Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9393
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃建璋
dc.contributor.authorChien-Cheng Liuen
dc.contributor.author劉建承zh_TW
dc.date.accessioned2021-05-20T20:20:31Z-
dc.date.available2009-03-23
dc.date.available2021-05-20T20:20:31Z-
dc.date.copyright2009-03-23
dc.date.issued2009
dc.date.submitted2009-03-11
dc.identifier.citationP. K. Weimer. “The TFT – A new thin film transistor”, Proceeding of the IEEE, 1962.
H. Kawamoto, “The history of liquid-crystal displays”, Proceeding of the IEEE, 2002.
Gregory P. Crawford, “Flexible Flat Panel Displays”, John Wiley & Sons, Ltd.
http://www.fujitsu.com/global/about/rd/200509epaper.html
Donald A. Neamen, “Semiconductor Physics and Devices 3rd”, McGraw Hill, p.486–495.
A. C. Tickle, “Thin-Film Transistors”. New York: John Wily and Sons, 1969.
C. R. Kagan and P. Andry, “Thin-Film Transistors”. New York: Marcel Dekker, Inc., p. 6, 2003.
For detailed fabrication flow of a-Si TFTs, the following website provides animation and is strongly recommended.
http://www.auo.com/auoDEV/content/technology/AUOprocessCT.swf
Mater thesis, Ganesh Chakravarthy Yerubandi, “Discrete Trap Modeling of Thin-film Transistors”, Chapter 2, Oregon State University, 2005.
Jai Il Ryu , Young Jin Choi , In Keun Woo , Byeong Chun Lim , Jin Jang, “High performance a-Si TFT with ITO/n+ ohmic layer using a Ni-silicide”, Journal of Non-Crystalline Solids, 2000.
Byung Chul Ahn, Jeong Hyun Kim, Dong Gil Kim, Byeong Yeon Moon, Kyung Ha Lee, Soon Sung Yoo, Min Koo Han and Jin Jang, “Fabrication of high performance APCVD a-Si TFT using ion doping”, Journal of Non-Crystalline Solids, 1993.
A Comparison of the Performance and Reliability of Wet-Etched and Dry-Etched a-Si:H TFT’s”, IEEE transactions on electron devices, 1998.
Chi-Wen Chen, Ting-Chang Chang, Po-Tsun Liu, Hau-Yan Lu, Kao-Cheng Wang, Chen-Shuo Huang, Chia-Chun Ling, and Tesung-Yuen Tseng, “High-Performance Hydrogenated Amorphous-Si TFT for AMLCD and AMOLED Applications”, IEEE electron device letters, 2005.
Chia-Pin Lin, Bing-Yue Tsui, Ming-Jui Yang, Ruei-Hao Huang, and Chao-Hsin Chien, “High-Performance Poly-Silicon TFTs Using HfO2 Gate Dielectric”, IEEE electron device letters, 2006.vv
C.C. Liu, Y.S. Chen and J.J. Huang, “High-performance ZnO thin-film transistors fabricated at low temperature on glass substrates”, Electronics letters, 2006.
Master thesis, Rick E. Presley, “Transparent electronics: thin-film transistors and integrated circuits”, Chapter 4, Oregon State University, 2006.
K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and Hi. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature, 2004.
N. L. Dehuff, E. S. Kettenring, D. Hong, H. Q. Chiang, J. F. Wager, R. L. Hoffman, C.-H. Park, and D. A. Keszler, “Transparent thin-film transistors with zinc indium oxide channel layer,” Journal of Applied Physics, 2005.
G. F. Boesen and J. E. Jacobs, “ZnO Field-Effect Transistor”, Proceeding Letters, IEEE, 1968.
P. F. Carcia, R. S. McLean, M. H. Reily, and G. Nunes, “Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering,” Applied Physics Letters, 2003.
J. Nishii, F. M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohmaki, I. Ohkubo, S. Kishimoto, A. ira Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma, A. H. Ohno, and M. Kawasaki, “High mobility thin film transistors with transparent ZnO channels,” Japanese Journal of Applied Physics, 2003.
S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, “Transparent thin film transistors using ZnO as an active channel layer and their electrical properties,” Japanese Journal of Applied Physics, 2003.
R. L. Hoffman, B. J. Norris, and J. F. Wager, “ZnO-based transparent thin-film transistors,” Applied Physics Letters, 2003.
B. J. Norris, J. Anderson, J. F. Wager, and D. A. Keszler, “Spin-coated zinc oxide transparent transistors,” Journal of Physics D: Applied Physics, 2003.
Y. Kwon, Y. Li, Y. W. Heo, M. Jones, P. H. Holloway, D. P. Norton, Z. V. Park, and S. Li, “Enhancement-mode thin-film field-effect transistor using phosphorus-doped (Zn,Mg)O channel,' Applied Physics Letters, 2004.
M. W. J. Prins, K.-O. Grosse-Holz, G. Muller, J. F. M. Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolfd, “A ferroelectric transparent thin-film transistor,” Applied Physics Letters, 1996.
H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, “High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer,” Applied Physics Letters, 2005.
A. Sazonov, D. Striakhilev, C.-H. Lee, and A. Nathan, “Low-Temperature Materials and Thin Film Transistors for Flexible Electronics”, Proceedings of the IEEE, 2005.
I-C. Cheng, A. Z. Kattamis, K. Long, J. C. Sturm, and S. Wagner, “Self-Aligned Amorphous-Silicon TFTs on Clear Plastic Substrates”, IEEE, 2006.
K. NOMURA, A.TAKAGI, T. KAMIYA, H. OHTA, M. HIRANO and H. HOSONO, “Amorphous Oxide Semiconductors for High-Performance Flexible Thin-Film Transistors”, Japanese Journal of Applied Physics, 2006.
P. F. Carcia, R. S. Mclean, and M. H. Reilly, “Oxide engineering of ZnO thin-film transistor for flexible electronics”, Journal of SID, 2005.
W.B. Jackson, G.S. Herman, R.L. Hoffman, C. Taussig, S. Braymen, F. Jeffery, and J. Hauschildt, “Zinc tin oxide transistors on flexible substrates”, Journal of Non-Crystalline Solids, 2006.
Jong H. Na,M. Kitamura, D. Lee, and Y. Arakawa, “High performance flexible pentacene thin-film transistors fabricated on titanium silicon oxide gate dielectrics”, Applied Physics Letters, 2007.
J. Vaillancourt, X. Lu, X. Han and D.C. Janzen, “High-speed thin-film transistor on flexible substrate fabricated at room temperature”, Electronics Letters, 2006.
S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner “Recent advances in processing of ZnO” Journal of Vacuum Science and Technology, May/June, 2004.
D. C. Look, G. C. Farlow, P. Reunchan, S. Limpijumnong, S. B. Zhang, and K. Nordlund, “Evidence for Native-Defect Donors in n-Type ZnO”, Physical Review Letters, 2005.
Adapted from L. Schmidt-Mende, J. L. MacManus-Driscoll, “ZnO - nanostructures, defects, and devices”, Materials Today, 2007.
Richard A. Swalin, “Thermodynamics of Solids”, 2nd edition, JOHN WILEY & SONS, New York, U.S.A., 1972.
W.-F. Wu, B.-S. Chiou, “Properties of radio-frequency magnetron sputtered ITO films without in-situ substrate heating and post-deposition annealing”, Thin Solid Films, 1994.
B. S. Chiou, S. T. Hsieh, “RF magnetron-sputtered indium tin oxide film on a reactively ion-etched acrylic substrate”, Thin Solid Film, 1993.
M. Nisha, S. Anusha, Aldrin Antony, R. Manoj, M. K. Jayaraj, “Effect of substrate temperature on the growth of ITO thin films”, Applied Surface Science, 2005.
A. Mansingh, C.V.R.Vasant Kumar, “Properties of RF-sputtered ITO films on substrates above and below the virtual source”, Journal of Physics D: Applied Physics, 1989.
R. Das, K. Adhikary, S. Ray, “The role of oxygen and hydrogen partial pressures on structural and optical properties of ITO films deposited by reactive rf-magnetron sputtering”, Applied Surface Science , 2007.
W.-F. Wu, B.-S. Chiou, S.-T. Hsieh, “Effect of sputtering power on the structural and optical properties of RF magnetron sputtered ITO films”, Semiconductor Science and Technology, 1994.
Y. Hu, X. Diao, C. Wang, W. Hao, T. Wang, “Effects of heat treatment on properties of ITO films prepared by rf magnetron sputtering”, Vacuum, 2004.
蔡獻逸, “玻璃的藝術與科技”, 科學發展, 2006.
http://www.glassdynamicsllc.com/Alkali%20Free%20Borosilicate%201737.htm
Gregory P. Crawford, “Flexible Flat Panel Displays”, John Wiley & Sons, Ltd.
http://people.ccmr.cornell.edu/~cober/mse542/page2/files/Barriers.pdf “Latest Developments In Polyester Film For Flexible Electronics”
莊達人編, “VLSI製造技術”, 高立, 2004.
J A Venables, G D T Spiller and M Hanbucken, “Nucleation and growth of thin films”, Reports on Progress in Physics, 1984.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/9393-
dc.description.abstract本論文製作於玻璃基板與塑膠基板上之氧化鋅薄膜電晶體的特性。
  在實現薄膜電晶體元件之前,本文首先探討氧化鋅缺限對氧化鋅薄膜導電特性的影響,藉由濺鍍沉積氧化鋅薄膜時控制Ar和O2的比例,以及利用氧電漿對氧化鋅薄膜表面進行處理,以獲得最佳製備氧化鋅薄膜的成長環境。根據此最佳化條件,本研究在玻璃基板上製作出高效能增強型氧化鋅薄膜電晶體,在Vds=10-20,Vgs=5V的偏壓下,操作電流可高達1mA,開關電流比可達3x10*6,是目前氧化鋅薄膜電晶體的研究工作中,效能表現最好之一。
  本文進一步探討製作於塑膠板上之氧化鋅薄膜電晶體的特性。採用兩步驟的黃光製程,以防止塑膠基板在化學溶劑中產生變形;而受限於塑膠基板的玻璃轉換溫度,所有薄膜均在室溫下濺鍍成長,氧化鋅的成長條件是利用玻璃基板上的最佳結果。另外,採用金屬鈦作為汲極和源極,以改善接觸電阻。塑膠基板上之氧化鋅薄膜電晶體的電特性曲線和可見光穿透率均本文中亦有論及。
zh_TW
dc.description.abstractThis thesis focuses on two aspects of ZnO thin film transistors, the ZnO-TFTs fabricated on glass substrates and the flexible ZnO-TFTs fabricated on polymer substrates.
The first part demonstrates a high-performance enhancement-mode ZnO TFT on a glass substrate. Before realizing the TFT device, the characteristics of ZnO thin films are examined to find out the optimal deposition conditions. The ZnO thin film is deposited by RF magnetron sputtering with the presence of O2 at low deposition rate and low temperature. The IDS of the ZnO-TFT on glass substrates is as high as 1 mA when biased at the saturation region VDS = 10-20 V and VGS = 5 V without any post thermal anneal. The Ion/Ioff ratio is . We believe the results are among the best ZnO TFTs ever obtained.
The second part focuses on the flexible ZnO-TFT on PET (polyethylene terephthalate) substrates. All the patterns are defined by standard photolithography with only two steps in order to reduce the distortion of PET substrates. The ZnO thin film is deposited by RF magnetron sputtering at low temperature in presence of O2. The gas ratio of Ar to O2 is based on the optimal conditions obtained in the case of the ZnO-TFT on glass substrates. Titanium is employed in substitution for ITO as the source and the drain layers to improve the electrical performance. The IDS - VDS curves along with optical transmission of the whole structure are presented.
en
dc.description.provenanceMade available in DSpace on 2021-05-20T20:20:31Z (GMT). No. of bitstreams: 1
ntu-98-R94941024-1.pdf: 3984213 bytes, checksum: a078e06dd28957de68db3b612b650acd (MD5)
Previous issue date: 2009
en
dc.description.tableofcontentsChapter 1 Introduction...................................... 1
Chapter 1 Bibliography……………………………………………….. 5
Chapter 2 Literature Review and Theory...................... 6
2.1 Transistors…………………………………………….………….. 6
2.1.1 Working principle of field effect transistors......... 6
2.1.2 Operation of thin film transistors.................... 13
2.1.3 Si-based thin film transistors........................ 17
2.1.4 Oxide-semiconductor-based thin film transistors....... 21
2.1.5 Flexible thin film transistors........................ 23
2.2 Property of Materials................................... 26
2.2.1 Zinc oxide (ZnO)...................................... 26
2.2.2 Indium tin oxide (ITO)................................ 33
2.2.3 Insulating materials.................................. 35
2.3 Property of Substrates.................................. 36
2.3.1 Glass substrate....................................... 36
2.3.2 Polymer substrates.................................... 39
2.4 Plasma Reaction and Sputtering.......................... 44
Chapter 2 Bibliography...................................... 47
Chapter 3 Fabrication of ZnO TFTs on a Glass Substrate...... 52
3.1 Fabrication Process..................................... 52
3.2 Results and Analysis.................................... 55
3.2.1 Quality of ZnO thin films............................. 55
3.2.2 Performance of the ZnO-TFTs........................... 67
3.2.3 Performance of the best ZnO-TFT....................... 79
Chapter 4 Fabrication of ZnO TFTs on Plastic Substrates..... 83
4.1 Fabrication Process..................................... 83
4.2 Results and Analysis.................................... 86
4.2.1 Using ITO as the source and drain..................... 86
4.2.2 Using Ti as the source and drain...................... 89
Chapter 5 Conclusions and Recommendations for Future Work... 91
5.1 Conclusions............................................. 91
5.2 Recommendations for Future Work......................... 93
dc.language.isoen
dc.title於玻璃基板與塑膠基板上製作高效能氧化鋅薄膜電晶體zh_TW
dc.titleHigh Performance ZnO Thin Film Transistors on Both Glass and Plastic Substratesen
dc.typeThesis
dc.date.schoolyear97-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳奕君,陳敏璋
dc.subject.keyword氧化鋅,薄膜電晶體,玻璃基板,塑膠基板,軟性電子,zh_TW
dc.subject.keywordZnO,TFT,Glass Substrate,Plastic Substrate,Flexible Electronics,en
dc.relation.page94
dc.rights.note同意授權(全球公開)
dc.date.accepted2009-03-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-98-1.pdf3.89 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved