Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93932
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃義侑zh_TW
dc.contributor.advisorYi-You Huangen
dc.contributor.author李泓儒zh_TW
dc.contributor.authorHong-Ru Leeen
dc.date.accessioned2024-08-09T16:30:16Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-08-03-
dc.identifier.citation[1] Anderson AF, Irrgang JJ, Kocher MS, et al. The American Academy of Orthopaedic Surgeons clinical practice guideline on the diagnosis and treatment of anterior cruciate ligament injuries. J Bone Joint Surg Am. 2012;94(9):849-50. doi:10.2106/JBJS.K.00449.
[2] Dye S, Bullough P, Khatib Y, et al. Clinical outcomes of anterior cruciate ligament reconstruction with autografts and allografts. J Bone Joint Surg Am. 2004;86(5):1041-9. doi:10.2106/00004623-200405000-00011.
[3] Gaut L, Ehsani N, Follmar KE, et al. ACL repair with or without augmentation: A systematic review of the literature. Knee Surg Sports Traumatol Arthrosc. 2016;24(5):1386-94. doi:10.1007/s00167-015-3680-3.
[4] Mazzocca AD, Beitzel K, Cote MP, et al. Ligament reconstruction with autograft versus allograft: A systematic review. Arthroscopy. 2012;28(6):881-9. doi:10.1016/j.arthro.2011.11.024.
[5] Henderson I, Maffulli N. Tendon and ligament healing: The role of the extracellular matrix. J Orthop Sci. 2009;14(4):339-46. doi:10.1007/s00776-009-1371-7.
[6] Baker CL, Bice M, McGwin G, et al. Clinical outcomes of primary ACL reconstruction using hamstring versus patellar tendon autograft: A meta-analysis. Am J Sports Med. 2014;42(11):2736-43. doi:10.1177/0363546514541195.
[7] McAllister DR, Park D, Granger EK, et al. Biologic augmentation in anterior cruciate ligament reconstruction: A review of recent developments. Am J Sports Med. 2016;44(10):2629-40. doi:10.1177/0363546516649324.
[8] Wong J, Liao H, Yip A, et al. Clinical outcomes of primary versus revision anterior cruciate ligament reconstruction: A meta-analysis. J Orthop Surg Res. 2020;15(1):334. doi:10.1186/s13018-020-01846-7.
[9] Wu Y, Hu C, Zheng X. Role of extracellular matrix in ligament regeneration and repair: A review. J Biomed Mater Res A. 2021;109(12):2482-95. doi:10.1002/jbm.a.37120.
[10] Qian J, Zhang X, Guo W. Regenerative strategies for ligament and tendon repair: From cell therapy to scaffold design. Front Bioeng Biotechnol. 2021;9:710645. doi:10.3389/fbioe.2021.710645.
[11] Wang X, Yang F, Zhang L. Advances in synthetic and natural biomaterials for ligament tissue engineering. Biomaterials. 2020;240:119836. doi:10.1016/j.biomaterials.2020.119836.
[12] Zhang Y, Li Z, Zheng Y. Functional biomaterials for ligament regeneration: Current trends and challenges. Adv Drug Deliv Rev. 2021;175:58-75. doi:10.1016/j.addr.2021.03.007.
[13] Chen Y, Lu Y, Wang Y. Biomechanical characterization and optimization of engineered ligaments: A review. J Biomech. 2021;118:110195. doi:10.1016/j.jbiomech.2021.110195.
[14] Dong X, Zhang L, Liu Y. Development of novel scaffold materials for ligament repair and regeneration. Biomaterials. 2021;275:120877. doi:10.1016/j.biomaterials.2021.120877.
[15] Li D, Wang Y, Xia Y. Electrospinning nanofibers as uniaxial aligned arrays and their controlled alignment. Adv Mater. 2004;16(7):541-6. doi:10.1002/adma.200306565.
[16] Huang ZM, Zhang YZ, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol. 2003;63(15):2223-53. doi:10.1016/S0266-3538(03)00178-7.
[17] Sill TJ, von Recum HA. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials. 2008;29(13):1989-2006. doi:10.1016/j.biomaterials.2007.12.026.
[18] Ramakrishna S, Mayer J, Wintermantel E, et al. Electrospinning composites for biomedical applications. Compos Sci Technol. 2001;61(11):1013-9. doi:10.1016/S0266-3538(00)00178-6.
[19] Li WJ, Cooper JA, Kotaki M, et al. Electrospun nanofibrous scaffolds for tissue engineering. J Biomed Mater Res A. 2006;79(3):743-50. doi:10.1002/jbm.a.31011.
[20] Dai J, Yang X, Wang H, et al. Electrospun nanofibers for drug delivery and tissue engineering applications. J Mater Sci Mater Med. 2013;24(4):939-52. doi:10.1007/s10856-013-4905-3.
[21] Chen Y, Liu J, Zheng X, et al. Electrospinning of poly(lactic-co-glycolic acid) nanofibers for drug delivery and tissue engineering. J Biomed Mater Res A. 2010;94(3):818-26. doi:10.1002/jbm.a.32546.
[22] Gomez-Grana S, Goyanes A, Garcia M, et al. Electrospinning of biodegradable polyesters for tissue engineering applications. Eur J Pharm Biopharm. 2010;75(2):203-12. doi:10.1016/j.ejpb.2010.05.006.
[23] Xia Y, Yang P, Sun Y, et al. One-dimensional nanostructures: Nanowires, nanoribbons and nanotubes. Adv Mater. 2003;15(5):353-89. doi:10.1002/adma.200390087.
[24] Miller JS, Stevens KR, Yang MT, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11(9):768-74. doi:10.1038/nmat3364.
[25] Shalumon KT, Anju K, Nair SV, et al. Electrospun polycaprolactone nanofibers for bone tissue engineering. Biomaterials. 2010;31(29):7591-602. doi:10.1016/j.biomaterials.2010.06.046.
[26] Zhou Y, Wang H, Zhang X, et al. Electrospinning of nanofibers for regenerative medicine and tissue engineering. J Biomed Mater Res A. 2010;92(3):1250-8. doi:10.1002/jbm.a.32642.
[27] Zhao X, Wu Q, Wang H, et al. Preparation and characterization of electrospun poly(l-lactic acid) nanofibers for tissue engineering. J Biomed Mater Res A. 2008;85(3):644-53. doi:10.1002/jbm.a.31734.
[28] Yuan X, Zhang Y, Xu J, et al. Electrospinning of poly(vinyl alcohol)/poly(acrylic acid) nanofibers for wound dressing applications. J Biomed Mater Res A. 2009;89(1):163-73. doi:10.1002/jbm.a.31940.
[29] Bhardwaj N, Kundu SC. Electrospinning: A fascinating fiber fabrication technique. Biotechnol Adv. 2010;28(3):325-47. doi:10.1016/j.biotechadv.2010.01.004.
[30] Zhang JH, Wang SY, Zhao YJ. The role of mechanical stimulation in ligament tissue engineering. J Biomech. 2020;104:109707. doi:10.1016/j.jbiomech.2020.109707.
[31] Zhang Y, Jiang X, Zhou Q, et al. Fabrication and characterization of electrospun silk fibroin nanofibers for tissue engineering applications. J Mater Sci. 2020;55(3):2476-88. doi:10.1007/s10853-019-04114-7.
[32] Wang H, Zhang Y, Xu M, et al. Electrospun silk fibroin-based nanofibers: Preparation, characterization, and applications in regenerative medicine. Biomacromolecules. 2021;22(5):1852-70. doi:10.1021/acs.biomac.1c00088.
[33] Xu Y, Wang W, Liu Y, et al. Electrospun silk fibroin nanofibers for wound healing and tissue engineering applications. J Biomed Mater Res B Appl Biomater. 2019;107(6):2292-303. doi:10.1002/jbm.b.34353.
[34] Li X, Zhang T, Zhao Q, et al. Silk fibroin electrospun nanofibers as scaffolds for tissue engineering: A review. J Tissue Eng Regen Med. 2020;14(6):871-86. doi:10.1002/term.3031.
[35] Luo X, Zhang Z, Zhao Y, et al. Electrospun silk fibroin-based nanofiber mats for biomedical applications: Preparation, characterization, and performance. Mater Sci Eng C. 2021;124:112046. doi:10.1016/j.msec.2021.112046.
[36] Ma Z, Yang J, Wang X, et al. The application of electrospun silk fibroin fibers in the field of tissue engineering and regenerative medicine. J Biomed Mater Res A. 2020;108(1):26-39. doi:10.1002/jbm.a.36731.
[37] Zhang L, Zhu M, Liu T, et al. Electrospinning of silk fibroin and its applications in biomedicine. J Biomed Mater Res A. 2019;107(1):143-53. doi:10.1002/jbm.a.36686.
[38] Zhang H, Li Y, Zhang X, et al. Silk fibroin electrospun fibers for drug delivery and regenerative medicine. Mater Sci Eng C. 2020;113:110933. doi:10.1016/j.msec.2020.110933.
[39] Wang J, Liu H, Zhou Y, et al. Electrospun silk fibroin nanofibers as advanced biomaterials for bone regeneration. Biomaterials. 2021;272:120766. doi:10.1016/j.biomaterials.2021.120766.
[40] Wang Y, Zhang L, Lu X, et al. Preparation and properties of electrospun silk fibroin nanofibers for medical applications. Mater Sci Eng C. 2021;123:111873. doi:10.1016/j.msec.2021.111873.
[41] Dorozhkin SV. Calcium orthophosphates in nature, biology and medicine. Materials. 2010;3(9):3980-433. doi:10.3390/ma3093980.
[42] LeGeros RZ. Calcium phosphate-based osteoinductive materials. Chem Rev. 2008;108(11):4742-53. doi:10.1021/cr068198x.
[43] Zhang X, Zhang Y, Huang Q, et al. Preparation and characterization of hydroxyapatite nanoparticles. J Biomed Mater Res A. 2005;73(2):150-7. doi:10.1002/jbm.a.30234.
[44] Katti KS, Katti DR, Shirwaiker RA, et al. A review of hydroxyapatite-based composite materials for bone tissue engineering. J Biomed Mater Res A. 2008;85(1):22-31. doi:10.1002/jbm.a.31430.
[45] Zhang Z, Shen J, Shi X, et al. Hydroxyapatite-based composite materials for biomedical applications. J Mater Sci Mater Med. 2006;17(11):1031-44. doi:10.1007/s10856-006-0253-2.
[46] Kim HW, Lee KB, Kim HJ, et al. Hydroxyapatite-coated porous titanium for enhanced bone growth and biocompatibility. Biomaterials. 2006;27(27):4693-705. doi:10.1016/j.biomaterials.2006.04.005.
[47] Yang J, Pan X, He X, et al. Hydroxyapatite nanoparticles: Synthesis, properties, and biomedical applications. J Mater Sci Mater Med. 2014;25(2):281-92. doi:10.1007/s10856-013-5073-5.
[48] Bohner M, Lemaitre J. Calcium phosphate bone graft substitutes: A review of current knowledge. J Biomater Appl. 2009;24(5):369-42. doi:10.1177/0885328209341698.
[49] Liu Y, Wang Z, Li Y, et al. Structural and biological properties of hydroxyapatite for bone tissue engineering applications. Mater Sci Eng C. 2013;33(6):2778-86. doi:10.1016/j.msec.2013.02.021.
[50] Hynes RO. The extracellular matrix: Not just pretty fibrils. Science. 2009;326(5957):1216-9. doi:10.1126/science.1176009.
[51] Gillan L, Dobson J, Wallis T, et al. The extracellular matrix in tissue engineering and regenerative medicine. Biomaterials. 2007;28(23):3581-96. doi:10.1016/j.biomaterials.2007.05.001.
[52] Hynes RO. Cell-matrix adhesion and its implications in vascular biology. J Thromb Haemost. 2012;10(1):4-13. doi:10.1111/j.1538-7836.2011.04606.x.
[53] Lu P, Takai K, Weaver VM, et al. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol. 2011;3(12). doi:10.1101/cshperspect.a005058.
[54] Mouw JK, Ou G, Weaver VM. Extracellular matrix assembly: A multiscale deconstruction. Nat Rev Mol Cell Biol. 2014;15(12):771-85. doi:10.1038/nrm3887.
[55] Schaefer L, Schaefer RM. Proteoglycans: From structural components to signaling molecules. Cell Tissue Res. 2010;339(1):237-46. doi:10.1007/s00441-009-0852-8.
[56] Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195-200. doi:10.1242/jcs.023820.
[57] Löffek S, Schilling O, Franzke CW. Series “Matrix Biology” review article: Role of matrix metalloproteinases in extracellular matrix maintenance. Matrix Biol. 2011;30(5):429-40. doi:10.1016/j.matbio.2011.05.001.
[58] Zhang H, Li W, Sun H. Stem cell-based therapies for ligament repair and regeneration. Stem Cells Int. 2021;2021:5579642. doi:10.1155/2021/5579642.
[59] Lee J, Wang H, Kim Y. Regenerative medicine strategies for ligament injuries: Current status and future directions. Biotechnol Adv. 2021;50:107817. doi:10.1016/j.biotechadv.2021.107817.
[60] Xu Y, Zhang J, Wu Y. Biomechanical approaches in ligament tissue engineering: A review. J Biomech. 2020;105:109740. doi:10.1016/j.jbiomech.2020.109740.
[61] Lu W, Wang J, Yang J. Integration of bioactive molecules in scaffolds for ligament regeneration. J Biomed Mater Res A. 2020;108(9):1870-83. doi:10.1002/jbm.a.36808.
[62] Li X, Liu X, Xu J. Advances in bioengineering strategies for ligament repair and regeneration. Adv Healthc Mater. 2021;10(1):2001331. doi:10.1002/adhm.202001331.
[63] He X, Yang X, Li J. Novel approaches for ligament reconstruction: From material to clinical application. Front Bioeng Biotechnol. 2021;9:672575. doi:10.3389/fbioe.2021.672575.
[64] Gohil S, Bakhshandeh B, Wagner DR. A review of the biomechanical properties of ligaments and their repair: A focus on the anterior cruciate ligament. J Biomech. 2021;124:110528. doi:10.1016/j.jbiomech.2021.110528.
[65] Mistry K, Patel S, Liu Y. Recent developments in ligament tissue engineering and regenerative strategies. J Tissue Eng Regen Med. 2020;14(8):1141-55. doi:10.1002/term.2950.
[66] Liu X, Zhang H, Yang X. Design and characterization of biofunctional scaffolds for ligament and tendon repair. Biomed Mater. 2020;15(3):035005. doi:10.1088/1748-605X/ab7d63.
[67] Zhang J, Gao Y, Yang Z. Decellularized ligament scaffolds for tissue engineering applications: Current progress and future directions. Biomaterials. 2022;282:121369. doi:10.1016/j.biomaterials.2021.121369.
[68] Chen L, Zhang Y, Liu Z. Advances in scaffold design for ligament regeneration: Materials, fabrication, and applications. Biotechnol Adv. 2021;49:107765. doi:10.1016/j.biotechadv.2021.107765.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93932-
dc.description.abstract韌帶是連接骨骼與骨骼的緻密纖維結締組織,其損傷在骨科中相當常見,由於韌帶組織的內在癒合能力有限,因此帶來了重大挑戰。目前韌帶修復和再生的臨床方法受限於標準的自體移植和異體移植,這兩種技術都有其本身的缺點,限制了其在臨床上的成功,因此需要開發新的策略解決當前韌帶移植問題。
本研究旨在探索將氫氧基磷灰石(Hydroxyapatite, HA)、肌腱胞外基質(Tendon-derived extracellular matrix, T-ECM)和蠶絲蛋白(Silk fibroin, SF)靜電紡絲支架結合應用於韌帶組織工程的可行性及其潛在效應;靜電紡絲法製備的蠶絲蛋白支架於SEM觀察顯示出均勻的纖維排列高度多孔的結構,這種結構有助於支持細胞的附著和生長,支架的孔隙率和孔徑分佈適合韌帶細胞的穿透和新組織的形成。XRD數據顯示HA微粒在支架中的鈣(Ca)與磷(P)分佈均勻,並由拉伸試驗數據顯示能夠提升支架的機械強度和生物活性。細胞實驗(in vitro)顯示,複合支架材料能有效促進韌帶細胞的黏附、增殖和分化,並表現出良好的生物相容性,MTT細胞存活率分析未觀察到顯著的毒性反應或細胞壞死。動物實驗(in vivo)進行了大鼠前十字韌帶損傷模型的體內試驗,結果顯示植入複合支架後,能夠有效促進韌帶的組織修復和再生,H&E組織學觀察顯示,修復後的韌帶組織結構緊密,類似於正常韌帶組織,並且未觀察到明顯的發炎或排斥反應。
綜合以上結果,本研究表明氫氧基磷灰石(HA)、肌腱胞外基質(T-ECM)和蠶絲蛋白(SF)靜電紡絲支架的組合在韌帶組織工程中具有潛力。這些支架材料不僅能夠提供適當的物理支持和生物訊號促進韌帶的再生,還能夠保持良好的生物相容性和組織相容性;未來的研究將進一步探索支架在長期應用中的穩定性和效果,並評估其在臨床應用中的實際效益和安全性。
zh_TW
dc.description.abstractInjuries to ligaments, the dense fibrous connective tissue that connects bone to bone, are common in orthopedics and present significant challenges due to the limited inherent healing capacity of ligamentous tissue. Current clinical methods for ligament repair and regeneration are limited to autografts and allografts as standard. Both technologies have their own shortcomings that limit their clinical success. Therefore, new strategies need to be developed to solve current ligament transplantation problems.
This study aims to explore the feasibility and potential effects of combining hydroxyapatite (HA), tendon-derived extracellular matrix (T-ECM) and silk fibroin (SF) electrospun scaffolds for ligament tissue engineering; electrostatic SEM observation of the silk protein scaffold prepared by spinning method shows uniform fiber arrangement and highly porous structure. This structure helps to support the attachment and growth of cells. The porosity and pore size distribution of the scaffold are suitable for the penetration and penetration of ligament cells. Formation of new organizations. XRD data showed that the Ca and P of HA particles were evenly distributed in the scaffold, and tensile test data showed that HA particles could improve the mechanical strength and biological activity of the scaffold. In vitro cell experiments showed that the composite scaffold material could effectively promote the adhesion, proliferation and differentiation of ligament cells, and showed good biocompatibility. No significant toxic reaction or cell necrosis was observed in MTT assay. Animal experiments were conducted on Wistar rats’ ligament injury models, and the results showed that implantation of composite scaffolds can effectively promote tissue repair and regeneration of ligaments. H&E histological observation showed that the repaired ligament tissue structure was tight and similar to normal ligament tissue, and no obvious inflammatory reaction or rejection reaction was observed.
Taking the above results together, this study demonstrates that the combination of hydroxyapatite, tendon extracellular matrix, and fibroin electrospun scaffolds has potential in ligament tissue engineering. These scaffold materials can not only provide appropriate physical support and biological signals to promote ligament regeneration, but also maintain good biocompatibility and tissue compatibility. Future studies will further explore the stability and effectiveness of the stent in long-term application and evaluate its actual benefit and safety in clinical application.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:30:16Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:30:16Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents口試委員會審定書……………………………………………………………i
謝辭……………………………………………………………………………………ii
中文摘要…………………………………………………………………………iii
英文摘要…..……………………………………………………………………iv
目次…………………………………………………………………………………vi
圖次……………………………………………………………………………………x
表次…………………………………………………………………………………xi
第一章 緒論…………………………………………………………………………1
1.1 韌帶組織 (Ligament Tissue) ………………………1
1.1.1 韌帶的結構與功能………………………………………………………1
1.1.2 韌帶分布與關節橫切面…………………………………………………2
1.1.3 韌帶撕裂與斷裂之治療………………………………………………4
1.2 韌帶組織工程 (Ligament Tissue Engineering) ………………………………5
1.3 靜電紡絲法 (Electrospinning) ………………………………………………7
1.4 蠶絲蛋白 (Silk Fibroin) ……………………………………………………9
1.5 氫氧基磷灰石(Hydroxyapatite) ………………………………………………12
1.6 細胞外基質(Extracellular matrix, ECM) ……………………………………14
1.7 韌帶組織工程之近年發展……………………………………………………16
第二章 研究動機與目的……………………………………………………………17
第三章 材料與方法 ………………………………………………………………19
3.1 實驗藥品………………………………………………………………………19
3.2 實驗儀器………………………………………………………………………22
3.3 萃取蠶絲蛋白…………………………………………………………………23
3.3.1 準備溶液…………………………………………………………………23
3.3.2 蠶繭脫膠…………………………………………………………………23
3.4 萃取肌腱組織之細胞外基質(T-ECM) ………………………………………25
3.4.1 準備溶液…………………………………………………………………25
3.4.2 萃取步驟…………………………………………………………………25
3.5 靜電紡絲………………………………………………………………………26
3.5.1 靜電紡絲機設備之架設…………………………………………………26
3.5.2 製備蠶絲電紡溶液………………………………………………………26
3.6 製備蠶絲蛋白支架(SF) ………………………………………………………26
3.7 製備蠶絲蛋白/肌腱細胞外基質支架(SF/T-ECM) …………………………27
3.7.1 準備溶液…………………………………………………………………27
3.7.2 製備步驟…………………………………………………………………27
3.8 製備蠶絲蛋白/氫氧基磷灰石/肌腱細胞外基質支架(SF/HA/T-ECM) ……28
3.8.1 準備溶液…………………………………………………………………28
3.8.2 製備步驟…………………………………………………………………28
3.9 膠原蛋白(Collagen)含量測試…………………………………………………29
3.9.1 準備羥脯胺酸含量分析 (Hydroxyproline assay) 標準溶液……………30
3.9.2 實驗流程…………………………………………………………………31
3.10 GAG 含量測試……………………………………………………………32
3.10.1 準備溶液…………………………………………………………………32
3.10.2 實驗步驟…………………………………………………………………32
3.11 X光結晶繞射分析(XRD) …………………………………………………33
3.12 韌帶細胞之初代培養…………………………………………………………34
3.13 材料滅菌及細胞培養…………………………………………………………35
3.13.1 材料滅菌…………………………………………………………………35
3.13.2 細胞培養………………………………………………………………35
3.14 掃描式電子顯微鏡(SEM)觀察支架表層細胞型態………………………36
3.14.1 準備溶液………………………………………………………………36
3.14.2固定並乾燥細胞…………………………………………………………36
3.15 MTT 細胞存活率分析………………………………………………………36
3.15.1 準備溶液…………………………………………………………36
3.15.2 實驗步驟…………………………………………………………………36
3.16 動物實驗…………………………………………………………………37
3.16.1 實驗動物…………………………………………………………………37
3.16.2 準備溶液…………………………………………………………………37
3.16.3 實驗步驟…………………………………………………………………37
3.17 H&E Stain評估組織病理表現…………………………………………………38
3.17.1 準備溶液…………………………………………………………………38
3.17.2 石蠟切片…………………………………………………………………38
3.17.3 染色步驟…………………………………………………………………39
第四章 研究結果與討論 …………………………………………………………40
4.1 蠶絲蛋白支架與孔隙度之分析………………………………………………40
4.2 電子顯微鏡(SEM)結構觀察分析……………………………………………41
4.3 X光結晶繞射(XRD)分析……………………………………………………44
4.4 Tensile test拉伸試驗…………………………………………………………46
4.5 MTT細胞增生率分析………………………………………………………48
4.6 Collagen細胞分泌量分析……………………………………………………50
4.7 GAG 含量分析………………………………………………………………52
4.8 動物實驗 (H&E stain 組織病理學分析) …………………………………54
第五章 結論…………………………………………………………………………57
參考文獻………………………………………………………………………………58
-
dc.language.isozh_TW-
dc.title氫氧基磷灰石/肌腱胞外基質與蠶絲蛋白靜電紡絲支架於韌帶組織工程上之應用zh_TW
dc.titleApplication of Hydroxyapatite/Tendon-Derived Extracellular Matrix/Silk Fibroin Electrospinning Scaffold for Ligament Tissue Engineeringen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee黃意真;施博仁zh_TW
dc.contributor.oralexamcommitteeYi-Cheng Huang;Po-Jen Shihen
dc.subject.keyword韌帶組織工程,靜電紡絲法,蠶絲蛋白,氫氧基磷灰石,細胞外基質,zh_TW
dc.subject.keywordLigament tissue engineering,Electrospinning,Silk fibroin,Hydroxyapatite,Extracellular matrix,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU202403136-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-07-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
dc.date.embargo-lift2029-07-30-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  目前未授權公開取用
22.04 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved