Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93917
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor王立義zh_TW
dc.contributor.advisorLeeyih Wangen
dc.contributor.author曾愷威zh_TW
dc.contributor.authorKai-Wei Tsengen
dc.date.accessioned2024-08-09T16:24:54Z-
dc.date.available2024-08-10-
dc.date.copyright2024-08-09-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citation(1) Kannan, N.; Vakeesan, D. Solar energy for future world: - A review. Renewable and Sustainable Energy Reviews 2016, 62, 1092-1105. DOI: https://doi.org/10.1016/j.rser.2016.05.022.
(2) 太陽光模擬器基礎原理. https://www.slideshare.net/slideshow/ss-112377765/112377765 (accessed 2024 June 16).
(3) 太陽電池量測技術. https://www.materialsnet.com.tw/docview.aspx?id=7004 (accessed 2024 June 18).
(4) 太陽能電池. https://zh.wikipedia.org/zh-tw/%E5%A4%AA%E9%98%B3%E8%83%BD%E7%94%B5%E6%B1%A0 (accessed 2024 June 18).
(5) NREL updates interactive chart of solar cell efficiency. https://www.pv-magazine.com/2024/04/24/nrel-updates-interactive-chart-of-solar-cell-efficiency-2/ (accessed 2024 June 18).
(6) Introduction to I−V Curves. https://cran.r-project.org/web/packages/ddiv/vignettes/IVcurve.html (accessed 2024 June 18).
(7) Printz, A. D.; Lipomi, D. J. Competition between deformability and charge transport in semiconducting polymers for flexible and stretchable electronics. Applied Physics Reviews 2016, 3 (2).
(8) Cubas, J.; Pindado, S.; De Manuel, C. Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function. Energies 2014, 7 (7), 4098-4115. DOI: 10.3390/en7074098.
(9) Potscavage, W. J., Jr.; Sharma, A.; Kippelen, B. Critical Interfaces in Organic Solar Cells and Their Influence on the Open-Circuit Voltage. Accounts of Chemical Research 2009, 42 (11), 1758-1767. DOI: 10.1021/ar900139v.
(10) Guo, Z.; Jena, A. K.; Kim, G. M.; Miyasaka, T. The high open-circuit voltage of perovskite solar cells: a review. Energy & Environmental Science 2022, 15 (8), 3171-3222, 10.1039/D2EE00663D. DOI: 10.1039/D2EE00663D.
(11) Chen, P.; Bai, Y.; Wang, L. Minimizing Voltage Losses in Perovskite Solar Cells. Small Structures 2021, 2 (1), 2000050. DOI: https://doi.org/10.1002/sstr.202000050 (acccessed 2024/06/18).
(12) 材料界的新星 – 鈣鈦礦材料. https://enews.cgu.edu.tw/p/405-1043-91666,c13270.php?Lang=zh-tw (accessed 2024 June 18).
(13) Solar-Driven Green Hydrogen Generation and Storage; 2023.
(14) Park, N.-G. Perovskite solar cells: an emerging photovoltaic technology. Materials Today 2015, 18 (2), 65-72. DOI: https://doi.org/10.1016/j.mattod.2014.07.007.
(15) Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. New tolerance factor to predict the stability of perovskite oxides and halides. Science Advances 5 (2), eaav0693. DOI: 10.1126/sciadv.aav0693 (acccessed 2024/06/18).
(16) Li, Z.; Yang, M.; Park, J.-S.; Wei, S.-H.; Berry, J. J.; Zhu, K. Stabilizing Perovskite Structures by Tuning Tolerance Factor: Formation of Formamidinium and Cesium Lead Iodide Solid-State Alloys. Chemistry of Materials 2016, 28 (1), 284-292. DOI: 10.1021/acs.chemmater.5b04107.
(17) Xiao, Z.; Yan, Y. Progress in Theoretical Study of Metal Halide Perovskite Solar Cell Materials. Advanced Energy Materials 2017, 7 (22), 1701136. DOI: https://doi.org/10.1002/aenm.201701136 (acccessed 2024/06/18).
(18) Travis, W.; Glover, E. N. K.; Bronstein, H.; Scanlon, D. O.; Palgrave, R. G. On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system. Chemical Science 2016, 7 (7), 4548-4556, 10.1039/C5SC04845A. DOI: 10.1039/C5SC04845A.
(19) Niu, G.; Guo, X.; Wang, L. Review of recent progress in chemical stability of perovskite solar cells. Journal of Materials Chemistry A 2015, 3 (17), 8970-8980, 10.1039/C4TA04994B. DOI: 10.1039/C4TA04994B.
(20) Christians, J. A.; Miranda Herrera, P. A.; Kamat, P. V. Transformation of the Excited State and Photovoltaic Efficiency of CH3NH3PbI3 Perovskite upon Controlled Exposure to Humidified Air. Journal of the American Chemical Society 2015, 137 (4), 1530-1538. DOI: 10.1021/ja511132a.
(21) Yang, J.; Siempelkamp, B. D.; Liu, D.; Kelly, T. L. Investigation of CH3NH3PbI3 Degradation Rates and Mechanisms in Controlled Humidity Environments Using in Situ Techniques. ACS Nano 2015, 9 (2), 1955-1963. DOI: 10.1021/nn506864k.
(22) Niu, G.; Li, W.; Meng, F.; Wang, L.; Dong, H.; Qiu, Y. Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. Journal of Materials Chemistry A 2014, 2 (3), 705-710, 10.1039/C3TA13606J. DOI: 10.1039/C3TA13606J.
(23) Kim, S.; Bae, S.; Lee, S.-W.; Cho, K.; Lee, K. D.; Kim, H.; Park, S.; Kwon, G.; Ahn, S.-W.; Lee, H.-M.; Kang, Y.; Lee, H.-S.; Kim, D. Relationship between ion migration and interfacial degradation of CH3NH3PbI3 perovskite solar cells under thermal conditions. Scientific Reports 2017, 7 (1), 1200. DOI: 10.1038/s41598-017-00866-6.
(24) Krishna, A.; Gottis, S.; Nazeeruddin, M. K.; Sauvage, F. Mixed Dimensional 2D/3D Hybrid Perovskite Absorbers: The Future of Perovskite Solar Cells? Advanced Functional Materials 2019, 29 (8), 1806482. DOI: https://doi.org/10.1002/adfm.201806482 (acccessed 2024/06/18).
(25) Saliba, M.; Matsui, T.; Seo, J.-Y.; Domanski, K.; Correa-Baena, J.-P.; Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt, A.; Grätzel, M. Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy & Environmental Science 2016, 9 (6), 1989-1997, 10.1039/C5EE03874J. DOI: 10.1039/C5EE03874J.
(26) Saliba, M.; Matsui, T.; Domanski, K.; Seo, J.-Y.; Ummadisingu, A.; Zakeeruddin, S. M.; Correa-Baena, J.-P.; Tress, W. R.; Abate, A.; Hagfeldt, A.; Grätzel, M. Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 2016, 354 (6309), 206-209. DOI: 10.1126/science.aah5557 (acccessed 2024/06/18).
(27) Goldschmidt, V. M. Die Gesetze der Krystallochemie. Naturwissenschaften 1926, 14 (21), 477-485. DOI: 10.1007/BF01507527.
(28) Gai, C.; Wang, J.; Wang, Y.; Li, J. The Low-Dimensional Three-Dimensional Tin Halide Perovskite: Film Characterization and Device Performance. In Energies, 2020; Vol. 13.
(29) Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. A Layered Hybrid Perovskite Solar-Cell Absorber with Enhanced Moisture Stability. Angewandte Chemie International Edition 2014, 53 (42), 11232-11235. DOI: https://doi.org/10.1002/anie.201406466 (acccessed 2024/06/18).
(30) Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells. Nano Letters 2013, 13 (4), 1764-1769. DOI: 10.1021/nl400349b.
(31) Yang, W. S.; Noh, J. H.; Jeon, N. J.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348 (6240), 1234-1237. DOI: 10.1126/science.aaa9272 (acccessed 2024/06/18).
(32) Pellet, N.; Gao, P.; Gregori, G.; Yang, T.-Y.; Nazeeruddin, M. K.; Maier, J.; Grätzel, M. Mixed-Organic-Cation Perovskite Photovoltaics for Enhanced Solar-Light Harvesting. Angewandte Chemie International Edition 2014, 53 (12), 3151-3157. DOI: https://doi.org/10.1002/anie.201309361 (acccessed 2024/06/18).
(33) Ogomi, Y.; Morita, A.; Tsukamoto, S.; Saitho, T.; Fujikawa, N.; Shen, Q.; Toyoda, T.; Yoshino, K.; Pandey, S. S.; Ma, T.; Hayase, S. CH3NH3SnxPb(1–x)I3 Perovskite Solar Cells Covering up to 1060 nm. The Journal of Physical Chemistry Letters 2014, 5 (6), 1004-1011. DOI: 10.1021/jz5002117.
(34) Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters 2015, 15 (6), 3692-3696. DOI: 10.1021/nl5048779.
(35) Li, J.; Han, Z.; Gu, Y.; Yu, D.; Liu, J.; Hu, D.; Xu, X.; Zeng, H. Perovskite Single Crystals: Synthesis, Optoelectronic Properties, and Application. Advanced Functional Materials 2021, 31 (11), 2008684. DOI: https://doi.org/10.1002/adfm.202008684 (acccessed 2024/06/18).
(36) Saliba, M.; Correa-Baena, J.-P.; Grätzel, M.; Hagfeldt, A.; Abate, A. Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angewandte Chemie International Edition 2018, 57 (10), 2554-2569. DOI: https://doi.org/10.1002/anie.201703226 (acccessed 2024/06/18).
(37) Jung, H. S.; Park, N.-G. Perovskite Solar Cells: From Materials to Devices. Small 2015, 11 (1), 10-25. DOI: https://doi.org/10.1002/smll.201402767 (acccessed 2024/06/18).
(38) Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 2009, 131 (17), 6050-6051. DOI: 10.1021/ja809598r.
(39) Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E.; Gratzel, M.; Park, N. G. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci Rep 2012, 2, 591. DOI: 10.1038/srep00591 From NLM Medline.
(40) Heo, J. H.; Im, S. H.; Noh, J. H.; Mandal, T. N.; Lim, C.-S.; Chang, J. A.; Lee, Y. H.; Kim, H.-j.; Sarkar, A.; Nazeeruddin, M. K.; Grätzel, M.; Seok, S. I. Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nature Photonics 2013, 7 (6), 486-491. DOI: 10.1038/nphoton.2013.80.
(41) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 2012, 338 (6107), 643-647. DOI: 10.1126/science.1228604 (acccessed 2024/06/18).
(42) Liu, M.; Johnston, M. B.; Snaith, H. J. Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 2013, 501 (7467), 395-398. DOI: 10.1038/nature12509.
(43) Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nature Materials 2014, 13 (9), 897-903. DOI: 10.1038/nmat4014.
(44) Im, J.-H.; Kim, H.-S.; Park, N.-G. Morphology-photovoltaic property correlation in perovskite solar cells: One-step versus two-step deposition of CH3NH3PbI3. APL Materials 2014, 2 (8), 081510. DOI: 10.1063/1.4891275 (acccessed 6/18/2024).
(45) Li, M.; Xie, Y.-M.; Xu, X.; Huo, Y.; Tsang, S.-W.; Yang, Q.-D.; Cheng, Y. Comparison of processing windows and electronic properties between CH3NH3PbI3 perovskite fabricated by one-step and two-step solution processes. Organic Electronics 2018, 63, 159-165. DOI: https://doi.org/10.1016/j.orgel.2018.09.011.
(46) Jeon, Y.-J.; Lee, S.; Kang, R.; Kim, J.-E.; Yeo, J.-S.; Lee, S.-H.; Kim, S.-S.; Yun, J.-M.; Kim, D.-Y. Planar heterojunction perovskite solar cells with superior reproducibility. Scientific Reports 2014, 4 (1), 6953. DOI: 10.1038/srep06953.
(47) Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.-L.; Mohite, A. D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347 (6221), 522-525. DOI: 10.1126/science.aaa0472 (acccessed 2024/06/18).
(48) Taylor, A. D.; Sun, Q.; Goetz, K. P.; An, Q.; Schramm, T.; Hofstetter, Y.; Litterst, M.; Paulus, F.; Vaynzof, Y. A general approach to high-efficiency perovskite solar cells by any antisolvent. Nature Communications 2021, 12 (1), 1878. DOI: 10.1038/s41467-021-22049-8.
(49) Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Retarding the crystallization of PbI2 for highly reproducible planar-structured perovskite solar cells via sequential deposition. Energy & Environmental Science 2014, 7 (9), 2934-2938, 10.1039/C4EE01624F. DOI: 10.1039/C4EE01624F.
(50) Zhang, H.; Mao, J.; He, H.; Zhang, D.; Zhu, H. L.; Xie, F.; Wong, K. S.; Grätzel, M.; Choy, W. C. H. A Smooth CH3NH3PbI3 Film via a New Approach for Forming the PbI2 Nanostructure Together with Strategically High CH3NH3I Concentration for High Efficient Planar-Heterojunction Solar Cells. Advanced Energy Materials 2015, 5 (23), 1501354. DOI: https://doi.org/10.1002/aenm.201501354 (acccessed 2024/06/18).
(51) Yi, C.; Li, X.; Luo, J.; Zakeeruddin, S. M.; Grätzel, M. Perovskite Photovoltaics with Outstanding Performance Produced by Chemical Conversion of Bilayer Mesostructured Lead Halide/TiO2 Films. Advanced Materials 2016, 28 (15), 2964-2970. DOI: https://doi.org/10.1002/adma.201506049 (acccessed 2024/06/18).
(52) Cheng, Y.; Li, H.-W.; Zhang, J.; Yang, Q.-D.; Liu, T.; Guan, Z.; Qing, J.; Lee, C.-S.; Tsang, S.-W. Spectroscopic study on the impact of methylammonium iodide loading time on the electronic properties in perovskite thin films. Journal of Materials Chemistry A 2016, 4 (2), 561-567, 10.1039/C5TA08262E. DOI: 10.1039/C5TA08262E.
(53) Hoang Huy, V. P.; Nguyen, T. M.; Bark, C. W. Recent Advances of Doped SnO2 as Electron Transport Layer for High-Performance Perovskite Solar Cells. In Materials, 2023; Vol. 16.
(54) Cheng, Y.-J.; Yang, S.-H.; Hsu, C.-S. Synthesis of Conjugated Polymers for Organic Solar Cell Applications. Chemical Reviews 2009, 109 (11), 5868-5923. DOI: 10.1021/cr900182s.
(55) Song, J.-X.; Yin, X.-X.; Li, Z.-F.; Li, Y.-W. Low-temperature-processed metal oxide electron transport layers for efficient planar perovskite solar cells. Rare Metals 2021, 40 (10), 2730-2746. DOI: 10.1007/s12598-020-01676-y.
(56) Mazumdar, S.; Zhao, Y.; Zhang, X. D. Stability of Perovskite Solar Cells: Degradation Mechanisms and Remedies. Front Electron 2021, 2. DOI: ARTN 712785 10.3389/felec.2021.712785.
(57) Ma, X.; Yang, L.; Lei, K.; Zheng, S.; Chen, C.; Song, H. Doping in inorganic perovskite for photovoltaic application. Nano Energy 2020, 78, 105354. DOI: https://doi.org/10.1016/j.nanoen.2020.105354.
(58) Schelhas, L. T.; Li, Z.; Christians, J. A.; Goyal, A.; Kairys, P.; Harvey, S. P.; Kim, D. H.; Stone, K. H.; Luther, J. M.; Zhu, K.; Stevanovic, V.; Berry, J. J. Insights into operational stability and processing of halide perovskite active layers. Energy & Environmental Science 2019, 12 (4), 1341-1348, 10.1039/C8EE03051K. DOI: 10.1039/C8EE03051K.
(59) Aydin, E.; De Bastiani, M.; De Wolf, S. Defect and Contact Passivation for Perovskite Solar Cells. Advanced Materials 2019, 31 (25), 1900428. DOI: https://doi.org/10.1002/adma.201900428 (acccessed 2024/06/18).
(60) Aldakov, D.; Reiss, P. Safer-by-Design Fluorescent Nanocrystals: Metal Halide Perovskites vs Semiconductor Quantum Dots. The Journal of Physical Chemistry C 2019, 123 (20), 12527-12541. DOI: 10.1021/acs.jpcc.8b12228.
(61) Eames, C.; Frost, J. M.; Barnes, P. R. F.; O’Regan, B. C.; Walsh, A.; Islam, M. S. Ionic transport in hybrid lead iodide perovskite solar cells. Nature Communications 2015, 6 (1), 7497. DOI: 10.1038/ncomms8497.
(62) Huang, J.; Tan, S.; Lund, P. D.; Zhou, H. Impact of H2O on organic–inorganic hybrid perovskite solar cells. Energy & Environmental Science 2017, 10 (11), 2284-2311, 10.1039/C7EE01674C. DOI: 10.1039/C7EE01674C.
(63) Ava, T. T.; Al Mamun, A.; Marsillac, S.; Namkoong, G. A Review: Thermal Stability of Methylammonium Lead Halide Based Perovskite Solar Cells. In Applied Sciences, 2019; Vol. 9.
(64) Wei, J.; Wang, Q.; Huo, J.; Gao, F.; Gan, Z.; Zhao, Q.; Li, H. Mechanisms and Suppression of Photoinduced Degradation in Perovskite Solar Cells. Advanced Energy Materials 2021, 11 (3), 2002326. DOI: https://doi.org/10.1002/aenm.202002326 (acccessed 2024/06/18).
(65) Hong, Q.-M.; Xu, R.-P.; Jin, T.-Y.; Tang, J.-X.; Li, Y.-Q. Unraveling the light-induced degradation mechanism of CH3NH3PbI3 perovskite films. Organic Electronics 2019, 67, 19-25. DOI: https://doi.org/10.1016/j.orgel.2019.01.005.
(66) Zhang, F.; Zhu, K. Additive Engineering for Efficient and Stable Perovskite Solar Cells. Advanced Energy Materials 2020, 10 (13), 1902579. DOI: https://doi.org/10.1002/aenm.201902579 (acccessed 2024/06/18).
(67) Chen, Q.; Zhou, H.; Song, T.-B.; Luo, S.; Hong, Z.; Duan, H.-S.; Dou, L.; Liu, Y.; Yang, Y. Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites toward High Performance Solar Cells. Nano Letters 2014, 14 (7), 4158-4163. DOI: 10.1021/nl501838y.
(68) Kim, Y. C.; Jeon, N. J.; Noh, J. H.; Yang, W. S.; Seo, J.; Yun, J. S.; Ho-Baillie, A.; Huang, S.; Green, M. A.; Seidel, J.; Ahn, T. K.; Seok, S. I. Beneficial Effects of PbI2 Incorporated in Organo-Lead Halide Perovskite Solar Cells. Advanced Energy Materials 2016, 6 (4), 1502104. DOI: https://doi.org/10.1002/aenm.201502104 (acccessed 2024/06/18).
(69) Lee, J.-W.; Dai, Z.; Lee, C.; Lee, H. M.; Han, T.-H.; De Marco, N.; Lin, O.; Choi, C. S.; Dunn, B.; Koh, J.; Di Carlo, D.; Ko, J. H.; Maynard, H. D.; Yang, Y. Tuning Molecular Interactions for Highly Reproducible and Efficient Formamidinium Perovskite Solar Cells via Adduct Approach. Journal of the American Chemical Society 2018, 140 (20), 6317-6324. DOI: 10.1021/jacs.8b01037.
(70) Noel, N. K.; Abate, A.; Stranks, S. D.; Parrott, E. S.; Burlakov, V. M.; Goriely, A.; Snaith, H. J. Enhanced Photoluminescence and Solar Cell Performance via Lewis Base Passivation of Organic–Inorganic Lead Halide Perovskites. ACS Nano 2014, 8 (10), 9815-9821. DOI: 10.1021/nn5036476.
(71) Zeng, Q.; Zhang, X.; Feng, X.; Lu, S.; Chen, Z.; Yong, X.; Redfern, S. A. T.; Wei, H.; Wang, H.; Shen, H.; Zhang, W.; Zheng, W.; Zhang, H.; Tse, J. S.; Yang, B. Polymer-Passivated Inorganic Cesium Lead Mixed-Halide Perovskites for Stable and Efficient Solar Cells with High Open-Circuit Voltage over 1.3 V. Advanced Materials 2018, 30 (9), 1705393. DOI: https://doi.org/10.1002/adma.201705393 (acccessed 2024/06/18).
(72) Wu, Y.-H.; Shi, X.-Q.; Ding, X.-H.; Ren, Y.-K.; Hayat, T.; Alsaedi, A.; Ding, Y.; Xu, P.; Dai, S.-Y. Incorporating 4-tert-Butylpyridine in an Antisolvent: A Facile Approach to Obtain Highly Efficient and Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces 2018, 10 (4), 3602-3608. DOI: 10.1021/acsami.7b16912.
(73) 有機電激發光材料與元件. http://eportfolio.lib.ksu.edu.tw/user/T/H/T093000078-20110524105421.pdf (accessed 2024 June 18).
(74) Surface Free Energy. https://www.nanoscience.com/techniques/tensiometry/surface-free-energy-sfe/ (accessed 2024 June 18).
(75) Photoelectron Spectroscopy. https://pubs.acs.org/doi/pdf/10.1021/ar50025a003 (accessed 2024 June 18).
(76) Feng, Z.; Xia, Z.; Wu, Z.; Hua, Y.; Zhu, G.; Chen, X.; Huang, S. Efficient and stable perovskite solar cells via organic surfactant interfacial passivation. Solar Energy 2021, 227, 438-446. DOI: https://doi.org/10.1016/j.solener.2021.09.032.
(77) Zhu, Z.; Chueh, C.-C.; Lin, F.; Jen, A. K. Y. Enhanced Ambient Stability of Efficient Perovskite Solar Cells by Employing a Modified Fullerene Cathode Interlayer. Advanced Science 2016, 3 (9), 1600027. DOI: https://doi.org/10.1002/advs.201600027 (acccessed 2024/06/18).
(78) Chang, C.-Y.; Chang, Y.-C.; Huang, W.-K.; Lee, K.-T.; Cho, A.-C.; Hsu, C.-C. Enhanced Performance and Stability of Semitransparent Perovskite Solar Cells Using Solution-Processed Thiol-Functionalized Cationic Surfactant as Cathode Buffer Layer. Chemistry of Materials 2015, 27 (20), 7119-7127. DOI: 10.1021/acs.chemmater.5b03137.
(79) Deng, Y.; Li, X.; Wang, R. Carboxyl functional group-assisted defects passivation strategy for efficient air-processed perovskite solar cells with excellent ambient stability. Solar Energy Materials and Solar Cells 2021, 230, 111242. DOI: https://doi.org/10.1016/j.solmat.2021.111242.
(80) Habisreutinger, S. N.; Noel, N. K.; Snaith, H. J. Hysteresis Index: A Figure without Merit for Quantifying Hysteresis in Perovskite Solar Cells. ACS Energy Letters 2018, 3 (10), 2472-2476. DOI: 10.1021/acsenergylett.8b01627.
(81) Chen, B.; Yang, M.; Priya, S.; Zhu, K. Origin of J–V Hysteresis in Perovskite Solar Cells. The Journal of Physical Chemistry Letters 2016, 7 (5), 905-917. DOI: 10.1021/acs.jpclett.6b00215.
(82) Li, Y.; Shi, J.; Zheng, J.; Bing, J.; Yuan, J.; Cho, Y.; Tang, S.; Zhang, M.; Yao, Y.; Lau, C. F. J.; Lee, D. S.; Liao, C.; Green, M. A.; Huang, S.; Ma, W.; Ho-Baillie, A. W. Y. Acetic Acid Assisted Crystallization Strategy for High Efficiency and Long-Term Stable Perovskite Solar Cell. Advanced Science 2020, 7 (5), 1903368. DOI: https://doi.org/10.1002/advs.201903368 (acccessed 2024/06/18).
(83) Regalado-Pérez, E.; Díaz-Cruz, E. B.; Landa-Bautista, J.; Mathews, N. R.; Mathew, X. Impact of Vertical Inhomogeneity on the Charge Extraction in Perovskite Solar Cells: A Study by Depth-Dependent Photoluminescence. ACS Applied Materials & Interfaces 2021, 13 (10), 11833-11844. DOI: 10.1021/acsami.0c20826.
(84) Peng, W.; Mao, K.; Cai, F.; Meng, H.; Zhu, Z.; Li, T.; Yuan, S.; Xu, Z.; Feng, X.; Xu, J.; McGehee, M. D.; Xu, J. Reducing nonradiative recombination in perovskite solar cells with a porous insulator contact. Science 2023, 379 (6633), 683-690. DOI: 10.1126/science.ade3126 (acccessed 2024/06/18).
(85) Zhang, P.; Ang, Y. S.; Garner, A. L.; Valfells, Á.; Luginsland, J. W.; Ang, L. K. Space–charge limited current in nanodiodes: Ballistic, collisional, and dynamical effects. Journal of Applied Physics 2021, 129 (10), 100902. DOI: 10.1063/5.0042355 (acccessed 6/18/2024).
(86) Le Corre, V. M.; Duijnstee, E. A.; El Tambouli, O.; Ball, J. M.; Snaith, H. J.; Lim, J.; Koster, L. J. A. Revealing Charge Carrier Mobility and Defect Densities in Metal Halide Perovskites via Space-Charge-Limited Current Measurements. ACS Energy Letters 2021, 6 (3), 1087-1094. DOI: 10.1021/acsenergylett.0c02599.
(87) Carbone, A.; Kotowska, B. K.; Kotowski, D. f-γ current fluctuations inorganic semiconductors: evidence for percolation. The European Physical Journal B - Condensed Matter and Complex Systems 2006, 50 (1), 77-81. DOI: 10.1140/epjb/e2006-00146-5.
(88) Zhu, Z. J.; Mao, K. T.; Zhang, K.; Peng, W.; Zhang, J. Q.; Meng, H. G.; Cheng, S.; Li, T. Q.; Lin, H. Z.; Chen, Q.; Wu, X. J.; Xu, J. X. Correlating the perovskite/polymer multi-mode reactions with deep-level traps in perovskite solar cells. Joule 2022, 6 (12), 2849-2868. DOI: 10.1016/j.joule.2022.10.007.
(89) Wang, S.; Chen, H.; Zhang, J.; Xu, G.; Chen, W.; Xue, R.; Zhang, M.; Li, Y.; Li, Y. Targeted Therapy for Interfacial Engineering Toward Stable and Efficient Perovskite Solar Cells. Advanced Materials 2019, 31 (41), 1903691. DOI: https://doi.org/10.1002/adma.201903691 (acccessed 2024/06/18).
(90) Wickramaratne, D.; Shen, J. X.; Dreyer, C. E.; Alkauskas, A.; Van de Walle, C. G. Electrical and optical properties of iron in GaN, AlN, and InN. Phys Rev B 2019, 99 (20). DOI: ARTN 205202 10.1103/PhysRevB.99.205202.
(91) Kim, C. M. T.; Perera, M. A. N.; Katz, M.; Martineau, D.; Hashmi, S. G. Performance Evaluation of Carbon-Based Printed Perovskite Solar Cells under Low-Light Intensity Conditions. Advanced Engineering Materials 2022, 24 (10), 2200747. DOI: https://doi.org/10.1002/adem.202200747 (acccessed 2024/06/18).
(92) Chen, L.; Chen, J.; Wang, C.; Ren, H.; Luo, Y.-X.; Shen, K.-C.; Li, Y.; Song, F.; Gao, X.; Tang, J.-X. High-Light-Tolerance PbI2 Boosting the Stability and Efficiency of Perovskite Solar Cells. ACS Applied Materials & Interfaces 2021, 13 (21), 24692-24701. DOI: 10.1021/acsami.1c02929.
(93) Su, L.; Hu, X.; Jisi, L.; Chen, F.; Wei, Y.; Zhou, R.; Zhao, H.; Chen, Y.; Qu, J.; Gou, Y.; Xiong, Y.; Tang, B.; Liang, M.; Zhang, W. Passivating Defects via Retarding the Reaction Rate of FAI and PbI2 Enables Stable Perovskite Solar Cells. ACS Applied Materials & Interfaces 2024, 16 (16), 20755-20766. DOI: 10.1021/acsami.4c00639.
(94) Chang, C.-Y.; Huang, H.-H.; Tsai, H.; Lin, S.-L.; Liu, P.-H.; Chen, W.; Hsu, F.-C.; Nie, W.; Chen, Y.-F.; Wang, L. Facile Fabrication of Self-Assembly Functionalized Polythiophene Hole Transporting Layer for High Performance Perovskite Solar Cells. Advanced Science 2021, 8 (5), 2002718. DOI: https://doi.org/10.1002/advs.202002718 (acccessed 2024/06/18).
(95) Liu, Y.; Bag, M.; Renna, L. A.; Page, Z. A.; Kim, P.; Emrick, T.; Venkataraman, D.; Russell, T. P. Understanding Interface Engineering for High-Performance Fullerene/Perovskite Planar Heterojunction Solar Cells. Advanced Energy Materials 2016, 6 (2), 1501606. DOI: https://doi.org/10.1002/aenm.201501606 (acccessed 2024/07/23).
(96) Liu, Y.; Renna, L. A.; Page, Z. A.; Thompson, H. B.; Kim, P. Y.; Barnes, M. D.; Emrick, T.; Venkataraman, D.; Russell, T. P. A Polymer Hole Extraction Layer for Inverted Perovskite Solar Cells from Aqueous Solutions. Advanced Energy Materials 2016, 6 (20), 1600664. DOI: https://doi.org/10.1002/aenm.201600664 (acccessed 2024/07/23).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93917-
dc.description.abstract本研究以MA0.16Cs0.05FA0.79Pb(I0.9Br0.1)3結構作為鈣鈦礦主動層,分別引入椰油醯胺丙基甜菜鹼 (Cocamidopropyl betaine, CAPB) 及月桂基甜菜鹼 (Lauryl betaine, LB) 兩性離子界面活性劑,修飾鈣鈦礦晶體及界面性質,並製備p-i-n反式鈣鈦礦太陽能電池元件,以提升太陽能電池元件之效率及長效穩定性。傅立葉轉換紅外光譜 (FTIR) 及X射線光電子能譜儀 (XPS) 實驗數據證明,CAPB及LB之羧酸極性基團與鈣鈦礦形成配位作用力,故能有效鈍化鈣鈦礦晶體缺陷,抑制非輻射電荷再結合發生。此外,表面能計算及電化學阻抗分析證實,添加0.2 wt% CAPB及0.2 wt% LB可以減少鈣鈦礦及PC61BM之間的界面缺陷,並提升兩層之間的相容性。因此,以0.2 wt% CAPB以及0.2 wt% LB添加至鈣鈦礦層中,其元件最高效率由18.80%分別提升至21.47%及22.24%。
ITO/ P3HT-COOH/ Perovskite樣品的EDX剖面分析證實,CAPB及LB在鈣鈦礦膜表面,可自組裝形成一碳鏈朝外的分子膜層,因此它的水滴接觸角由純鈣鈦礦的59.80 °分別提升至70.84 °及75.75 °,降低外界水氣的侵入。因此,在相對濕度50%及室溫 (25 °C) 環境下,0.2 wt% CAPB元件經過4080小時存放後,仍保持起始效率之98.3%;0.2 wt% LB元件經過3888小時後,亦可維持在起始效率之91.2%。在熱穩定性方面,無添加劑元件在氮氣及65°C、85 °C環境下分別儲放792小時與528小時後,其效率即下降至原始數值的80%;0.2 wt% CAPB元件在65 °C和85 °C分別經過1872小時後,效率仍可維持在93.5%和80.8%;而0.2 wt% LB元件則分別保持在90.2%和63.6%。光穩定性係在室溫及充滿氮氣的環境,以AM1.5G模擬光源(100 mW/cm2光強)連續照射下進行測試。0.2 wt% CAPB以及0.2 wt% LB元件經過48小時照光後,它們的元件效能分別下降至起始效率之88.0%及78.5%;無添加劑元件經過36小時的照光後則僅能維持71.9%之起始效率。
zh_TW
dc.description.abstractIn this study, inverted p-i-n perovskite solar cells were fabricated using MA0.16Cs0.05FA0.79Pb(I0.9Br0.1)3 as the photoactive layer, and cocamidopropyl betaine (CAPB) and lauryl betaine (LB) as the additive. The effect of these zwitterionic surfactants on the quality of perovskite layer, and the photovoltaic performance and long-term stability of solar devices were extensively investigated. The results from Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy revealed that the carboxylic acid groups can interact with the Pb in perovskite that effectively passivate the surface defects of perovskite crystals, reducing the nonradiative charge recombination. In addition, the surface energy calculation and electrochemical impedance analysis confirmed that the presence of CAPB (0.2 wt%) and LB (0.2 wt%) can reduce the interface defects between the perovskite and PC61BM and improve the compatibility between the two layers. Therefore, the incorporation of 0.2 wt% CAPB and 0.2 wt% LB to the perovskite film substantially increased the power conversion efficiencies (PCEs) of the champion cells from 18.80% to 21.47% and 22.24%, respectively.
The EDX longitudinal profile analysis of the ITO/P3HT-COOH/perovskite samples showed that CAPB and LB can self-assemble on the top surface of the perovskite film to form a molecular layer with hydrocarbon chains facing outward. Therefore, the contact angle increased from 59.80° for the pristine perovskite film to 70.84° and 75.75° for the CAPB:perovskite and LB:perovskite films, respectively. Under a relative humidity of 50% and room temperature (25 °C), the CAPB device still maintained 98.3% of its initial PCE after 4080 hours of storage; the LB device retained 91.2% of its initial PCE after 3888 hours. In terms of thermal stability, the PCE of the control device dropped to 80% of the original value after being stored at 65°C and 85°C in nitrogen atmosphere for 792 hours and 528 hours, respectively. After aging at 65°C and 85°C for 1872 hours, the CAPB devices maintained 93.5% and 80.8%; the LB devices remained 90.2% and 63.6% of their initial PCEs, respectively. The photostability experiments were conducted in a nitrogen-filled environment at room temperature and the devices were continuously illuminated with an AM1.5G simulated light source at an intensity of 100 mW/cm2. After 48 hours of illumination, the PCEs of the CAPB and LB devices degraded to 88.0% and 78.5% of the initial values, respectively; the control device could only maintain 71.9% of its initial PCE after 36 hours of illumination.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:24:54Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-09T16:24:54Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents誌謝 I
摘要 III
Abstract V
目次 VII
圖次 XII
表次 XIX
第一章 緒論 1
1.1 前言 1
1.2 太陽光 2
1.2.1 起源 2
1.2.2 大氣質量 (Air Mass, AM) 2
1.2.3 太陽輻射形式 3
1.2.4 太陽光量測裝置強度標準及光譜 4
1.3 太陽能電池種類 5
1.3.1 第一代 – 矽晶圓基板太陽能電池 6
1.3.2 第二代 – 薄膜太陽能電池 6
1.3.3 第三代 – 有機新興型太陽能電池 7
1.4 太陽能電池光伏性質參數 8
1.4.1 開路電壓 (Open-circuit voltage, Voc) 10
1.4.2 短路電流密度 (Short circuit current density, Jsc) 11
1.4.3 填充因子 (Fill factor, FF) 11
1.4.4 串聯電阻 (Series resistance, Rs) 11
1.4.5 並聯電阻 (Shunt resistance, Rsh) 12
1.4.6 能量轉換效率 (Power conversion efficiency, PCE) 12
第二章 文獻回顧及研究動機 13
2.1 鈣鈦礦 13
2.2 鈣鈦礦的光學特性 17
2.3 鈣鈦礦太陽能電池的演變 18
2.4 鈣鈦礦太陽能電池運作原理與結構組成 25
2.4.1 n-i-p元件結構 27
2.4.2 p-i-n元件結構 27
2.5 鈣鈦礦太陽能電池穩定性 28
2.5.1 本質結構穩定性 28
2.5.2 外在影響穩定性 30
2.6 添加劑工程 32
2.6.1 路易斯酸 32
2.6.2 路易斯鹼 34
2.7 研究動機 35
第三章 實驗設計與方法 37
3.1 化學藥品 37
3.2 實驗儀器及設備 39
3.2.1 手套箱( Glove Box),廠牌:MBRAUN UNILAB 39
3.2.2 太陽光模擬器 (Solar Simulator),廠牌: EnliTech 40
3.2.3 原子力顯微鏡 (Atomic Force Microscopy, AFM),廠牌: Oxford Instrument Asylum Research,型號: Cypher S AFM 40
3.2.4 掃描式電子顯微鏡 (SEM),廠牌:Hitachi S-4800 41
3.2.5 入射光子轉換帶電載子效率 (Incident Photon to Charge Carrier Efficiency, IPCE),型號: QE-R 43
3.2.6 紫外光-可見光光譜 (Ultraviolet-Visible Spectroscopy, UV-Vis),型號: JASCO V-670 44
3.2.7 X射線繞射分析儀 (X-ray Diffraction Analysis, XRD),機型:Bruker D2 discover reflector 44
3.2.8 光致發光光譜儀 (Photoluminescence, PL),型號: Edinburg PLS 920 45
3.2.9 時間解析瞬態光致發光 (Time-Resolved Photoluminescence, TRPL) 46
3.2.10 接觸角分析儀及表面能 (Contact Angle Analyzer & Surface Energy),廠牌: FTA 125,First Ten Angstroms 47
3.2.11 光電子能譜分析儀PESA (Photoelectron Spectroscopy in Air) 型號:RIKEN KEIKI Surface Analyzer model AC-2 49
3.2.12 傅立葉轉換紅外光光譜儀 (Fourier-transform Infrared Spectroscopy, FTIR),廠牌: Perkin Elmer,型號: Spectrum 100 50
3.2.13 X射線光電子能譜儀 (X-ray Photoelectron Spectroscopy, XPS),型號: VG Scientific ESCALAB 250 50
3.3 元件製程 51
第四章 以末端羧基兩性離子界面活性劑-椰油醯胺丙基甜菜鹼 (CAPB) 及月桂基甜菜鹼 (LB) 作為鈣鈦礦添加劑修飾有機鈣鈦礦晶體提升有機鈣鈦礦太陽能電池元件之效率及長期穩定性 58
4.1 添加兩性離子界面活性劑之鈣鈦礦太陽能電池元件光伏性質參數及其效率 58
4.2 添加兩性離子界面活性劑對太陽能電池之短路電流密度及鈣鈦礦層性質分析 70
4.2.1 添加兩性離子界面活性劑之鈣鈦礦表面粗糙度分析 70
4.2.2 添加兩性離子界面活性劑之短路電流密度分析 71
4.2.3 添加兩性離子界面活性劑之鈣鈦礦膜厚分析 72
4.2.4 添加兩性離子界面活性劑之吸光率及吸光波段分析 73
4.2.5 添加兩性離子界面活性劑之鈣鈦礦晶粒及其規整結構大小分析 74
4.3 添加兩性離子界面活性劑之鈣鈦礦層及其電池元件缺陷分析 77
4.3.1 添加兩性離子界面活性劑之鈣鈦礦層缺陷分析 77
4.3.2 添加兩性離子界面活性劑之鈣鈦礦太陽能電池元件缺陷分析 82
4.4 界面活性劑與鈣鈦礦之相互作用力分析 89
4.5 添加兩性離子界面活性劑之鈣鈦礦表面特性分析 94
4.6 添加兩性離子界面活性劑對太陽能電池之開路電壓分析 100
4.7 鈣鈦礦太陽能電池穩定性 103
4.7.1 濕穩定性 103
4.7.2 濕穩定性XRD 104
4.7.3 熱穩定性 105
4.7.4 熱穩定性XRD 106
4.7.5 光穩定性 108
4.7.6 光穩定性XRD 109
第五章 結論 113
第六章 參考文獻 115
-
dc.language.isozh_TW-
dc.subjectp-i-n反式鈣鈦礦太陽能電池zh_TW
dc.subject兩性離子界面活性劑zh_TW
dc.subject電池穩定性zh_TW
dc.subject阻水保護層zh_TW
dc.subject缺陷鈍化zh_TW
dc.subjectdefect passivationen
dc.subjecthydrophobic protective layeren
dc.subjectsolar cell stabilityen
dc.subjectp-i-n inverted perovskite solar cellsen
dc.subjectzwitterionic surfactantsen
dc.title使用兩性界面活性劑提升聚(3-庚酸噻吩)電洞傳導層建構之反式鈣鈦礦太陽能電池的光伏特徵與長效穩定性zh_TW
dc.titleEnhancing the Performance and Long-Term Stability of Poly [3-(6-carboxyhexyl)thiophene-2,5-diyl] Based Perovskite Solar Cells Using Zwitterionic Surfactants as Additivesen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳錦地;朱治偉;華沐怡zh_TW
dc.contributor.oralexamcommitteeChin-Ti Chen;Chih-Wei Chu;Mu-Yi Huaen
dc.subject.keyword兩性離子界面活性劑,p-i-n反式鈣鈦礦太陽能電池,缺陷鈍化,阻水保護層,電池穩定性,zh_TW
dc.subject.keywordzwitterionic surfactants,p-i-n inverted perovskite solar cells,defect passivation,hydrophobic protective layer,solar cell stability,en
dc.relation.page125-
dc.identifier.doi10.6342/NTU202402574-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-02-
dc.contributor.author-college工學院-
dc.contributor.author-dept高分子科學與工程學研究所-
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
授權僅限NTU校內IP使用(校園外請利用VPN校外連線服務)
6.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved