請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93921完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 崔茂培 | zh_TW |
| dc.contributor.advisor | Mao-Pei Tsui | en |
| dc.contributor.author | 游人樺 | zh_TW |
| dc.contributor.author | Ren-Hua You | en |
| dc.date.accessioned | 2024-08-09T16:26:23Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | T. Ando. Concavity of certain maps on positive definite matrices and applications to hadamard products. Linear Algebra and its Applications, 26:203 – 241, 1979.
H. J. Brascamp and E. H. Lieb. Best constants in young’s inequality, its converse, and its generalization to more than three functions. Advances in Mathematics, 20(2):151 – 173, 1976. E. Carlen. Trace inequalities and quantum entropy: an introductory course. Entropy and the quantum, 529:73 – 140, 2010. E. A. Carlen and D. Cordero–Erausquin. Subadditivity of the entropy and its relation to brascamp–lieb type inequalities. Geometric and Functional Analysis, 19:373 – 405, 2009. E. A. Carlen and E. H. Lieb. A minkowski type trace inequality and strong subadditivity of quantum entropy. American Mathematical Society Translations, 189(2):59 – 69, 1999. E. A. Carlen and E. H. Lieb. Brascamp-lieb inequalities for non-commutative integration. Documenta Mathematica, 13:553 – 584, 2008. E. A. Carlen and E. H. Lieb. A minkowski type trace inequality and strong subadditivity of quantum entropy ii: Convexity and concavity. Letters in Mathematical Physics, 83:107 – 126, 2008. C. Davis. A schwarz inequality for convex operator functions. Proceedings of the American Mathematical Society, 8(1):42 – 44, 1957. C. Davis. Various averaging operations onto subalgebras. Illinois J. Math, 3:528 – 553, 1959. C. Davis. Notions generalizing convexity for functions defined on spaces of matrices, in convexity. Proceedings of Symposia in Pure Mathematics, 7:187 – 201, 1963. J. Dixmier. Formes linéaires sur un anneau d'opérateurs. Bulletin de la Société Mathématique de France, 81:9 – 39, 1953. H. Epstein. Remarks on two theorems of e. lieb. Communications in Mathematical Physics, 31:317 – 325, 1973. S. Golden. Lower bounds for the helmholtz function. Physical Review, 137(4B):B1127, 1965. F. Hansen. The wigner-yanase entropy is not subadditive. Journal of Statistical Physics, 126:643 – 648, 2007. G. H. Hardy, J. E. Littlewood, and G. Pólya. INEQUALITIES. Cambridge University Press, 1952. E. Heinz. Beiträge zur störungstheorie der spektralzerlegung. Mathematische Annalen, 123:415 – 438, 1951. F. Hiai. Concavity of certain matrix trace functions. Taiwanese Journal of Mathematics, 5(3):535 – 554, 2001. T. Kato. Notes on some inequalities for linear operators. Mathematische Annalen, 125:208 – 212, 1952. E. H. Lieb. Convex trace functions and the wigner-yanase-dyson conjecture. Advances in Mathematics, 11(3):267 – 288, 1973. E. H. Lieb. Some convexity and subadditivity properties of entropy. Bull. Amer. Math. Soc., 81(1):1 – 13, 1975. E. H. Lieb and M. B. Ruskai. Proof of the strong subadditivity of quantum‐mechanical entropy. J. Math. Phys., 14:1938 – 1941, 1973. E. H. Lieb and M. B. Ruskai. Some operator inequalities of the schwarz type. Advances in Mathematics, 12(2):269 – 273, 1974. E. H. Lieb and W. E. Thirring. Inequalities for the Moments of the Eigenvalues of the Schrödinger Hamiltonian and Their Relation to Sobolev Inequalities, pages 269 – 304. Princeton University Press, 1976. E. Nelson. Notes on non-commutative integration. Journal of Functional Analysis, 15(2):103 – 116, 1974. D. Petz. A variational expression for the relative entropy. Communications in Mathematical Physics, 114:345 – 349, 1988. D. W. Robinson and D. Ruelle. Mean entropy of states in classical statistical mechanics. Communications in Mathematical Physics, 5:288 – 300, 1967. R. T. Rockafellar. Conjugate duality and optimization, volume 16. Society for Industrial and Applied Mathematics, 1974. M. B. Ruskai. Inequalities for quantum entropy: A review with conditions for equality. J. Math. Phys., 43:4388 – 4375, 2002. I. E. Segal. A non-commutative extension of abstract integration. Annals of Mathematics, 57:401 – 457, 1953. I. E. Segal. Tensor algebras over hilbert spaces ii. Annals of Mathematics, 63(1):160 – 175, 1956. I. E. Segal. Algebraic integration theory. Bull. Amer. Math. Soc., 71:419 – 489, 1965. B. Simon. Trace Ideals and Their Applications, Second Edition. American Mathematical Society, 2005. W. Thirring. A Course in Mathematical Physics Volume 4: Quantum Mechanics of Large Systems. Springer Vienna, 1983. C. J. Thompson. Inequality with applications in statistical mechanics. J. Math. Phys., 6:1812 – 1813, 1965. A. Uhlmann. Sätze über dichtematrizen. Wiss. Z. Karl-Marx Univ. Leipzig, 20:633 – 653, 1971. A. Uhlmann. Relative entropy and the wigner-yanase-dyson-lieb concavity in an interpolation theory. Communications in Mathematical Physics, 54:21 – 32, 1977. H. Umegaki. Conditional expectation in an operator algebra, i. Tohoku Math. J., 6:177 – 181, 1954. J. von Neumann. Zur algebra der funktionaloperationen und theorie der normalen operatoren. Mathematische Annalen, 102:370 – 427, 1930. E. P. Wigner and M. M. Yanase. Information contents of distributions. Proceedings of the National Academy of Sciences of the United States of America, 49:910 – 918, 1963. E. P. Wigner and M. M. Yanase. On the positive semidefinite nature of a certain matrix expression. Canadian Journal of Mathematics, 16:397 – 406, 1964. W. H. Young. On the multiplication of successions of fourier constants. Proceedings of the Royal Society of London, 87(596):331 – 339, 1912. W. H. Young. Sur la généralization du théorem̀e du parseval. Comptes rendus, 155:30 – 33, 1912. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93921 | - |
| dc.description.abstract | 量子理論是當今最重要的領域之一。其中,von Neumann熵為特定量子系統的不確定性提供了一種度量,其被定義為 S(rho) = -tr(f(rho)),rho為量子系統上的密度矩陣,f(x)=x log x。人們發現熵具有數個性質,例如凹凸性和某種單調性等。我們將證明相關的跡不等式後,在一般情況下找出某些也具有這些性質的函數 f: R to R 。
我們將介紹運算子單調性以及運算子的(聯合)凹凸性,同時介紹子系統(它們是ast子代數)上的條件期望值與張量積,以及它們之間的關係。然後,我們將探討具有更多變量的運算子的跡相關函數的單調性和凹凸性。我們將定義矩陣的L_p範數,並用刻畫數個矩陣範數相關函數的性質。最後,我們將證明熵的次可加性和強次可加性,推廣到非交換代數,並以此證明其上的廣義楊氏不等式。 此篇探討主要參考Eric Carlen的論文,並以鄭皓中教授提出的相關猜想的討論作為結尾。 | zh_TW |
| dc.description.abstract | Quantum theory has been one of the most important fields these days. Most of all, the von Neumann entropy gives a measurement to the uncertainty of a specific quantum system, which is defined as S(rho) = -tr(f(rho)) where f(x) = x log x for density matrices ``rho'' on the quantum system. It has been discovered that the entropy has several propositions, such as concavity a specific kind of monotonicity, etc. We state and proof several related trace inequalities and find out which functions f: R to R have the former properties in general.
We introduce the operator monotonocity and operator (joint) concavity for several functions; also, we introduce the conditional expectation and tensor products on subsystems, which are ast-subalgebras, and the relation between them. After that, we discover the monotonicity and concavity for trace associated functions on operators with more variables. Moreover, we deifine the L_p norm for matrices and characterize several functions related with the matrix norm. Last, we give proof to the subadditivity and strong subadditivity for the entropy, generalize to non-commutative algebras, and prove the generalized Young's Inequality on them. We mainly follows the essay of Eric Carlen, and ended with the discussion on a related conjecture which has been announced by Professor Hau-Chung Cheng. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:26:23Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:26:23Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員審定書 i
致謝 iii 摘要 v Abstract vii Contents ix List of Figures xiii Chapter 1 Introduction 1 1.1 Background 1 1.2 Some Techniques 2 1.2.1 Partial Order of Hermitian Matrices 2 1.2.2 Trace 3 1.2.3 Entropy 3 1.2.4 Relative Entropy 4 Chapter 2 Proposition of Operator Functions 5 2.1 Operator Monotonicity and Convexity 5 2.2 Monotonicity and Convexity for Trace functions 11 2.3 Some Inequalities about Trace 13 Chapter 3 Joint Convexity of Operator functions 19 3.1 Joint Convexity of (X, Y ) 7 → Y ∗X−1Y 20 3.2 Joint Concavity of Harmonic Mean of Matrices 21 3.3 Joint Concavity of Geometric Mean of Matrices 24 3.4 The Arithmetic-Geometric-Harmonic Mean Inequality for Matrices 26 Chapter 4 Projections onto star-subalgebras and convexity inequalities 29 4.1 Some examples 29 4.2 Double Commutant Theorem and its application 31 4.3 Conditional Expectation 36 Chapter 5 Tensor products 47 5.1 Definitions on Vector spaces 47 5.2 Tensor on Inner Product spaces 50 5.3 Tensor product for matrices 52 5.4 Partial Trace 54 5.5 Ando’s Identity 60 Chapter 6 Lieb’s Concavity Theorem and related results 63 6.1 Proof for the main Theorems 63 6.2 Propositions of the Relative Entropy 66 6.3 Subadditivity and Strong Subadditivity of the Entropy 68 Chapter 7 Lp Norms for Matrices and Entropy Inequalities 73 7.1 Lp Norms of a Matrix 73 7.2 Properties of the map Υp,q 76 7.3 Applications of the Convexity of the map Υp,q 80 Chapter 8 The Generalized Young’s Inequality 87 8.1 From Young’s Inequality on Euclidean Space 87 8.2 Generalized Young’s Inequality for Non-commutative Integration 88 8.3 Generalized Young’s Inequality on Tensor Product Spaces 89 8.4 Subadditivity of Entropy and Generalized Young’s Inequality on Tensor Product Spaces 91 Chapter 9 A Related Conjecture 97 9.1 Introduction to the Conjecture 97 9.2 The Commutative Case 98 9.3 A Special Case for Non-commutative Matrices 99 References 107 | - |
| dc.language.iso | en | - |
| dc.subject | 跡不等式 | zh_TW |
| dc.subject | 量子 | zh_TW |
| dc.subject | 熵 | zh_TW |
| dc.subject | Eric Carlen | zh_TW |
| dc.subject | Entorpy | en |
| dc.subject | Trace Inequality | en |
| dc.subject | Quantum | en |
| dc.subject | Eric Carlen | en |
| dc.title | 跡不等式與量子熵相關問題之探討 | zh_TW |
| dc.title | A survey on the Trace Inequalities and Quantum Entropy with Related Problems | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 蔡忠潤;楊鈞澔 | zh_TW |
| dc.contributor.oralexamcommittee | Chung-Jun Tsai;Chun-Hao Yang | en |
| dc.subject.keyword | 跡不等式,量子,熵,Eric Carlen, | zh_TW |
| dc.subject.keyword | Trace Inequality,Quantum,Entorpy,Eric Carlen, | en |
| dc.relation.page | 110 | - |
| dc.identifier.doi | 10.6342/NTU202402673 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 數學系 | - |
| 顯示於系所單位: | 數學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 4.6 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
