請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93940完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳肇欣 | zh_TW |
| dc.contributor.advisor | Chao-Hsin Wu | en |
| dc.contributor.author | 何驊凌 | zh_TW |
| dc.contributor.author | HUA-LING HO | en |
| dc.date.accessioned | 2024-08-09T16:34:16Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | [1] Y. Manin, “Computable and Uncomputable,” Sovetskoye Radio Press, Moscow, 1980.
[2] R. P. Feynman, “Simulating physics with computers,” International Journal of Theoretical Physics, vol. 21, no. 6–7, 1982, doi: 10.1007/BF02650179. [3] D. Deutsch, “QUANTUM THEORY, THE CHURCH-TURING PRINCIPLE AND THE UNIVERSAL QUANTUM COMPUTER.,” Proc R Soc Lond A Math Phys Sci, vol. 400, no. 1818, 1985, doi: 10.1098/rspa.1985.0070. [4] L. Vandersypen and A. Van Leeuwenhoek, “Quantum computing - The next challenge in circuit and system design,” in Digest of Technical Papers - IEEE International Solid-State Circuits Conference, 2017. doi: 10.1109/ISSCC.2017.7870244. [5] A. Montanaro, “Quantum algorithms: An overview,” 2016. doi: 10.1038/npjqi.2015.23. [6] F. Jazaeri, A. Beckers, A. Tajalli, and J.-M. Sallese, “A Review on Quantum Computing: From Qubits to Front-end Electronics and Cryogenic MOSFET Physics,” 2019. [7] A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Physical Review, vol. 47, no. 10, 1935, doi: 10.1103/PhysRev.47.777. [8] Gabriel Popkin, “Scientists are close to building a quantum computer that can beat a conventional one | Science | AAAS,” 2016. [9] K. M. Svore and M. Troyer, “The Quantum Future of Computation,” Computer (Long Beach Calif), vol. 49, no. 9, pp. 21–30, Sep. 2016, doi: 10.1109/MC.2016.293. [10] D. P. DiVincenzo, “The physical implementation of quantum computation,” 2000. doi: 10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E. [11] X. Qiang et al., “Large-scale silicon quantum photonics implementing arbitrary two-qubit processing,” Nat Photonics, vol. 12, no. 9, 2018, doi: 10.1038/s41566-018-0236-y. [12] J. I. Cirac and P. Zoller, “Quantum computations with cold trapped ions,” Phys Rev Lett, vol. 74, no. 20, 1995, doi: 10.1103/PhysRevLett.74.4091. [13] M. He, H. Sun, and Q. L. He, “Topological insulator: Spintronics and quantum computations,” 2019. doi: 10.1007/s11467-019-0893-4. [14] J. R. Weber et al., “Quantum computing with defects,” Proc Natl Acad Sci U S A, vol. 107, no. 19, 2010, doi: 10.1073/pnas.1003052107. [15] A. Wallraff et al., “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature, vol. 431, no. 7005, 2004, doi: 10.1038/nature02851. [16] D. D. Awschalom, L. C. Bassett, A. S. Dzurak, E. L. Hu, and J. R. Petta, “Quantum spintronics: Engineering and manipulating atom-like spins in semiconductors,” 2013. doi: 10.1126/science.1231364. [17] M. Veldhorst et al., “An addressable quantum dot qubit with fault-tolerant control-fidelity,” Nat Nanotechnol, vol. 9, no. 12, 2014, doi: 10.1038/nnano.2014.216. [18] J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, “Integrated photonic quantum technologies,” 2020. doi: 10.1038/s41566-019-0532-1. [19] C. M. Wilkes et al., “60 dB high-extinction auto-configured Mach–Zehnder interferometer,” Opt Lett, vol. 41, no. 22, 2016, doi: 10.1364/ol.41.005318. [20] J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature, vol. 493, no. 7431, 2013, doi: 10.1038/nature11727. [21] N. C. Harris et al., “Quantum transport simulations in a programmable nanophotonic processor,” Nat Photonics, vol. 11, no. 7, 2017, doi: 10.1038/nphoton.2017.95. [22] E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 2001 409:6816, vol. 409, no. 6816, pp. 46–52, Jan. 2001, doi: 10.1038/35051009. [23] P. Schindler et al., “A quantum information processor with trapped ions,” New J Phys, vol. 15, 2013, doi: 10.1088/1367-2630/15/12/123012. [24] C. D. Bruzewicz, J. Chiaverini, R. McConnell, and J. M. Sage, “Trapped-ion quantum computing: Progress and challenges,” Appl Phys Rev, vol. 6, no. 2, 2019, doi: 10.1063/1.5088164. [25] C. Monroe and J. Kim, “Scaling the ion trap quantum processor,” 2013. doi: 10.1126/science.1231298. [26] G. Balasubramanian et al., “Ultralong spin coherence time in isotopically engineered diamond,” Nature Materials 2009 8:5, vol. 8, no. 5, pp. 383–387, Apr. 2009, doi: 10.1038/nmat2420. [27] W. D. Oliver and P. B. Welander, “Materials in superconducting quantum bits,” MRS Bull, vol. 38, no. 10, 2013, doi: 10.1557/mrs.2013.229. [28] P. V. Klimov et al., “Fluctuations of Energy-Relaxation Times in Superconducting Qubits,” Phys Rev Lett, vol. 121, no. 9, p. 090502, Aug. 2018, doi: 10.1103/PHYSREVLETT.121.090502/FIGURES/3/MEDIUM. [29] H. Bluhm et al., “Dephasing time of GaAs electron-spin qubits coupled to a nuclear bath exceeding 200 μs,” Nature Physics 2010 7:2, vol. 7, no. 2, pp. 109–113, Dec. 2010, doi: 10.1038/nphys1856. [30] L. R. Schreiber and H. Bluhm, “Quantum computation: Silicon comes back,” Nat Nanotechnol, vol. 9, no. 12, 2014, doi: 10.1038/nnano.2014.249. [31] D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys Rev A, vol. 57, no. 1, 1998, doi: 10.1103/PhysRevA.57.120. [32] D. M. Zajac, T. M. Hazard, X. Mi, E. Nielsen, and J. R. Petta, “Scalable Gate Architecture for a One-Dimensional Array of Semiconductor Spin Qubits,” Phys Rev Appl, vol. 6, no. 5, 2016, doi: 10.1103/PhysRevApplied.6.054013. [33] N. W. Hendrickx, D. P. Franke, A. Sammak, G. Scappucci, and M. Veldhorst, “Fast two-qubit logic with holes in germanium,” Nature, vol. 577, no. 7791, 2020, doi: 10.1038/s41586-019-1919-3. [34] N. W. Hendrickx et al., “A four-qubit germanium quantum processor,” Nature, vol. 591, no. 7851, 2021, doi: 10.1038/s41586-021-03332-6. [35] L. Scotti, V. Prates Lorenzo, F. J. Mendonça Júnior, N. Sastry Yarla, and M. Tullius Scotti, “NMR Descriptors in Computer-Aided Drug Design,” 2016. [36] “Catalysis from Theory to Application - An Integrated Course,” Boletim da Sociedade Portuguesa de Química, 2008, doi: 10.52590/m3.p640.a30001461. [37] M. Veldhorst et al., “A two-qubit logic gate in silicon,” Nature, vol. 526, no. 7573, 2015, doi: 10.1038/nature15263. [38] A. Corna et al., “Electrically driven electron spin resonance mediated by spin–valley–orbit coupling in a silicon quantum dot,” npj Quantum Inf, vol. 4, no. 1, 2018, doi: 10.1038/s41534-018-0059-1. [39] J. P. G. van Dijk, E. Charbon, and F. Sebastiano, “The electronic interface for quantum processors,” Microprocess Microsyst, vol. 66, pp. 90–101, Apr. 2019, doi: 10.1016/J.MICPRO.2019.02.004. [40] F. Sebastiano et al., “Cryo-CMOS interfaces for large-scale quantum computers,” in Technical Digest - International Electron Devices Meeting, IEDM, 2020. doi: 10.1109/IEDM13553.2020.9372075. [41] J. P. G. Van Dijk et al., “Impact of Classical Control Electronics on Qubit Fidelity,” Phys Rev Appl, vol. 10, p. 44054, 2019, doi: 10.1103/PhysRevApplied.12.044054. [42] B. Patra et al., “Cryo-CMOS Circuits and Systems for Quantum Computing Applications,” IEEE J Solid-State Circuits, vol. 53, no. 1, pp. 309–321, Jan. 2018, doi: 10.1109/JSSC.2017.2737549. [43] E. Charbon et al., “Cryo-CMOS for quantum computing,” Technical Digest - International Electron Devices Meeting, IEDM, pp. 13.5.1-13.5.4, Jan. 2017, doi: 10.1109/IEDM.2016.7838410. [44] B. Patra et al., “A Scalable Cryo-CMOS 2-to-20GHz Digitally Intensive Controller for 4×32 Frequency Multiplexed Spin Qubits/Transmons in 22nm FinFET Technology for Quantum Computers,” in Digest of Technical Papers - IEEE International Solid-State Circuits Conference, 2020. doi: 10.1109/ISSCC19947.2020.9063109. [45] N. Ares et al., “Sensitive Radio-Frequency Measurements of a Quantum Dot by Tuning to Perfect Impedance Matching,” Phys Rev Appl, vol. 5, no. 3, p. 034011, Mar. 2016, doi: 10.1103/PHYSREVAPPLIED.5.034011/FIGURES/5/MEDIUM. [46] A. Akturk et al., “Compact and distributed modeling of cryogenic bulk MOSFET operation,” IEEE Trans Electron Devices, vol. 57, no. 6, 2010, doi: 10.1109/TED.2010.2046458. [47] V. Revéret et al., “CESAR: Cryogenic electronics for space applications,” in Journal of Low Temperature Physics, 2014. doi: 10.1007/s10909-013-1021-4. [48] P. Merken, T. Souverijns, J. Putzeys, Y. Creten, and C. Van Hoof, “Flight qualification and circuit development of sensor front-end electronics for PACS/Hershel at liquid helium temperature,” in Journal of Microelectronics and Electronic Packaging, 2007. doi: 10.4071/1551-4897-4.4.130. [49] J. R. Hoff, G. W. Deptuch, G. Wu, and P. Gui, “Cryogenic Lifetime Studies of 130 nm and 65 nm nMOS Transistors for High-Energy Physics Experiments,” IEEE Trans Nucl Sci, vol. 62, no. 3, 2015, doi: 10.1109/TNS.2015.2433793. [50] B. Okcan, P. Merken, G. Gielen, and C. Van Hoof, “A cryogenic analog to digital converter operating from 300 K down to 4.4 K,” in Review of Scientific Instruments, 2010. doi: 10.1063/1.3309825. [51] F. R. Ihmig, S. G. Shirley, R. K. Kirschman, and H. Zimmermann, “Frozen cells and bits: Cryoelectronics advances biopreservation,” IEEE Pulse, vol. 4, no. 5, 2013, doi: 10.1109/MPUL.2013.2271685. [52] A. Beckers, F. Jazaeri, A. Ruffino, C. Bruschini, A. Baschirotto, and C. Enz, “Cryogenic characterization of 28 nm bulk CMOS technology for quantum computing,” in European Solid-State Device Research Conference, 2017. doi: 10.1109/ESSDERC.2017.8066592. [53] A. Beckers, F. Jazaeri, and C. Enz, “Characterization and Modeling of 28-nm Bulk CMOS Technology Down to 4.2 K,” IEEE Journal of the Electron Devices Society, vol. 6, 2018, doi: 10.1109/JEDS.2018.2817458. [54] A. Beckers, F. Jazaeri, and C. Enz, “Theoretical Limit of Low Temperature Subthreshold Swing in Field-Effect Transistors,” IEEE Electron Device Letters, vol. 41, no. 2, pp. 276–279, Feb. 2020, doi: 10.1109/LED.2019.2963379. [55] Y. Zhang et al., “Characterization and Modeling of Native MOSFETs down to 4.2 K,” IEEE Trans Electron Devices, vol. 68, no. 9, pp. 4267–4273, Sep. 2021, doi: 10.1109/TED.2021.3099775. [56] Ben. Streetman and Sanjay. Banerjee, “Solid State Electronic Devices.,” p. 621, 2015, Accessed: Jul. 01, 2024. [Online]. Available: https://search.worldcat.org/title/1002640532 [57] A. Beckers, F. Jazaeri, and C. Enz, “Cryogenic MOS Transistor Model,” IEEE Trans Electron Devices, vol. 65, no. 9, pp. 3617–3625, Sep. 2018, doi: 10.1109/TED.2018.2854701. [58] G. Liu, B. R. Tuttle, and S. Dhar, “Silicon carbide: A unique platform for metal-oxide-semiconductor physics,” Appl Phys Rev, vol. 2, no. 2, Jun. 2015, doi: 10.1063/1.4922748. [59] A. Toriumi, M. Iwase, and H. Tango, “On the Universality of Inversion Layer Mobility in Si MOSFET’s: Part I—Effects of Substrate Impurity Concentration,” IEEE Trans Electron Devices, vol. 41, no. 12, pp. 2357–2362, 1994, doi: 10.1109/16.337449. [60] H. Bohuslavskyi et al., “Cryogenic Subthreshold Swing Saturation in FD-SOI MOSFETs Described With Band Broadening,” IEEE Electron Device Letters, vol. 40, no. 5, 2019, doi: 10.1109/LED.2019.2903111. [61] “BSIMProPlus TM Application Note AC Conductance Measurement,” 2022. [62] E. H. Nicollian and J. R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology | Wiley,” pp. 1–928, 2002, Accessed: Jun. 29, 2024. [Online]. Available: https://www.wiley.com/en-cn/MOS+%28Metal+Oxide+Semiconductor%29+Physics+and+Technology-p-9780471430797 [63] R. Shrivastava and K. Fitzpatrick, “A simple model for the overlap capacitance of a VLSI MOS device,” IEEE Trans Electron Devices, vol. 29, no. 12, pp. 1870–1875, 1982, doi: 10.1109/T-ED.1982.21044. [64] M. Zahn, “ELECTROMAGNETIC FIELD THEORY: A PROBLEM SOLVING APPROACH.” [Online]. Available: https://LibreTexts.org [65] S. H. Kim, J. G. Fossum, and J. W. Yang, “Modeling and significance of fringe capacitance in nonclassical CMOS devices with gate-source/drain underlap,” IEEE Trans Electron Devices, vol. 53, no. 9, pp. 2143–2149, Sep. 2006, doi: 10.1109/TED.2006.880369. [66] L. Shore, “User’s Manual CRX-4K Probe Station,” 2011. [67] P. G. Drennan, M. L. Kniffin, and D. R. Locascio, “Implications of proximity effects for analog design,” in Proceedings of the Custom Integrated Circuits Conference, 2006, pp. 169–176. doi: 10.1109/CICC.2006.320869. [68] C. Y. Hsieh and M. J. Chen, “Measurement of channel stress using gate direct tunneling current in uniaxially stressed nMOSFETs,” IEEE Electron Device Letters, vol. 28, no. 9, pp. 818–820, 2007, doi: 10.1109/LED.2007.902985. [69] C. Kumar Dabhi et al., “BSIM4 4.8.1 Manual BSIM4 4.8.1 MOSFET Model User’s Manual,” 2017. [Online]. Available: http://bsim.berkeley.edu/models/bsim4/ [70] C. C. McAndrew and Y. Tsividis, “Proximity Effect Modeling,” in Operation and Modeling of the MOS Transistor, 2011. [71] J. Watts, K. W. Su, and M. Basel, “Netlisting and modeling well-proximity effects,” IEEE Trans Electron Devices, vol. 53, no. 9, pp. 2179–2186, Sep. 2006, doi: 10.1109/TED.2006.880176. [72] B. Razavi, “RF microelectronics”, Accessed: Jun. 20, 2024. [Online]. Available: https://www.oreilly.com/library/view/rf-microelectronics/9780132851824/ [73] B. Razavi, “Design of CMOS Phase-Locked Loops: From Circuit Level to Architecture Level,” Design of CMOS Phase-Locked Loops, Jan. 2020, doi: 10.1017/9781108626200. [74] “Direct Digital Frequency Synthesizers | IEEE eBooks | IEEE Xplore.” Accessed: Jun. 22, 2024. [Online]. Available: https://ieeexplore.ieee.org/book/5443866 [75] J. Vankka, “Methods of mapping from phase to sine amplitude in direct digital synthesis,” IEEE Trans Ultrason Ferroelectr Freq Control, vol. 44, no. 2, pp. 526–534, 1997, doi: 10.1109/58.585137. [76] “Linear Integrated Circuits - D Choudhury Roy - Google 圖書.” Accessed: Jun. 22, 2024. [Online]. Available: https://books.google.com.tw/books?hl=zh-TW&lr=&id=aByz--9D63wC&oi=fnd&pg=PA1&dq=Linear+Integrated+Circuit+Applications&ots=ZM42-4wGaw&sig=XRHXqKG_DWCcb33Kl5eKPJmNjbU&redir_esc=y#v=onepage&q=Linear%20Integrated%20Circuit%20Applications&f=false [77] W. Te Lin, H. Y. Huang, and T. H. Kuo, “A 12-bit 40 nm DAC achieving SFDR > 70 dB at 1.6 GS/s and IMD <-61dB at 2.8 GS/s with DEMDRZ technique,” IEEE J Solid-State Circuits, vol. 49, no. 3, pp. 708–717, 2014, doi: 10.1109/JSSC.2014.2301769. [78] S. C. Cripps, “RF Power Amplifiers for Wireless Communications Second Edition”. [79] D. M. Pozar, “Microwave engineering : theory and techniques : international adaptation”. [80] G. Gonzalez, “Microwave Transistor Amplifier: Analysis and Design Second Edition,” Book, 1996, Accessed: Jun. 23, 2024. [Online]. Available: https://books.google.com/books/about/Microwave_Transistor_Amplifiers.html?hl=zh-TW&id=-AVTAAAAMAAJ [81] “Modern Semiconductor Devices for Integrated Circuits, 1/e by Chenming C. Hu.” Accessed: Jun. 24, 2024. [Online]. Available: https://www.pearsoned.co.in/prc/book/chenming-c-hu-modern-semiconductor-devices-integrated-circuits-1e--1/9788131730249 [82] A. Komijani, A. Natarajan, and A. Hajimiri, “A 24-GHz, + 14.5-dBm fully integrated power amplifier in 0.18-μm CMOS,” IEEE J Solid-State Circuits, vol. 40, no. 9, pp. 1901–1908, Sep. 2005, doi: 10.1109/JSSC.2005.848143. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93940 | - |
| dc.description.abstract | 近年來,量子計算因其卓越的計算能力而受到廣泛關注,相較傳統計算機能更快、更高效地解決複雜的問題。對於大規模量子計算機來說,超導和半導體量子位元被認為是最有前途的候選者,因為它們與VLSI兼容。然而,由於它們需要在低溫下操作,因此室溫電子儀器控制和讀取量子位元會限制數量的擴展。因此,低溫電路的存在是必須的,以減少信號失真、延遲、以及導線上的熱梯度等問題。此外,為了準確設計符合低溫電路需求的電路,需要一個適用於低溫(至4 K)操作的低溫CMOS的SPICE模型。
本論文創建一個40-nm CMOS電晶體、適用溫度為300 K到4 K的SPICE模型。首先,提取了寄生電容,如Cgb、Cgc和Cgg,以利於交流訊號建模。隨後,使用Calibre軟體實現了佈局參數過濾,可以消除由於不同測試元件佈局(例如LOD和WPE)導致的製程變化。最後,使用Utmost軟體對測量數據進行BSIM4模型擬合。在300到4 K的溫度範圍內,擬合的I-V和C-V曲線與實驗結果非常吻合。 接著,展示了一個用於量子位元控制電路的20 GHz驅動放大器設計。使用ADS軟體對40-nm CMOS進行了RF特性的模擬。為了達到優異的線性和功率效率,選擇了AB類放大器。透過採用疊接共源極組態配置來增強增益,並利用源極電感和電阻自偏壓負回授機制來確保穩定性。最後進行電磁模擬,以取得能夠達到最小損耗和最高穩定性的被動元件設計。根據模擬結果顯示,在20 GHz時,增益參數S21為15.2 dB,3 dB頻帶寬為8.2 GHz。輸入功率為-10 dBm時,輸出功率1 dB壓縮點約為3 dBm,而最大功率附加效率(PAE)達到26.2%,與設計目標一致。 | zh_TW |
| dc.description.abstract | In recent years, quantum computing has gained much attention for its immense computational power, cability of solving complex problems exponentially faster and more efficiently than classical computing. For large-scale quantum computers, superconducting and semiconductor qubits are considered the most promising candidates owing to their VLSI compatibility. However, since they need to be operated at cryogenic temperatures, control and readout of qubits by room-temperature electronic instrument prohibits future scaling. Therefore, control/readout circuits operated at cryogenic temperatures are necessary to mitigate issues such as signal distortion, latency, thermal gradient along the wiring, etc. For accurate circuit design to meet the requirements of cryogenic circuits, a SPICE model of cryo-CMOS suitable for the operation at cryogenic temperatures (down to 4 K) is required.
This thesis focuses on creating a SPICE model for 40-nm CMOS devices at 300 K ~ 4 K. First, parasitic capacitances such as Cgb, Cgc, and Cgg are extracted for ac circuits. Subsequently, the process coefficient filtering of the layout is achieved using the Calibre software to remove process variations due to different layouts of test-keys, for example, LOD and WPE. Finally, using the Utmost software, the measured data are processed for BSIM4 model fitting. Fitting I-V and C-V curves match to the experimental results very well at temperatures of 300 ~ 4 K. Next, a design of 20-GHz driver for the control circuit of quantum bits is demonstrated. Simulations of RF characteristics are conducted using the ADS software for 40-nm CMOS technology. For excellent linearity and power efficiency, a class AB amplifier is selected. A cascode common-source configuration is adopted for gain enhancement, while stability is ensured through a source inductance and resistive self-bias feedback mechanism. Electromagnetic simulations are performed to identify the critical passive components to achieve minimal loss and highest stability. The simulation results show a gain parameter S21 of 15.2 dB at 20 GHz with a 3 dB bandwidth of 8.2 GHz. The output-power 1-dB compression point is approximately 3 dBm for an input power of -10 dBm, and the maximum Power Added Efficiency (PAE) reaches 26.2%, consistent with the design objectives. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:34:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:34:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract iv 目次 vi 圖次 viii 表次 xv 第 1 章 量子計算 1 1.1 引言 1 1.2 量子位元處理器 2 1.3 量子處理器的控制/讀取介面 6 1.4 論文架構 9 第 2 章 電晶體之低溫SPICE模型 11 2.1 Cryo-CMOS物理機制 11 2.2 測試元件的量測與分析 15 2.2.1 電晶體元件電容量測架構 15 2.2.2 閘極到基板的電容Cgb 16 2.2.3 閘極到汲極/源極的電容Cgc 22 2.2.4 閘極到汲極/源極/基底的電容Cgg 26 2.2.5 低溫量測結果 31 2.3 元件模型擬合 35 2.3.1 建立結構模型 35 2.3.2 電晶體固生、寄生電容擬合 40 2.4 結論 48 第 3 章 低溫功率放大器之設計 49 3.1 量子位元的操控電路介面 49 3.1.1 鎖相迴路 49 3.1.2 數字控制振盪器 52 3.1.3 數位類比轉換器 54 3.1.4 混頻器和功率放大器 56 3.2 功率放大器 58 3.2.1 線性度 58 3.2.2 功率效率 62 3.3 功率放大器的電路設計 66 3.3.1 規格與功率預算 66 3.3.2 偏壓與電晶體尺寸選擇 68 3.3.3 負載拉移分析 75 3.3.4 輸出和輸入的匹配網路設計 78 3.3.5 被動元件佈局設計 80 3.4 模擬結果 87 3.5 結論 90 第 4 章 結論及未來工作 91 4.1 結論 91 4.2 未來工作 91 參考文獻 93 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 低溫電晶體 | zh_TW |
| dc.subject | 電磁模擬 | zh_TW |
| dc.subject | SPICE 模型 | zh_TW |
| dc.subject | 量子計算 | zh_TW |
| dc.subject | Quantum computing | en |
| dc.subject | Electromagnetic simulation | en |
| dc.subject | SPICE model | en |
| dc.subject | cryo-CMOS | en |
| dc.title | 低溫電晶體元件的 SPICE 模型於量子計算之應用 | zh_TW |
| dc.title | SPICE modeling of cryo-CMOS devices for quantum computing | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 李峻霣 | zh_TW |
| dc.contributor.coadvisor | Jiun-Yun Li | en |
| dc.contributor.oralexamcommittee | 卓大鈞;柯鈞琳 | zh_TW |
| dc.contributor.oralexamcommittee | Da-Jun Zhuo;Jun-Lin Ke | en |
| dc.subject.keyword | 量子計算,低溫電晶體,SPICE 模型,電磁模擬, | zh_TW |
| dc.subject.keyword | Quantum computing,cryo-CMOS,SPICE model,Electromagnetic simulation, | en |
| dc.relation.page | 101 | - |
| dc.identifier.doi | 10.6342/NTU202403186 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 8.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
