodialytic contributions to water desalination by flow-electrode CDI. Water Research, 144 296-303 (2018). 64. Luo, K.Y., Q.Y. Niu, Y. Zhu, B. Song, G.M. Zeng, W.W. Tang, S.J. Ye, J. Zhang, M.B. Duan, and W.L. Xing, Desalination behavior and performance of flow-electrode capacitive deionization under various operational modes. Chemical Engineering Journal, 389 (2020). 65. He, C., J.X. Ma, C.Y. Zhang, J.K. Song, and T.D. Waite, Short-circuited closed-cycle operation of flow-electrode CDI for brackish water softening. Environmental Science & Technology, 52 9350-9360 (2018). 66. Ma, J.J., J.X. Ma, C.Y. Zhang, J.K. Song, R.N. Collins, and T.D. Waite, Water recovery rate in short-circuited closed-cycle operation of flow-electrode capacitive deionization (FCDI). Environmental Science & Technology, 53 13859-13867 (2019). 67. Ma, J.J., C.Y. Zhang, F. Yang, X.D. Zhang, M.E. Suss, X. Huang, and P. Liang, Carbon black flow electrode enhanced electrochemical desalination using single-cycle operation. Environmental Science & Technology, 54 1177-1185 (2020). 68. Rommerskirchen, A., Y. Gendel, and M. Wessling, Single module flow-electrode capacitive deionization for continuous water desalination. Electrochemistry Communications, 60 34-37 (2015). 69. Dahiya, S. and B.K. Mishra, Enhancing understandability and performance of flow electrode capacitive deionisation by optimizing configurational and operational parameters: A review on recent progress. Separation and Purification Technology, 240 (2020). 70. Hawks, S.A., J.M. Knipe, P.G. Campbell, C.K. Loeb, M.A. Hubert, J.G. Santiago, and M. Stadermann, Quantifying the flow efficiency in constant-current capacitive deionization. Water Research, 129 327-336 (2018). 71. Jeon, S.I., J. Lee, K. Jo, C. Kim, C. Lee, and J. Yoon, Novel reuse strategy in flow-electrode capacitive deionization with switch cycle operation to enhance desalination performance. Environmental Science & Technology Letters, 6 739-744 (2019). 72. Rommerskirchen, A., C.J. Linnartz, F. Egidi, S. Kendir, and M. Wessling, Flow-electrode capacitive deionization enables continuous and energy-efficient brine concentration. Desalination, 490 (2020). 73. Yang, F., Y.F. He, L. Rosentsvit, M.E. Suss, X.R. Zhang, T. Gao, and P. Liang, Flow-electrode capacitive deionization: A review and new perspectives. Water Research, 200 (2021). 74. Guo, Z.Y., Z.Y. Ji, J. Wang, X.F. Guo, and J.S. Liang, Electrochemical lithium extraction based on "rocking-chair" electrode system with high energy-efficient: The driving mode of constant current-constant voltage. Desalination, 533 (2022). 75. Sun, Y.R., Y.J. Cheng, F. Yu, and J. Ma, Enhanced salt removal performance using graphene-modified sodium vanadium fluorophosphate in flow electrode capacitive deionization. ACS Applied Materials & Interfaces, 13 53850-53858 (2021). 76. Zhang, C., J. Ma, L. Wu, J. Sun, L. Wang, T. Li, and T.D. Waite, Flow electrode capacitive deionization (FCDI): Recent developments, environmental applications, and future perspectives. Environmental Science & Technology, 55 4243-4267 (2021). 77. Robinson, D.M., Y.B. Go, M. Greenblatt, and G.C. Dismukes, Water oxidation by λ-MnO2: Catalysis by the cubical Mn4O4 subcluster obtained by delithiation of spinel LiMn2O4. Journal of the American Chemical Society, 132 11467-11469 (2010). 78. Thackeray, M.M., W.I.F. David, P.G. Bruce, and J.B. Goodenough, Lithium insertion into manganese spinels. Materials Research Bulletin, 18 461-472 (1983). 79. Hunter, J.C., Preparation of a new crystal form of manganese-dioxide - lambda-MnO2. Journal of Solid State Chemistry, 39 142-147 (1981). 80. Moreno, D. and M.C. Hatzell, Influence of feed-electrode concentration differences in flow-electrode systems for capacitive deionization. Industrial & Engineering Chemistry Research, 57 8802-8809 (2018). 81. Fang, K., F. Peng, E.F. San, and K.J. Wang, The impact of concentration in electrolyte on ammonia removal in flow-electrode capacitive deionization system. Separation and Purification Technology, 255 (2021). 82. Chen, T.H., D.V. Cuong, Y.J. Jang, N.Z. Khu, E. Chung, and C.H. Hou, Cation selectivity of activated carbon and nickel hexacyanoferrate electrode materials in capacitive deionization: A comparison study. Chemosphere, 307 (2022). | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93965 | - |
dc.description.abstract | 隨著再生能源和電動車輛的快速成長,鋰作為鋰離子電池中的關鍵角色,在市場上將面臨供不應求的情況。然而,傳統方法如蒸發法通常具有耗時或效率不足等問題。因此,勢必要開發嶄新的鋰回收方法以克服這一問題。近年來,液流式電容去離子(flow-electrode capacitive deionization, FCDI)因其在處理高鹽度水體所具有的高脫鹽容量以及可連續操作的特性而備受矚目。傳統的碳基材料具有高比表面積以及良好的導電特性,已被廣泛運用於FCDI系統中,然而,其在廢水中離子之選擇性分離方面仍備受挑戰。尖晶石二氧化錳(Spinel manganese oxide, λ-MnO2)作爲一種鋰離子篩材料,由於其具有良好的Li+選擇性,近年來被廣泛運用在電化學鋰回收系統中。本研究旨在通過使用鋰離子篩λ-MnO2作為FCDI流電極中的活性材料,探討選擇性鋰富集之可行性。循環伏安法結果顯示,λ-MnO2在LiCl溶液中具有明顯且對稱的氧化還原峰,證明了Li+嵌入λ-MnO2涉及了可逆的氧化還原反應。同時,λ-MnO2在LiCl中的比電容值(237.01 F/g)也高出 NiCl2 (53.88 F/g)許多,表明了λ-MnO2對Li+的親和力以及對Li+的選擇性捕捉的潛力。在FCDI實驗中,電壓之增加不僅提升λ-MnO2之鋰離子富集速率(Average lithium enrichment rate, ALER),亦增加Li+儲存在λ-MnO2中的比例。在2.4 V的電壓條件下,λ-MnO2具有最高的ALER(0.185 mmol Li/g-h)以及Li+儲存在λ-MnO2的比例(99.9%)。此外,陰極槽的pH下降表明了λ-MnO2中所發生的H+與Li+之間置換反應,證明了FCDI中λ-MnO2的儲存Li+的機制涉及了離子交換反應。另外,隨著初始LiCl的濃度提升,離子交換膜之間的濃度梯度也會隨之增加,導致擴散現象加劇從而得到更高的鋰離子去除率(Lithium removal rate, LRR)。例如,LRR從20 mM的0.45 mmol/h提升到100 mM的2.08 mmol/h,最後將初始濃度提升至200 mM後,LRR提升至2.55 mmol/h。同時,擴散現象的加劇也反應到了高估的鋰離子富集效率(Lithium enrichment efficiency, ηLi)。然而,在100以及200 mM條件下,ALER差距並不明顯,這可能是由於λ-MnO2的活性點位已趨於飽和所致。在Li+選擇性富集實驗中,相較於傳統對稱之AC//AC流電極,非對稱之AC//λ-MnO2展現出較高的選擇性(SLi/Ni=2.54)以及ALER (2.23 mmol Li/g-h),顯示出了λ-MnO2作為流電極所具有的選擇性鋰富集的潛力。綜上所述,本研究成果證明了透過添加Li+選擇性材料作為流電極能夠使FCDI達到選擇性富集Li+的效果,展現了FCDI技術於未來作為鋰選擇性回收技術的應用潛力。 | zh_TW |
dc.description.abstract | With the rapid expansion of renewable energy and electric vehicle markets, the demand for lithium, essential in energy storage systems, particularly lithium-ion batteries, is anticipated to grow swiftly, potentially surpassing supply. Current commercial lithium recovery methods, such as solar evaporation, are often time-consuming and economically inefficient. Consequently, the development of alternative lithium recovery techniques is imperative. Recently, flow-electrode capacitive deionization (FCDI) has garnered attention due to its high deionization capacity and capability for continuous operation. While traditional carbon-based materials with high surface area and excellent electrical conductivity have been utilized as flow electrode in FCDI, it is still a big challenge to selectively recover valuable ions from wastewater. Spinel manganese oxide (λ-MnO2), a lithium-ion sieve material, is renowned for its high selectivity towards Li+ and has been extensively employed in electrochemical lithium recovery in recent years. This study aims to investigate the feasibility of using spinel λ-MnO2 as the flow-electrode in FCDI for selective lithium enrichment.
Cyclic voltammetry displayed significant redox peaks for λ-MnO2 in the presence of LiCl, exhibiting reversible Faradaic reaction. Additionally, the specific capacitance of λ-MnO2 with LiCl (237.01 F/g) was significantly higher than that with NiCl2 (53.88 F/g), indicating a preferential intercalation of Li+. In single ion experiments, an increase in applied voltage corresponded to an increased fraction of Li+ stored in λ-MnO2. At 2.4 V, the highest fraction of Li+ (99.9%) and the average lithium extraction rate (ALER, 0.185 mmol/g-h) were achieved, surpassing other applied voltages (0.8 and 1.6 V). The decrease in pH in the cathode chamber indicated an ion exchange reaction involving the substitution of H+ by Li+ during the intercalation process. Increasing concentrations enhance the concentration gradient across the ion exchange membranes (IEMs), causing more significant diffusion which results to higher lithium removal rate (LRR). This relationship is evident as the LRR rises from 0.45 mmol/h at 20 mM to 2.08 mmol/h at 100 mM, and further to 2.55 mmol/h at 200 mM. Higher initial concentration with more significant diffusion also causes overestimated lithium enrichment efficiency (ηLi). However, the quantity of Li+ in λ-MnO2 was 3.76 and 3.54 mol for 100 and 200 mM, respectively, possibly due to the saturation of active sites in λ-MnO2. In selective lithium enrichment experiments, asymmetric FCDI utilizing AC//λ-MnO2 flow-electrodes outperformed traditional symmetric AC//AC flow-electrodes, achieving a higher selectivity coefficient (SLi/Ni=10.21) and ALER (2.23 mmol Li/g-h). In conclusion, λ-MnO2 flow electrode in FCDI shows the potential of selective lithium enrichment. This study provides significant insights into the development of efficient lithium recovery technologies using FCDI. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:47:27Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-09T16:47:28Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivations and objectives 1 Chapter 2 Literature Review 3 2.1 Importance of lithium 3 2.2 Traditional lithium recovery technology 4 2.2.1 Lime soda evaporation 4 2.2.2 Solvent extraction 6 2.2.3 Ion sieve adsorption 7 2.3 Capacitive deionization (CDI) 9 2.3.1 Development of CDI 9 2.3.2 CDI for lithium recovery 11 2.4 Flow-electrode capacitive deionization (FCDI) 14 2.4.1 Principles of FCDI 14 2.4.2 Operation modes of FCDI 16 2.4.3 Flow-electrodes in FCDI 19 Chapter 3 Materials and Methods 22 3.1 Material and instruments 22 3.2 Research design 24 3.3 λ-MnO2 preparation 25 3.4 Flow-electrodes preparation 26 3.5 Material characterization 27 3.5.1 Physicochemical characterization 27 3.5.2 Electrochemical characterization 27 3.6 FCDI Experiments 29 3.6.1 Construction of FCDI module 29 3.6.2 Operation of FCDI experiments 29 3.7 Key performance indicators 31 Chapter 4 Results and Discussions 33 4.1 Physicochemical characteristics of λ-MnO2 33 4.2 Effect of applied voltage on Li+ enrichment performance 37 4.3 Effect of initial lithium concentration on Li+ enrichment performance 43 4.4 Selective lithium enrichment performance 48 Chapter 5 Conclusions and Suggestions 55 5.1 Conclusions 55 5.2 Suggestions 57 REFERENCE 58 | - |
dc.language.iso | en | - |
dc.title | 以尖晶石二氧化錳流電極於液流式電容去離子技術 鋰離子選擇性富集之研析 | zh_TW |
dc.title | Flow-electrode Capacitive Deionization using λ-MnO2 as Flow Cathode for Selective Separation and Enrichment of Lithium Ions | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 李公哲;林進榮 | zh_TW |
dc.contributor.oralexamcommittee | Kung-Cheh Li;Chin-Jung Lin | en |
dc.subject.keyword | 液流式電容去離子,鋰選擇性富集,鋰電池滲濾液,尖晶石鋰錳氧化物,選擇性分離,鋰離子篩, | zh_TW |
dc.subject.keyword | flow-electrode capacitive deionization,lithium selective enrichment,lithium extraction,LIB leachate,lithium manganese oxide spinel,lithium sieve, | en |
dc.relation.page | 68 | - |
dc.identifier.doi | 10.6342/NTU202402841 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2024-08-06 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf 目前未授權公開取用 | 8.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。