請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93910完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何昊哲 | zh_TW |
| dc.contributor.advisor | Hao-Che Ho | en |
| dc.contributor.author | 張淵舜 | zh_TW |
| dc.contributor.author | Yuan-Shun Chang | en |
| dc.date.accessioned | 2024-08-09T16:21:55Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-31 | - |
| dc.identifier.citation | [1] Afifi, Z., Chu, H. J., Kuo, Y. L., Hsu, Y. C., Wong, H. K., & Zeeshan Ali, M. (2019). Residential flood loss assessment and risk mapping from high-resolution simulation. Water, 11(4), 751.
[2] Afshari, F., Zavaragh, H. G., Sahin, B., Grifoni, R. C., Corvaro, F., Marchetti, B., & Polonara, F. (2018). On numerical methods; optimization of CFD solution to evaluate fluid flow around a sample object at low Re numbers. Mathematics and Computers in Simulation, 152, 51-68. [3] Afshari, S., Tavakoly, A. A., Rajib, M. A., Zheng, X., Follum, M. L., Omranian, E., & Fekete, B. M. (2018). Comparison of new generation low-complexity flood inundation mapping tools with a hydrodynamic model. Journal of Hydrology, 556, 539-556. [4] Ahern, J. (2011). From fail-safe to safe-to-fail: Sustainability and resilience in the new urban world. Landscape and urban Planning, 100(4), 341-343. [5] Ahiablame, L. M., Engel, B. A., & Chaubey, I. (2013). Effectiveness of low impact development practices in two urbanized watersheds: Retrofitting with rain barrel/cistern and porous pavement. Journal of environmental management, 119, 151-161. [6] Ahiablame, L., & Shakya, R. (2016). Modeling flood reduction effects of low impact development at a watershed scale. Journal of environmental management, 171, 81-91. [7] Alberti, M., & Marzluff, J. M. (2004). Ecological resilience in urban ecosystems: Linking urban patterns to human and ecological functions. Urban ecosystems, 7, 241-265. [8] Alexander, C. (2009). Market risk analysis, value at risk models (Vol. 4). John Wiley & Sons. [9] Ali, K., Bajracharya, R. M., & Koirala, H. L. (2016). A review of flood risk assessment. International Journal of Environment, Agriculture and Biotechnology, 1(4), 238636. [10] Allison, S. D., & Martiny, J. B. (2008). Resistance, resilience, and redundancy in microbial communities. Proceedings of the National Academy of Sciences, 105(supplement_1), 11512-11519. [11] Arrighi, C., Oumeraci, H., Castelli, F. (2017). Hydrodynamics of pedestrians' instability in floodwaters. Hydrology and earth system sciences, 21(1), 515-531. [12] Ashley, R. M., Balmforth, D. J., Saul, A. J., & Blanskby, J. (2005). Flooding in the future–predicting climate change, risks and responses in urban areas. Water science and technology, 52(5), 265-273. [13] Asprone, D., Cavallaro, M., Latora, V., Manfredi, G., & Nicosia, V. (2013). Assessment of urban ecosystem resilience using the efficiency of hybrid social-physical complex networks. arXiv preprint arXiv:1302.3263. [14] Atzl, A., & Keller, S. (2013). A systemic approach for the analysis of infrastructure-specific social vulnerability. Publication Series of UNU-EHS No. 17/2012, 27. [15] Bach, P. M., Rauch, W., Mikkelsen, P. S., McCarthy, D. T., & Deletic, A. (2014). A critical review of integrated urban water modelling–Urban drainage and beyond. Environmental modelling & software, 54, 88-107. [16] Balaei, B., Noy, I., Wilkinson, S., & Potangaroa, R. (2021). Economic factors affecting water supply resilience to disasters. Socio-Economic Planning Sciences, 76, 100961. [17] Barbu, I. A., & Ballestero, T. P. (2015). Unsaturated flow functions for filter media used in low-impact development—Stormwater management systems. Journal of Irrigation and Drainage Engineering, 141(1), 04014041. [18] Barkdoll, B. D., Kantor, C. M., Wesseldyke, E. S., & Ghimire, S. R. (2016). Stormwater low-impact development: a call to arms for hydraulic engineers. Journal of Hydraulic Engineering, 142(8), 02516002. [19] Barredo, J. I. (2009). Normalised flood losses in Europe: 1970–2006. Natural Hazards and Earth System Sciences, 9(1), 97-104. [20] Batica, J., & Gourbesville, P. (2014). Flood resilience Index - Methodology and Application. International Conference on Hydroinformatics. [21] Becken, S., & Khazai, B. (2017). Resilience, tourism and disasters. Tourism and resilience, 96-104. [22] Berke, P. R., & Campanella, T. J. (2006). Planning for postdisaster resiliency. The Annals of the American Academy of Political Social Science, 604(1), 192-207. [23] Berke, P., Newman, G., Lee, J., Combs, T., Kolosna, C., & Salvesen, D. (2015). Evaluation of networks of plans and vulnerability to hazards and climate change: A resilience scorecard. Journal of the American Planning Association, 81(4), 287-302. [24] Bertilsson, L., Wiklund, K., de Moura Tebaldi, I., Rezende, O. M., Veról, A. P., & Miguez, M. G. (2019). Urban flood resilience–A multi-criteria index to integrate flood resilience into urban planning. Journal of Hydrology, 573, 970-982. [25] Bhattacharya-Mis, N., & Lamond, J. (2014). Socio-economic complexities of flood memory in building resilience: An overview of research. Procedia Economics and Finance, 18, 111-119. [26] Biggs, R., Schlüter, M., Biggs, D., Bohensky, E. L., BurnSilver, S., Cundill, G., Dakos, V., Daw, T. M., Evans, L. S., & Kotschy, K. (2012). Toward principles for enhancing the resilience of ecosystem services. Annual review of environment and resources, 37, 421-448. [27] Bisht, D. S., Chatterjee, C., Kalakoti, S., Upadhyay, P., Sahoo, M., & Panda, A. (2016). Modeling urban floods and drainage using SWMM and MIKE URBAN: a case study. Natural hazards, 84, 749-776. [28] Brown, G., Carlyle, M., Salmerón, J., & Wood, K. (2006). Defending critical infrastructure. Interfaces, 36(6), 530-544. [29] Bruneau, M., & Reinhorn, A. (2006). Overview of the resilience concept. Proceedings of the 8th US national conference on earthquake engineering. [30] Bruneau, M., Chang, S. E., Eguchi, R. T., Lee, G. C., O'Rourke, T. D., Reinhorn, A. M., Shinozuka, M., Tierney, K., Wallace, W. A., & Von Winterfeldt, D. (2003). A framework to quantitatively assess and enhance the seismic resilience of communities. Earthquake spectra, 19(4), 733-752. [31] Bulti, D. T., Girma, B., & Megento, T. L. (2019). Community flood resilience assessment frameworks: A review. SN Applied Sciences, 1, 1-17. [32] Burian, S. J., & Edwards, F. G. (2002). Historical perspectives of urban drainage. In Global solutions for urban drainage (pp. 1-16). [33] Campanella, T. J. (2006). Urban resilience and the recovery of New Orleans. Journal of the American planning association, 72(2), 141-146. [34] Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: resilience of what to what?. Ecosystems, 4, 765-781. [35] Carrivick, J. L. (2006). Application of 2D hydrodynamic modelling to high-magnitude outburst floods: An example from Kverkfjöll, Iceland. Journal of Hydrology, 321(1-4), 187-199. [36] Casulli, V. (2009). A high‐resolution wetting and drying algorithm for free‐surface hydrodynamics. International Journal for Numerical Methods in Fluids, 60(4), 391-408. [37] Casulli, V., & Stelling, G. S. (2013). A semi‐implicit numerical model for urban drainage systems. International Journal for Numerical Methods in Fluids, 73(6), 600-614. [38] Chang, L. F., Lin, C. H., & Su, M. D. (2008). Application of geographic weighted regression to establish flood-damage functions reflecting spatial variation. Water Sa, 34(2), 209-216. [39] Chang, T. J., Wang, C. H., & Chen, A. S. (2015). A novel approach to model dynamic flow interactions between storm sewer system and overland surface for different land covers in urban areas. Journal of Hydrology, 524, 662-679. [40] Chang, Y. S., Ho, H. C., & Huang, L. Y. (2023). Evaluation of low impact development for resilient capacity in urban area with flood resilience index. Journal of Flood Risk Management, 16(2), e12877. [41] Chang, Y.-S., Nallasamy, N. D., Angulo, Y. S., Ganapathy, A. (2022). Scope, effects and mitigation of hydropeaking. Ecohydraulics Challenge IAHR 2022. [42] Chen, K.-F., & Leandro, J. (2019). A conceptual time-varying flood resilience index for urban areas: Munich city. Water, 11(4), 830. [43] Cheng, T., Xu, Z., Hong, S., & Song, S. (2017). Flood risk zoning by using 2D hydrodynamic modeling: A case study in Jinan City. Mathematical Problems in Engineering, 2017, 1-8. [44] Cimellaro, G. P., Solari, D., Arcidiacono, V., Renschler, C. S., Reinhorn, A., & Bruneau, M. (2014). Community resilience assessment integrating network interdependencies. Earthq. Eng. Res. Inst. [45] Cimellaro, G., & Solari, D. (2014). Considerations about the optimal period range to evaluate the weight coefficient of coupled resilience index. Engineering structures, 69, 12-24. [46] Cortès, M., Turco, M., Llasat-Botija, M., & Llasat, M. C. (2018). The relationship between precipitation and insurance data for floods in a Mediterranean region (northeast Spain). Natural hazards and earth system sciences, 18(3), 857-868. [47] Cosco, C., Gómez, M., Russo, B., Tellez-Alvarez, J., Macchione, F., Costabile, P., & Costanzo, C. (2020). Discharge coefficients for specific grated inlets. Influence of the Froude number. Urban Water Journal, 17(7), 656-668. [48] Coulthard, T., & Frostick, L. (2010). The Hull floods of 2007: implications for the governance and management of urban drainage systems. Journal of Flood Risk Management, 3(3), 223-231. [49] Cutter, S. L., Barnes, L., Berry, M., Burton, C., Evans, E., Tate, E., & Webb, J. J. G. e. c. (2008). A place-based model for understanding community resilience to natural disasters. Global Environmental Change, 18(4), 598-606. [50] Cutter, S. L., Burton, C. G., & Emrich, C. T. (2010). Disaster resilience indicators for benchmarking baseline conditions. Journal of homeland security and emergency management, 7(1). [51] Cvetković, V. M., & Šišović, V. (2024). Understanding the Sustainable Development of Community (Social) Disaster Resilience in Serbia: Demographic and Socio-Economic Impacts. Sustainability, 16(7), 2620. [52] Dadson, S., Hall, J. W., Garrick, D., Sadoff, C., Grey, D., & Whittington, D. (2017). Water security, risk, and economic growth: Insights from a dynamical systems model. Water Resources Research, 53(8), 6425-6438. [53] Dagdeviren, H., Donoghue, M., & Promberger, M. (2016). Resilience, hardship and social conditions. Journal of Social Policy, 45(1), 1-20. [54] Dahm, R., Hsu, C.-T., Lien, H.-C., Chang, C.-H., & Prinsen, G. (2014). Next generation flood modelling using 3Di: A case study in Taiwan. DSD international conference. [55] Damodaram, C., Giacomoni, M. H., Prakash Khedun, C., Holmes, H., Ryan, A., Saour, W., & Zechman, E. M. J. J. J. o. t. A. W. R. A. (2010). Simulation of Combined Best Management Practices and Low Impact Development for Sustainable Stormwater Management. Journal of the American Water Resources Association, 46(5), 907-918. [56] de Bruijn, K. M., Maran, C., Zygnerski, M., Jurado, J., Burzel, A., Jeuken, C., & Obeysekera, J. (2019). Flood resilience of critical infrastructure: Approach and method applied to Fort Lauderdale, Florida. Water, 11(3), 517. [57] Dietz, M. E. (2007). Low impact development practices: A review of current research and recommendations for future directions. Water, air, and soil pollution, 186, 351-363. [58] Dilley, M. (2005). Natural disaster hotspots: a global risk analysis (Vol. 5). World Bank Publications. [59] Dobie, S., Schneider, J., Kesgin, M., & Lagiewski, R. (2018). Hotels as critical hubs for destination disaster resilience: An analysis of hotel corporations’ CSR activities supporting disaster relief and resilience. Infrastructures, 3(4), 46. [60] Doong, D.-J., Lo, W., Vojinovic, Z., Lee, W.-L., & Lee, S.-P. (2016). Development of a new generation of flood inundation maps—A case study of the coastal city of Tainan, Taiwan. Water, 8(11), 521. [61] Duque, L. F., O'Connell, E., & O'Donnell, G. (2023). A Monte Carlo simulation and sensitivity analysis framework demonstrating the advantages of probabilistic forecasting over deterministic forecasting in terms of flood warning reliability. Journal of Hydrology, 619, 129340. [62] Eckart, K., McPhee, Z., & Bolisetti, T. (2017). Performance and implementation of low impact development–A review. Science of the Total Environment, 607, 413-432. [63] Eckstein, D., Hutfils, M.-L., & Winges, M. (2018). Global climate risk index 2019. Who suffers most from extreme weather events, 36. [64] Eckstein, D., Künzel, V., & Schäfer, L. (2021). The global climate risk index 2021. Bonn: Germanwatch. [65] Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., Walker, B., & Norberg, J. (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, 1(9), 488-494. [66] Erena, S. H., Worku, H., & De Paola, F. (2018). Flood hazard mapping using FLO-2D and local management strategies of Dire Dawa city, Ethiopia. Journal of Hydrology: Regional Studies, 19, 224-239. [67] Ernstson, H., Van der Leeuw, S. E., Redman, C. L., Meffert, D. J., Davis, G., Alfsen, C., & Elmqvist, T. (2010). Urban transitions: on urban resilience and human-dominated ecosystems. Ambio, 39(8), 531-545. [68] Farooq, M., Shafique, M., & Khattak, M. S. (2019). Flood hazard assessment and mapping of River Swat using HEC-RAS 2D model and high-resolution 12-m TanDEM-X DEM (WorldDEM). Natural hazards, 97, 477-492. [69] Fekete, A. (2019). Critical infrastructure and flood resilience: Cascading effects beyond water. Wiley Interdisciplinary Reviews: Water, 6(5), e1370. [70] Fekete, A., Hufschmidt, G., & Kruse, S. (2014). Benefits and challenges of resilience and vulnerability for disaster risk management. International journal of disaster risk science, 5, 3-20. [71] Ferguson, C. R., & Fenner, R. A. (2020). The potential for natural flood management to maintain free discharge at urban drainage outfalls. Journal of Flood Risk Management, 13(3), e12617. [72] Fernández-Pato, J., Caviedes-Voullième, D., & García-Navarro, P. (2016). Rainfall/runoff simulation with 2D full shallow water equations: Sensitivity analysis and calibration of infiltration parameters. Journal of hydrology, 536, 496-513. [73] Few, R., & Matthies, F. (2013). Flood hazards and health: responding to present and future risks. Taylor & Francis. [74] Filipova, V. (2012). Urban flooding in Gothenburg-A MIKE 21 study. TVVR12/5010. [75] Fisher, R., Bassett, G., Buehring, W., Collins, M., Dickinson, D., Eaton, L., & Peerenboom, J. (2010). Constructing a resilience index for the enhanced critical infrastructure protection program. Argonne National Laboratory. Decision and Information Sciences Division, ANL/DIS-10-9, Argonne, IL, USA http://www. ipd. anl. gov/anlpubs/2010/09/67823. pdf. [76] Folke, C., Carpenter, S., Elmqvist, T., Gunderson, L., Holling, C. S., & Walker, B. (2002). Resilience and sustainable development: building adaptive capacity in a world of transformations. AMBIO: A journal of the human environment, 31(5), 437-440. [77] Forsyth, A. (2012). Defining suburbs. Journal of Planning Literature, 27(3), 270-281. [78] Franklin, R. C., King, J. C., Aitken, P. J., & Leggat, P. A. (2014). “Washed away”—assessing community perceptions of flooding and prevention strategies: a North Queensland example. Natural hazards, 73, 1977-1998. [79] Garde-Hansen, J., McEwen, L., Holmes, A., & Jones, O. (2017). Sustainable flood memory: Remembering as resilience. Memory Studies, 10(4), 384-405. [80] Germanwatch. (2017). Global climate risk index 2018. [81] Gersonius, B., Ashley, R., Pathirana, A., & Zevenbergen, C. (2013). Climate change uncertainty: building flexibility into water and flood risk infrastructure. Climatic change, 116, 411-423. [82] Gersonius, B., Van Buuren, A., Zethof, M., & Kelder, E. (2016). Resilient flood risk strategies: institutional preconditions for implementation. Ecology and Society, 21(4). [83] Gjorgiev, B., & Sansavini, G. (2022). Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis. Reliability Engineering & System Safety, 217, 108085. [84] Gourevitch, J. D., Diehl, R. M., Wemple, B. C., & Ricketts, T. H. (2022). Inequities in the distribution of flood risk under floodplain restoration and climate change scenarios. People and Nature, 4(2), 415-427. [85] Gunderson, L. (2010). Ecological and human community resilience in response to natural disasters. Ecology and Society, 15(2). [86] Guo, K., Guan, M., & Yu, D. (2021). Urban surface water flood modelling–a comprehensive review of current models and future challenges. Hydrology and Earth System Sciences, 25(5), 2843-2860. [87] Hadidi, A., Holzbecher, E., & Molenaar, R. E. (2020). Flood mapping in face of rapid urbanization: A case study of Wadi Majraf-Manumah, Muscat, Sultanate of Oman. Urban Water Journal, 17(5), 407-415. [88] Hall, P. A., & Lamont, M. (2013). Why social relations matter for politics and successful societies. Annual Review of Political Science, 16(1), 49-71. [89] Hallegatte, S., Bangalore, M., & Vogt-Schilb, A. (2016). Assessing socioeconomic resilience to floods in 90 countries. World Bank Policy Research Working Paper (7663). [90] Hamilton, W. (2009). Resilience and the city: the water sector. Proceedings of the Institution of Civil Engineers-Urban design and planning, 162(3), 109-121. [91] Hammer, G. L., & Muchow, R. C. (1994). Assessing climatic risk to sorghum production in water-limited subtropical environments I. Development and testing of a simulation model. Field Crops Research, 36(3), 221-234. [92] Hammer, J. S. (1998). Risk Reduction and Public. [93] Hammond, M., Chen, A. S., Batica, J., Butler, D., Djordjević, S., Gourbesville, P., Manojlović, N., Mark, O., & Veerbeek, W. (2018). A new flood risk assessment framework for evaluating the effectiveness of policies to improve urban flood resilience. Urban Water Journal, 15(5), 427-436. [94] He, C. Y., Tung, C. P., & Lin, Y. J. (2021). Applying the DRCA risk template on the flood-prone disaster prevention community due to climate change. Sustainability, 13(2), 891. [95] He, Y., & Liu, G. (2022). Coupling coordination analysis of low-carbon development, technology innovation, and new urbanization: data from 30 provinces and cities in China. Frontiers in Public Health, 10, 1047691. [96] Head, B. W. (2014). Managing urban water crises: adaptive policy responses to drought and flood in Southeast Queensland, Australia. Ecology and Society, 19(2). [97] Hemmati, M., Ellingwood, B. R., & Mahmoud, H. N. (2020). The role of urban growth in resilience of communities under flood risk. Earth's Future, 8(3), e2019EF001382. [98] Hernandez-Fajardo, I., & Dueñas-Osorio, L. (2013). Probabilistic study of cascading failures in complex interdependent lifeline systems. Reliability Engineering & System Safety, 111, 260-272. [99] Hirabayashi, Y., Kanae, S., Emori, S., Oki, T., & Kimoto, M. (2008). Global projections of changing risks of floods and droughts in a changing climate. Hydrological sciences journal, 53(4), 754-772. [100] Ho, H.C., Lee, H.-Y., Tsai, Y.-J., & Chang, Y.-S. (2022). Numerical Experiments on Low Impact Development for Urban Resilience Index. Sustainability, 14(14), 8696. [101] Ho, H.-C., Lin, S.-W., Lee, H.-Y., & Huang, C.-C. (2019). Evaluation of a multi-objective genetic algorithm for low impact development in an Overcrowded City. Water, 11(10), 2010. [102] Holling, C. S. (1973). Resilience and stability of ecological systems. Annual review of ecology and systematics, 4(1), 1-23. [103] Hood, M. J., Clausen, J. C., & Warner, G. S. (2007). Comparison of Stormwater Lag Times for Low Impact and Traditional Residential Development. Journal of the American Water Resources Association, 43(4), 1036-1046. [104] Hsu, M. H., Tsai, M. Y., Lin, Y. C., Chen, A. S., Hammond, M. J., Djordjevic, S., & Butler, D. (2012). Flood damage assessment in Taipei city Taiwan. [105] Hsu, M.-H., Chen, S. H., & Chang, T.-J. (2000). Inundation simulation for urban drainage basin with storm sewer system. Journal of Hydrology, 234(1-2), 21-37. [106] Hu, Y., Dai, Z., & Guldmann, J.-M. (2020). Modeling the impact of 2D/3D urban indicators on the urban heat island over different seasons: A boosted regression tree approach. Journal of environmental management, 266, 110424. [107] Huong, T. T. L., Van Anh, D. T., Dat, T. T., Truong, D. D., & Tam, D. D. (2022). Disaster risk management system in Vietnam: progress and challenges. Heliyon, 8(10). [108] in den Bäumen, H. S., Többen, J., & Lenzen, M. (2015). Labour forced impacts and production losses due to the 2013 flood in Germany. Journal of Hydrology, 527, 142-150. [109] INDEX, C. B. F. R. ESTABLISHMENT OF COUNTRY-BASED FLOOD RISK INDEX. Ratio, 100(432,960), 137-0. [110] IPCC. (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, New York, NY, USA, 582 pp. [111] IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, New York, NY, USA, 1820 pp. [112] Jeffers, J. M. (2014). Environmental knowledge and human experience: using a historical analysis of flooding in Ireland to challenge contemporary risk narratives and develop creative policy alternatives. Environmental Hazards, 13(3), 229-247. [113] Jennings, A. A., Adeel, A. A., Hopkins, A., Litofsky, A. L., & Wellstead, S. W. (2013). Rain barrel–urban garden stormwater management performance. Journal of Environmental Engineering, 139(5), 757-765. [114] Joakim, E. P., Mortsch, L., Oulahen, G., Harford, D., Klein, Y., Damude, K., & Tang, K. (2016). Using system dynamics to model social vulnerability and resilience to coastal hazards. International Journal of Emergency Management, 12(4), 366-391. [115] Jordan, L. P., & Graham, E. (2012). Resilience and well‐being among children of migrant parents in South‐East Asia. Child development, 83(5), 1672-1688. [116] Kamissoko, D., Nastov, B., Benaben, F., Chapurlat, V., Bony-Dandrieux, A., Tixier, J., Amendeep, A., & Daclin, N. (2019). Continuous and multidimensional assessment of resilience based on functionality analysis for interconnected systems. Structure and Infrastructure Engineering, 15(4), 427-442. [117] Kannami, Y. (2008). Establishment of country-based flood risk index. Tokyo and Ibaraki-ken, Japan: National Graduate Institute for Policy Studies (GRIPS) and International Centre for Water Hazard and Risk Management (ICAHRM). [118] Karahan, M., Ersoy, H., & Akgun, A. (2020). A 3D numerical simulation-based methodology for assessment of landslide-generated impulse waves: a case study of the Tersun Dam reservoir (NE Turkey). Landslides, 17, 2777-2794. [119] Keller, S., & Atzl, A. (2014). Mapping natural hazard impacts on road infrastructure—the extreme precipitation in Baden-Württemberg, Germany, June 2013. International Journal of Disaster Risk Science, 5, 227-241. [120] Kelly, P. M., & Adger, W. N. (2000). Theory and practice in assessing vulnerability to climate change andFacilitating adaptation. Climatic change, 47(4), 325-352. [121] Kenna, S. (2008). Do social housing providers across Yorkshire and the East Midlands have effective flood risk management in place when maintaining and repairing their housing stock?. Journal of Building Appraisal, 4(2), 71-85. [122] Khattak, M. S., Anwar, F., Saeed, T. U., Sharif, M., Sheraz, K., & Ahmed, A. (2016). Floodplain mapping using HEC-RAS and ArcGIS: a case study of Kabul River. Arabian Journal for Science and Engineering, 41, 1375-1390. [123] Kilanitis, I., & Sextos, A. (2019). Impact of earthquake-induced bridge damage and time evolving traffic demand on the road network resilience. Journal of traffic and transportation engineering (English edition), 6(1), 35-48. [124] Köroğlu Göğüş, M., & Oral, I. (2023). CDP Climate Change and Water Report 2022/Turkey Edition. [125] Kotzee, I., & Reyers, B. (2016). Piloting a social-ecological index for measuring flood resilience: A composite index approach. Ecological Indicators, 60, 45-53. [126] Kron, W. (2003). Flood risk= hazard x exposure x vulnerability. Journal of Lake Sciences, 15, 185-204. [127] Kron, W. (2005). Flood risk= hazard• values• vulnerability. Water international, 30(1), 58-68. [128] Kuhlicke, C., Masson, T., Kienzler, S., Sieg, T., Thieken, A. H., & Kreibich, H. (2020). Multiple flood experiences and social resilience: Findings from three surveys on households and companies exposed to the 2013 flood in Germany. Weather, climate, and society, 12(1), 63-88. [129] Kumpulainen, S. (2006). Vulnerability concepts in hazard and risk assessment. Special paper-geological survey of Finland, 42, 65. [130] Lai, Z., Ge, D., Xia, H., Yue, Y., & Wang, Z. (2020). Coupling coordination between environment, economy and tourism: A case study of China. PLoS One, 15(2), e0228426. [131] Lamond, J. E., & Proverbs, D. G. (2009). Resilience to flooding: lessons from international comparison. Proceedings of the Institution of Civil Engineers-Urban design and planning, 162(2), 63-70. [132] Lazzarin, T., Viero, D.P., Molinari, D., Ballio, F., Defina, A. (2022). Flood damage functions based on a single physics-and data-based impact parameter that jointly accounts for water depth and velocity. Journal of Hydrology, 607, 127485. [133] Leandro, J., Chen, K.-F., Wood, R. R., & Ludwig, R. (2020). A scalable flood-resilience-index for measuring climate change adaptation: Munich city. Water Research, 173, 115502. [134] Leandro, J., Cunneff, S., & Viernstein, L. (2021). Resilience modeling of flood induced electrical distribution network failures: Munich, germany. Frontiers in Earth Science, 9, 572925. [135] Lee, S., Okazumi, T., & Kwak, Y. (2015). Possibilities and challenges in the development of a global flood disaster risk indicator from the post-2015 UN processes perspective: a preliminary study. Water Policy, 17(2), 208-227. [136] Leichenko, R. (2011). Climate change and urban resilience. Current opinion in environmental sustainability, 3(3), 164-168. [137] Leskens, J., Brugnach, M., & Hoekstra, A. Y. (2014). Application of an Interactive Water Simulation Model in urban water management: A case study in Amsterdam. Water science and technology, 70(11), 1729-1739. [138] Leskens, J., Brugnach, M., Hoekstra, A. Y., & Schuurmans, W. (2014). Why are decisions in flood disaster management so poorly supported by information from flood models? Environmental modelling & software, 53, 53-61. [139] Li, L., Fan, Z., Feng, W., Yuxin, C., & Keyu, Q. (2022). Coupling coordination degree spatial analysis and driving factor between socio-economic and eco-environment in northern China. Ecological Indicators, 135, 108555. [140] Li, Y. (2023). A systematic review of rural resilience. China Agricultural Economic Review, 15(1), 66-77. [141] Liao, K.-H. (2012). A theory on urban resilience to floods—a basis for alternative planning practices. Ecology and society, 17(4). [142] Lin, K. H. E., Lee, H. C., & Lin, T. H. (2017). How does resilience matter? An empirical verification of the relationships between resilience and vulnerability. Natural Hazards, 88, 1229-1250. [143] Ling, T. Y., & Chiang, Y. C. (2018). Strengthening the resilience of urban retailers towards flood risks-A case study in the riverbank region of Kaohsiung City. International Journal of Disaster Risk Reduction, 27, 541-555. [144] Lisenbee, W. A., Hathaway, J. M., & Winston, R. J. (2022). Modeling bioretention hydrology: Quantifying the performance of DRAINMOD-Urban and the SWMM LID module. Journal of Hydrology, 612, 128179. [145] Locatelli, L., Mark, O., Mikkelsen, P. S., Arnbjerg-Nielsen, K., Deletic, A., Roldin, M., & Binning, P. J. (2017). Hydrologic impact of urbanization with extensive stormwater infiltration. Journal of Hydrology, 544, 524-537. [146] Löwe, R., Urich, C., Domingo, N. S., Mark, O., Deletic, A., & Arnbjerg-Nielsen, K. (2017). Assessment of urban pluvial flood risk and efficiency of adaptation options through simulations–A new generation of urban planning tools. Journal of Hydrology, 550, 355-367. [147] Luan, Q., Fu, X., Song, C., Wang, H., Liu, J., & Wang, Y. (2017). Runoff effect evaluation of LID through SWMM in typical mountainous, low-lying urban areas: A case study in China. Water, 9(6), 439. [148] Lyu, C., Ma, R., Hager, R., & Porter, D. (2022). The relationship between resilience, anxiety, and depression in Chinese collegiate athletes. Frontiers in Psychology, 13, 921419. [149] Marasco, S., Kammouh, O., & Cimellaro, G. P. (2022). Disaster resilience quantification of communities: A risk-based approach. International Journal of Disaster Risk Reduction, 70, 102778. [150] Martin-Breen, P., & Anderies, J. M. (2011). Resilience: A literature review. In: Sponsored by Rockefeller Foundation, September. [151] Maskrey, A. (1989). Disaster mitigation: a community based approach. Oxfam GB. [152] Masten, A. S., & Reed, M.-G. J. (2002). Resilience in development. Handbook of positive psychology, 74, 88. [153] Di Mauro, M., & De Bruijn, K. M. (2012). Application and validation of mortality functions to assess the consequences of flooding to people. Journal of Flood Risk Management, 5(2), 92-110. [154] Mays, R. E., Walton, R., & Savino, B. (2013). Emerging trends toward holistic disaster preparedness. ISCRAM. [155] Mayunga, J. S. (2007). Understanding and applying the concept of community disaster resilience: a capital-based approach. Summer academy for social vulnerability and resilience building, 1(1), 1-16. [156] McAllister, T. (2016). Research needs for developing a risk-informed methodology for community resilience. Journal of Structural Engineering, 142(8), C4015008. [157] McClymont, K., Morrison, D., Beevers, L., & Carmen, E. (2020). Flood resilience: a systematic review. Journal of Environmental Planning and Management, 63(7), 1151-1176. [158] McDaniels, T., Chang, S., Cole, D., Mikawoz, J., & Longstaff, H. (2008). Fostering resilience to extreme events within infrastructure systems: Characterizing decision contexts for mitigation and adaptation. Global Environmental Change, 18(2), 310-318. [159] Meerow, S., Newell, J. P., & Stults, M. (2016). Defining urban resilience: A review. Landscape and urban Planning, 147, 38-49. [160] Miller, A. J., Arias, M. E., & Alvarez, S. (2021). Built environment and agricultural value at risk from Hurricane Irma flooding in Florida (USA). Natural hazards, 109(2), 1327-1348. [161] Moghadas, M., Asadzadeh, A., Vafeidis, A., Fekete, A., & Kötter, T. (2019). A multi-criteria approach for assessing urban flood resilience in Tehran, Iran. International journal of disaster risk reduction, 35, 101069. [162] Monterusso, M. A., Rowe, D. B., Rugh, C. L., & Russell, D. K. (2002, August). Runoff water quantity and quality from green roof systems. In XXVI International Horticultural Congress: Expanding Roles for Horticulture in Improving Human Well-Being and Life Quality 639 (pp. 369-376). [163] Morrison, C., Ramsey, E., & Bond, D. (2017). The role of social entrepreneurs in developing community resilience in remote areas. Journal of Enterprising Communities: People and Places in the Global Economy, 11(1), 95-112. [164] Moteff, J. D., Parfomak, P., & Resources, Science, and Industry Division. (2004, October). Critical infrastructure and key assets: definition and identification. Washington: Congressional Research Service, Library of Congress. [165] Mudashiru, R. B., Sabtu, N., & Abustan, I. (2021). Quantitative and semi-quantitative methods in flood hazard/susceptibility mapping: a review. Arabian Journal of Geosciences, 14(11), 941. [166] Munpa, P., Kittipongvises, S., Phetrak, A., Sirichokchatchawan, W., Taneepanichskul, N., Lohwacharin, J., & Polprasert, C. (2022). Climatic and hydrological factors affecting the assessment of flood hazards and resilience using modified UNDRR indicators: Ayutthaya, Thailand. Water, 14(10), 1603. [167] Murray, V., & Ebi, K. L. (2012). IPCC special report on managing the risks of extreme events and disasters to advance climate change adaptation (SREX). In (Vol. 66, pp. 759-760): BMJ Publishing Group Ltd. [168] Newman, R., & Noy, I. (2023). The global costs of extreme weather that are attributable to climate change. Nature Communications, 14(1), 6103. [169] Nigussie, T. A., & Altunkaynak, A. (2019). Modeling the effect of urbanization on flood risk in Ayamama Watershed, Istanbul, Turkey, using the MIKE 21 FM model. Natural hazards, 99, 1031-1047. [170] O'Brien, K., Hayward, B., & Berkes, F. (2009). Rethinking social contracts: building resilience in a changing climate. Ecology and society, 14(2). [171] O'Brien, J. S., Julien, P. Y., & Fullerton, W. T. (1993). Two-dimensional water flood and mudflow simulation. Journal of hydraulic engineering, 119(2), 244-261. [172] Oliver, T. H., Heard, M. S., Isaac, N. J., Roy, D. B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, C. D. L., & Petchey, O. L. (2015). Biodiversity and resilience of ecosystem functions. Trends in ecology & evolution, 30(11), 673-684. [173] Osberghaus, D. (2017). The effect of flood experience on household mitigation—Evidence from longitudinal and insurance data. Global environmental change, 43, 126-136. [174] Owotoki, P., Manojlovic, N., Mayer-Lindenberg, F., & Pasche, E. (2006, December). A data mining approach for capacity building of stakeholders in integrated flood management. In Sixth International Conference on Data Mining (ICDM'06) (pp. 446-455). IEEE. [175] Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church, J. A., Clarke, L., Dahe, Q., & Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Ipcc. [176] Padulano, R., Rianna, G., Costabile, P., Costanzo, C., Del Giudice, G., Mercogliano, P. (2021). Propagation of variability in climate projections within urban flood modelling: A multi-purpose impact analysis. Journal of Hydrology, 602, 126756. [177] Palla, A., Colli, M., Candela, A., Aronica, G. T., & Lanza, L. G. (2018). Pluvial flooding in urban areas: The role of surface drainage efficiency. Journal of Flood Risk Management, 11, S663-S676. [178] Pant, R., Thacker, S., Hall, J. W., Alderson, D., & Barr, S. (2018). Critical infrastructure impact assessment due to flood exposure. Journal of Flood Risk Management, 11(1), 22-33. [179] Papathoma-Köhle, M., Zischg, A., Fuchs, S., Glade, T., & Keiler, M. (2015). Loss estimation for landslides in mountain areas–An integrated toolbox for vulnerability assessment and damage documentation. Environmental Modelling & Software, 63, 156-169. [180] Park, J., Seager, T. P., Rao, P. S. C., Convertino, M., & Linkov, I. (2013). Integrating risk and resilience approaches to catastrophe management in engineering systems. Risk analysis, 33(3), 356-367. [181] Parker, D. J. (2017). Flood warning systems and their performance. In Oxford research encyclopedia of natural hazard science. [182] Patro, S., Chatterjee, C., Mohanty, S., Singh, R., & Raghuwanshi, N. (2009). Flood inundation modeling using MIKE FLOOD and remote sensing data. Journal of the Indian Society of Remote Sensing, 37, 107-118. [183] Pelling, M. (2012). Hazards, risk and urbanisation. In Handbook of Hazards and Disaster Risk Reduction (pp. 145-154). Routledge. [184] Peng, H.-Q., Liu, Y., Wang, H.-W., & Ma, L.-M. (2015). Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model. Environmental Science and Pollution Research, 22, 15712-15721. [185] Perera, D., Seidou, O., Agnihotri, J., Mehmood, H., & Rasmy, M. (2020). Challenges and technical advances in flood early warning systems (FEWSs). Flood impact mitigation and resilience enhancement. [186] Pfefferbaum, R. L., Pfefferbaum, B., Nitiéma, P., Houston, J. B., & Van Horn, R. L. (2015). Assessing community resilience: An application of the expanded CART survey instrument with affiliated volunteer responders. American Behavioral Scientist, 59(2), 181-199. [187] Plate, E. J. (2002). Flood risk and flood management. Journal of Hydrology, 267(1-2), 2-11. [188] Poulin, C., & Kane, M. B. (2021). Infrastructure resilience curves: Performance measures and summary metrics. Reliability Engineering & System Safety, 216, 107926. [189] Prinsen, G. F., & Becker, B. P. J. (2011). Application of SOBEK hydraulic surface water models in the Netherlands Hydrological Modelling Instrument. Irrigation and drainage, 60, 35-41. [190] Qi, W., Ma, C., Xu, H., Chen, Z., Zhao, K., & Han, H. (2021). A review on applications of urban flood models in flood mitigation strategies. Natural Hazards, 108, 31-62. [191] Quirogaa, V. M., Kurea, S., Udoa, K., & Manoa, A. (2016). Application of 2D numerical simulation for the analysis of the February 2014 Bolivian Amazonia flood: Application of the new HEC-RAS version 5. Ribagua, 3(1), 25-33. [192] Recanatesi, F., & Petroselli, A. (2020). Land cover change and flood risk in a peri-urban environment of the metropolitan area of Rome (Italy). Water resources management, 34(14), 4399-4413. [193] Rendon, C., Osman, K. K., & Faust, K. M. (2021). Path towards community resilience: Examining stakeholders’ coordination at the intersection of the built, natural, and social systems. Sustainable cities and society, 68, 102774. [194] Rezende, O. M., de Oliveira, A. K. B., Jacob, A. C. P., & Miguez, M. G. (2019). A framework to introduce urban flood resilience into the design of flood control alternatives. Journal of Hydrology, 576, 478-493. [195] Rinaldi, S. M., Peerenboom, J. P., & Kelly, T. K. (2001). Identifying, understanding, and analyzing critical infrastructure interdependencies. IEEE control systems magazine, 21(6), 11-25. [196] Roberts, N., Nadim, F., & Kalsnes, B. (2009). Quantification of vulnerability to natural hazards. Georisk, 3(3), 164-173. [197] Rose, A. (2007). Economic resilience to natural and man-made disasters: Multidisciplinary origins and contextual dimensions. Environmental Hazards, 7(4), 383-398. [198] Rose, A., & Krausmann, E. (2013). An economic framework for the development of a resilience index for business recovery. International journal of disaster risk reduction, 5, 73-83. [199] Rose, A. (2019). Mea sur ing Economic Resilience. The Future of, 171. [200] Rossman, L. A. (2010). Modeling low impact development alternatives with SWMM. Journal of Water Management Modeling. [201] Scherzer, S., Lujala, P., & Rød, J. K. (2019). A community resilience index for Norway: An adaptation of the Baseline Resilience Indicators for Communities (BRIC). International Journal of Disaster Risk Reduction, 36, 101107. [202] Schmitt, T. G., Thomas, M., & Ettrich, N. (2004). Analysis and modeling of flooding in urban drainage systems. Journal of Hydrology, 299(3-4), 300-311. [203] Sen, M. K., Dutta, S., & Kabir, G. (2021). Evaluation of interaction between housing infrastructure resilience factors against flood hazard based on rough DEMATEL approach. International journal of disaster resilience in the built environment, 12(5), 555-575. [204] Sendzimir, J., Reij, C. P., & Magnuszewski, P. (2011). Rebuilding resilience in the Sahel: regreening in the Maradi and Zinder regions of Niger. Ecology and society, 16(3). [205] Seo, Y., Kim, S., & Singh, V. P. (2015). Multistep-ahead flood forecasting using wavelet and data-driven methods. KSCE Journal of Civil Engineering, 19, 401-417. [206] Sheng, J., & Wilson, J. P. (2009). Watershed urbanization and changing flood behavior across the Los Angeles metropolitan region. Natural Hazards, 48(1), 41-57. [207] Sherrieb, K., Louis, C. A., Pfefferbaum, R. L., Pfefferbaum, J. B., Diab, E., & Norris, F. H. (2012). Assessing community resilience on the US coast using school principals as key informants. International journal of disaster risk reduction, 2, 6-15. [208] Sherrieb, K., Norris, F. H., & Galea, S. (2010). Measuring capacities for community resilience. Social indicators research, 99, 227-247. [209] Simonovic, S. P., & Ahmad, S. (2005). Computer-based model for flood evacuation emergency planning. Natural Hazards, 34, 25-51. [210] Singh, P., Sinha, V. S. P., Vijhani, A., & Pahuja, N. (2018). Vulnerability assessment of urban road network from urban flood. International journal of disaster risk reduction, 28, 237-250. [211] Skandhakumar, N., Reid, J., Salim, F., & Dawson, E. (2018). A policy model for access control using building information models. International Journal of Critical Infrastructure Protection, 23, 1-10. [212] Smit, B., & Wandel, J. (2006). Adaptation, adaptive capacity and vulnerability. Global environmental change, 16(3), 282-292. [213] Smith, K. (1981). Vulnerability. Resilience and the collapse of socieiy: A review of models and possible climatic applications. Peter Timmerman, Environmental Monograph No. 1, Institute for Environmental Studies, University of Toronto, 1981, No. of pages: 42. Price: 7.50 plus 2.00 postage and handling. International Journal of Climatology, 1(4), 396-396. [214] Smith, K., & Lawrence, G. (2014). Flooding and food security: A case study of community resilience in Rockhampton. Rural Society, 23(3), 216-228. [215] Smith, P., Francombe, J., Lempert, R. J., & Gehrt, D. (2022). Consistency of UK climate risk approaches with new ISO guidelines. Climate Risk Management, 37, 100422. [216] Solomon, S. (2007). Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Vol. 4). Cambridge university press. [217] Sørup, H. J. D., Fryd, O., Liu, L., Arnbjerg-Nielsen, K., & Jensen, M. B. (2019). An SDG-based framework for assessing urban stormwater management systems. Blue-Green Systems, 1(1), 102-118. [218] Southwick, S. M., Bonanno, G. A., Masten, A. S., Panter-Brick, C., & Yehuda, R. (2014). Resilience definitions, theory, and challenges: interdisciplinary perspectives. European journal of psychotraumatology, 5(1), 25338. [219] Sörensen, J., Persson, A., Sternudd, C., Aspegren, H., Nilsson, J., Nordström, J., ... & Mobini, S. (2016). Re-thinking urban flood management—Time for a regime shift. Water, 8(8), 332. [220] STANDARD, D., 2019. Tilpasning til klimaændringer –Prinicipper, krav og retningslinjer. Adaptation to climate change – Principles, requirements and guidelines (ISO 14090:2019), Danish Standards Association. [221] Stelling, G. S. (2012, November). Quadtree flood simulations with sub-grid digital elevation models. In Proceedings of the institution of civil engineers-water management (Vol. 165, No. 10, pp. 567-580). Thomas Telford Ltd. [222] Strohbach, M. W., Döring, A. O., Möck, M., Sedrez, M., Mumm, O., Schneider, A.-K., Weber, S., & Schröder, B. (2019). The “hidden urbanization”: Trends of impervious surface in low-density housing developments and resulting impacts on the water balance. Frontiers in Environmental Science, 7, 29. [223] Su, H., Zhao, X., Wang, L., & Li, Y. (2024). How rural community resilience evolves after a disaster? A case study of the eastern Qinghai-Tibetan Plateau, China. Applied Geography, 165, 103238. [224] Sun, Y., Li, Y., Yu, T., Zhang, X., Liu, L., & Zhang, P. (2021). Resource extraction, environmental pollution and economic development: Evidence from prefecture-level cities in China. Resources Policy, 74, 102330. [225] Tate, E., & Maidment, D. (1999). Floodplain mapping using HEC-RAS and ArcView GIS. [226] Te Linde, A. H., Aerts, J. C. J. H., Bakker, A. M. R., & Kwadijk, J. C. J. (2010). Simulating low‐probability peak discharges for the Rhine basin using resampled climate modeling data. Water resources research, 46(3). [227] Team, C. W. (2008). Synthesis report. Climate Change 2007. Working Groups I, II and III to the Fourth Assessment. [228] Teng, J., Jakeman, A. J., Vaze, J., Croke, B. F., Dutta, D., & Kim, S. (2017). Flood inundation modelling: A review of methods, recent advances and uncertainty analysis. Environmental modelling & software, 90, 201-216. [229] Thaler, T. (2021). Justice and Resilience in Flood Risk Management: What Are the Socio-Political Implications? Building Resilience to Natural Hazards in the Context of Climate Change: Knowledge Integration, Implementation and Learning, 41-54. [230] Thieken, A. H., Bessel, T., Kienzler, S., Kreibich, H., Müller, M., Pisi, S., & Schröter, K. (2016). The flood of June 2013 in Germany: how much do we know about its impacts?. Natural hazards and earth system sciences, 16(6), 1519-1540. [231] Thomas, K., Hardy, R. D., Lazrus, H., Mendez, M., Orlove, B., Rivera‐Collazo, I., ... & Winthrop, R. (2019). Explaining differential vulnerability to climate change: A social science review. Wiley Interdisciplinary Reviews: Climate Change, 10(2), e565. [232] Thorne, C. R., Lawson, E. C., Ozawa, C., Hamlin, S. L., & Smith, L. A. (2018). Overcoming uncertainty and barriers to adoption of Blue‐Green Infrastructure for urban flood risk management. Journal of Flood Risk Management, 11, S960-S972. [233] Timmerman, P. (1981). Vulnerability, resilience and the collapse of society: a review of models and possible climatic applications: Institute for Environmental Studies, University of Toronto. [234] Titterington, J., Squibbs, G., Digman, C., Allitt, R., Osborne, M., Eccleston, P., & Wisdish, A. (2017). Code of practice for the hydraulic modelling of urban drainage systems 2017. [235] Trenberth, K. E. (2005). The impact of climate change and variability on heavy precipitation, floods, and droughts. Encyclopedia of hydrological sciences, 17, 1-11. [236] Tsakiris, G. (2014). Flood risk assessment: concepts, modelling, applications. Natural Hazards and Earth System Sciences, 14(5), 1361-1369. [237] Tsihrintzis, V. A., & Hamid, R. (1998). Runoff quality prediction from small urban catchments using SWMM. Hydrological Processes, 12(2), 311-329. [238] Tu, J., Wen, J., Yang, L. E., Reimuth, A., Young, S. S., Zhang, M., ... & Garschagen, M. (2021). Assessment of building damages and adaptation options under extreme flood scenarios in Shanghai. Natural Hazards and Earth System Sciences Discussions, 2021, 1-27. [239] UNDHA, G. (1992). Internationally agreed glossary of basic terms related to disaster management. UNDoH Affairs, Editor, 81. [240] UNDRR. (2022). Global Assessment Report on Disaster Risk Reduction 2022 (GAR). [241] UNISDR, W. (2012). Disaster risk and resilience. Thematic think piece, UN system task force on the post-2015 UN development agenda. [242] United States Environmental Protection Agency. (USEPA) (2015). Storm Water Management Model User’s Manual Version 5.1, 1-176. [243] United States Environmental Protection Agency. (USEPA) (2016). Storm Water Management Model Reference Manual Volume III – Water Quality. 1-152. [244] Van Asselt, H. (2014). Alongside the UNFCCC: Complementary venues for climate action. Center for Climate and Energy Solutions (C2ES)[online]. Available at: https://www. c2es. org/site/assets/uploads/2014/05/alongside-unfccc-complementaryvenues-climate-action. pdf. [245] Van Kessel, G., MacDougall, C., & Gibbs, L. (2014). Resilience—Rhetoric to reality: A systematic review of intervention studies after disasters. Disaster medicine and public health preparedness, 8(5), 452-460. [246] Van Wesenbeeck, B. K., Mulder, J. P., Marchand, M., Reed, D. J., de Vries, M. B., de Vriend, H. J., & Herman, P. M. (2014). Damming deltas: A practice of the past? Towards nature-based flood defenses. Estuarine, coastal and shelf science, 140, 1-6. [247] Villagra, P. (2019). Drivers of community resilience to natural hazards: The experience in Southern Chile. Environment: Science and Policy for Sustainable Development, 61(4), 4-17. [248] Villagra, P., Rojas, C., Ohno, R., Xue, M., & Gómez, K. (2014). A GIS-base exploration of the relationships between open space systems and urban form for the adaptive capacity of cities after an earthquake: The cases of two Chilean cities. Applied Geography, 48, 64-78. [249] Volp, N., Van Prooijen, B., & Stelling, G. (2013). A finite volume approach for shallow water flow accounting for high‐resolution bathymetry and roughness data. Water Resources Research, 49(7), 4126-4135. [250] Vu, T. T., & Ranzi, R. (2017). Flood risk assessment and coping capacity of floods in central Vietnam. Journal of hydro-environment research, 14, 44-60. [251] Wagenaar, D. J. (2012). The significance of flood duration for flood damage assessment. [252] Wagner, I., & Breil, P. (2013). The role of ecohydrology in creating more resilient cities. Ecohydrology & Hydrobiology, 13(2), 113-134. [253] Wang, Y., Liang, Q., Kesserwani, G., & Hall, J. W. (2011). A positivity-preserving zero-inertia model for flood simulation. Computers & Fluids, 46(1), 505-511. [254] Wedawatta, G., & Ingirige, B. (2014). Coping with extreme weather: strategies of construction SMEs. 2014 CIB W55/65/89/92/96/102/117 & TG72/81/83 international conference on Construction in a Changing World, [255] Wedawatta, G., Ingirige, B., & Proverbs, D. (2014). Small businesses and flood impacts: the case of the 2009 flood event in C ockermouth. Journal of Flood Risk Management, 7(1), 42-53. [256] Wei, H.-P., Yeh, K.-C., Liou, J.-J., Chen, Y.-M., & Cheng, C.-T. (2016). Estimating the risk of river flow under climate change in the Tsengwen River Basin. Water, 8(3), 81. [257] Wei, M., & Xu, J. (2024). Assessing road network resilience in disaster areas from a complex network perspective: A real-life case study from China. International Journal of Disaster Risk Reduction, 100, 104167. [258] Weis, S. W. M., Agostini, V. N., Roth, L. M., Gilmer, B., Schill, S. R., Knowles, J. E., & Blyther, R. (2016). Assessing vulnerability: an integrated approach for mapping adaptive capacity, sensitivity, and exposure. Climatic Change, 136(3), 615-629. [259] Wenger, C. (2015). Better use and management of levees: reducing flood risk in a changing climate. Environmental Reviews, 23(2), 240-255. [260] Wisner, B. (2013). Assessment of capability and vulnerability. In Mapping vulnerability (pp. 183-193). Routledge. [261] Wu, T., Li, H.-C., Wei, S.-P., Chen, W.-B., Chen, Y.-M., Su, Y.-F., Liu, J.-J., & Shih, H.-J. (2016). A comprehensive disaster impact assessment of extreme rainfall events under climate change: a case study in Zheng-wen river basin, Taiwan. Environmental Earth Sciences, 75, 1-17. [262] Wu, Y.-H., Liu, K.-F., & Chen, Y.-C. (2013). Comparison between FLO-2D and Debris-2D on the application of assessment of granular debris flow hazards with case study. Journal of Mountain Science, 10, 293-304. [263] Wu, Z., Shen, Y., & Wang, H. (2019). Assessing urban areas’ vulnerability to flood disaster based on text data: A case study in Zhengzhou city. Sustainability, 11(17), 4548. [264] Xia, J., Dong, B., Zhou, M., Ahmadian, R., Falconer, R. A., Li, Q., & Zhang, X. (2022). A unified formula for discharge capacity of street inlets for urban flood management. Journal of Hydrology, 609, 127667. [265] Xu, T., Jia, H., Wang, Z., Mao, X., & Xu, C. (2017). SWMM-based methodology for block-scale LID-BMPs planning based on site-scale multi-objective optimization: a case study in Tianjin. Frontiers of Environmental Science & Engineering, 11(4), 1. [266] Yazdi, J. (2018). Rehabilitation of urban drainage systems using a resilience-based approach. Water resources management, 32, 721-734. [267] Yin, K., Wu, J., Wang, W., Lee, D. H., & Wei, Y. (2023). An integrated resilience assessment model of urban transportation network: A case study of 40 cities in China. Transportation Research Part A: Policy and Practice, 173, 103687. [268] Zhang, R., Yuan, Y., Li, H., & Hu, X. (2022). Improving the framework for analyzing community resilience to understand rural revitalization pathways in China. Journal of Rural Studies, 94, 287-294. [269] Zhang, X., Song, J., Peng, J., & Wu, J. (2019). Landslides-oriented urban disaster resilience assessment—A case study in ShenZhen, China. Science of the total environment, 661, 95-106. [270] Zhong, M., Lin, K., Tang, G., Zhang, Q., Hong, Y., & Chen, X. (2020). A framework to evaluate community resilience to urban floods: A case study in three communities. Sustainability, 12(4), 1521. [271] Zhou, Z., Li, Q., He, P., Du, Y., Zou, Z., Xu, S., Han, X., & Zeng, T. (2023). Impacts of rainstorm characteristics on flood inundation mitigation performance of LID measures throughout an urban catchment. Journal of Hydrology, 624, 129841. [272] Zhu, S., Li, D., Feng, H., & Zhang, N. (2023). The influencing factors and mechanisms for urban flood resilience in China: From the perspective of social-economic-natural complex ecosystem. Ecological Indicators, 147, 109959. [273] Zou, Q., Zhou, J., Zhou, C., Guo, J., Deng, W., Yang, M., & Liao, L. (2012). Fuzzy risk analysis of flood disasters based on diffused-interior-outer-set model. Expert systems with applications, 39(6), 6213-6220. [274] 丁詩同、袁孝維、施上粟、許聿廷、何昊哲(2023)。基隆河藍色水路願景前期規劃。社團法人臺大產學交流發展協會。 [275] 內政部國土管理署(2002)。中和市、永和市(重新檢討)雨水下水道系統規劃報告。 [276] 內政部國土管理署(2022)。水環境低衝擊開發設施操作手冊。 [277] 內政部國土管理署(2023)。內政部營建署雨水下水道清疏及抽水站整備作業要點。 [278] 王毓麒、欉順忠、石欣軒、李士強(2018)。區域排水型試驗流域建置與梅姬颱風案例分析。災害防救科技與管理學刊,7(1),49-81。 [279] 王福杰(2018)。3Di應用於淹水即時預報之研究。國立成功大學水利及海洋工程學系碩士論文。 [280] 台灣大學慶齡工業慶齡工齡工業工業研究中心(2019)。高速降雨逕流模式協助擬定都市積水防治策略。 [281] 行政院公報(2019)。出流管制計畫書與規劃書檢核基準及洪峰流量計算方法。 [282] 何媚華(2013)。中永和地區都市排洪系統最佳管理措施之探討。國立臺灣大學土木工程學系碩士論文。 [283] 何謹余, 童慶斌, & 王涴雅. (2020). 減災與氣候變遷調適在區域治理上之融合研究-以坡地災害為例. Journal of Taiwan Agricultural Engineering, 66(2). [284] 吳振佑, 林家興, 陳國威, & 陳振宇. (2019). 2018 年北海道胆振東部地震引起的厚真町堰塞湖之形成與潰決潛勢分析. Journal of Chinese Soil and Water Conservation, 50(4), 154-165. [285] 李明儒(2010)。雨水下水道淤積對於都市淹水之影響評估。國立陽明交通大學土木工程學系學士論文。 [286] 李冠曄(2009)。氣候變異對於都市淹水影響之評估與應用研究。國立陽明交通大學土木工程學系學士論文。 [287] 災害防救法(2022)。全國法規資料庫。 [288] 林士惟(2018)。多目標基因演算法於韌性城市評估之研究。國立臺灣大學土木工程學研究所學位論文。 [289] 林子平(2018)。都市水循環之研究—地表不透水率之調查及逕流量實測解析. 國立成功大學建築學系博士論文。 [290] 林漢良、劉品辰(2010)。建立易致災地區之安全建地劃設機制與準則 (第二期)。內政部國土管理署城鄉發展分署。 [291] 洪啟瑄(2013)。分析基流對不同型態極端降雨事件水文模擬之影響─以烏溪流域為例。國立中央大學水文與海洋科學研究所碩士論文。 [292] 徐硯庭(2013)。低衝擊開發運用在高都市化地區的減洪效益-以新北市中永和地區為例。國立臺灣大學土木工程學系碩士論文。 [293] 國家災害防救科技中心(2013)。102 年易致災環境指標調查與評估(I)。 [294] 國家災害防救科技中心(2022)。災害潛勢圖資說明手冊。 [295] 張雅婷(2022)。時變性洪患韌性指標於高都市化區域之研究—以中永和為例。國立臺灣大學土木工程學系碩士論文。 [296] 陳志鴻(2005)。應用淹水模式評估都市區雨水下水道之效能。國立臺灣大學生物環境系統工程學研究所碩士論文。 [297] 陳韻如、林宣汝、劉俊志、連琮勳、陳永明(2020)。應用統計降尺度日資料於淹水災害風險圖。國家災害防救科技中心。 [298] 湯嘉芸、謝平城、林俐玲(2007)。FLO-2D 與 HEC-GeoRAS 應用於敏督利颱風造成南湖溪淹水之模擬。水土保持學報,39 (1):87-96 (2007)。 [299] 黃莉雅(2021)。考量內外水動態模擬下之逕流分擔策略效益評估。國立臺灣大學土木工程學系碩士論文。 [300] 新北市政府民政局(2019)。新北市2019年人口統計。https://www.ca.ntpc.gov.tw/home.jsp [301] 經濟部水利署(2012)。台灣脆弱度及風險地圖製作與整合應用。 [302] 經濟部水利署(2016)。水災風險圖資決策支援服務建置及應用。 [303] 經濟部水利署水利規劃試驗分署(2018)。淡水河水系水文水理論證報告。 [304] 經濟部水利署水利規劃試驗分署(2019)。提升即時淹水模擬效能之研究。 [305] 經濟部水利署水利規劃試驗分署(2020)。淡水河流域國土計畫特定區域計畫推動(1/2)。 [306] 經濟部水利署河川海洋組(2002)。逕流分擔與出流管制推動說明。水利署電子報第0214期。 [307] 蘇明道(2001)。防洪示範區淹水境況模擬與決策支援系統之研究─ 子計畫: 基隆河流域淹水損害評估模式與相關資料庫建立(I). 2001. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93910 | - |
| dc.description.abstract | 氣候變遷與都市化加劇極端降雨事件發生頻率,使都市面臨巨大的災害風險,防洪策略若能納入韌性概念,將有效減輕災害衝擊。關於韌性措施實際提升洪災韌性在過去文獻較少被提及,原因在於韌性是一個主觀的概念,其評估因子難以定義和量化。此外災前的預警、災中的應變以及災後的復原都會對於防災工作扮演重要角色,但既有方法難以完整評估所有階段,顯示在制定災害防治策略時需額外考量韌性的時變性。傳統上利用淹水潛勢地圖與風險矩陣的定性手段進行減災整備規劃及收容場所區位適宜性分析,然而上述方法僅提供物理淹水總量體的參考值,無法反映各區在災害不同階段的需求,也忽略了社會經濟和基礎設施對於韌性產生之影響。目前大部分相關研究對於都市防洪韌性僅提出質性評估架構,對於政策決策者在災害管理上較難提供有效且科學化的依據。
本研究以ISO 14091氣候變化風險評估的定義作為韌性評估框架,危害度、暴露度和敏感度為指標考量依據,有別於單純考慮物理因素因子,整合物理、社會經濟及基礎設施因子來建立洪災韌性指標(Flood Resilience Index, FRI),並定義災害韌性衝擊值(FRI impact)評估FRI整體表現。透過3Di洪水演算模式模擬真實事件獲取淹水物理量的危害度子指標,然後結合非物理性因子影響的暴露度和敏感度之子指標來組成FRI。研究區域為新北市中永和地區、臺中市北屯區及臺南市新化都市計畫區,除探討不同因子對於FRI的影響,測試韌性防災措施低衝擊開發(Low Impact Development, LID)對於防災韌性的提升效益,藉由子指標與整體FRI之間的交互作用探討不同因子對於都市洪災韌性的影響與防災策略。 研究結果指出FRI和危害度曲線的最低點存在一時間差,此將為災害救援和減災策略制定提供重要根據,顯示僅考量物理因子將會低估災害所產生的衝擊。整體的防洪韌性會受到降雨型態的影響,高強度、長延時及左偏雨型將對應越大的韌性衝擊值。此外洪水期間,都市基礎設施的損壞程度會影響韌性表現,滯洪池和下水道系統的密集程度將影響非都市區域的韌性表現,而路網和電網系統在災中的損壞率對於都市區域的韌性影響更大。在高密度開發區域,經濟發展及自主防災程度越高將提升都市防洪韌性,顯著影響洪災回復期,產生更快的恢復速度和更高的韌性。 應用FRI探討都市計畫區的LID對於防災之效益,研究結果指出LID能在短延時降雨事件中減少淹水面積和深度,但長延時降雨的效果不佳。然而從防洪韌性角度來分析,即使在長延時降雨情境下LID還是能有效縮短洪水災害的回復期,增加都市區域的韌性表現。將研究區域根據是否為都市地區及洪水嚴重程度進行分類,本研究利用交叉相關函數(CCF)和耦合協調度(CCD)來建立標準化的防災策略,由量化FRI與子指標間的相互作用來智慧化輔助決策支援系統。在高危害度地區中,適應途徑的減災措施必須以減少物理洪水為主,並且考慮社會經濟因子,以提升災害回復效益減少風險。在輕度和中度危害地區,救援工作的策略需依賴主導危害度的因子和維持社會經濟穩定的因子。主導FRI的子指標會隨著開發程度不同而有所差異,不論在都市或非都市區域暴露度皆是韌性的主要決定因素,但在非都市區域中敏感度主導FRI程度會隨著淹水嚴重程度越高而降低。 本研究所提出的時變性FRI,能夠捕捉到各種韌性因子隨時間的複雜相互作用,改善目前韌性工具無法針對整個災害階段進行評估之不足,時變特性允許更適宜的規劃和防災策略,也可以適應洪災事件過程中的各種風險因素。未來洪災韌性策略可以考慮更多的適應性,且FRI提供一個通用的架構供後續研究者持續納入更全面的評估因子,透過不同情境中的FRI證實其可以實際使用於防災策略的制定,並將動態韌性措施整合到都市規劃和政策中,更能增強都市應對洪水的能力。 | zh_TW |
| dc.description.abstract | Climate change and urbanization have intensified the frequency of extreme rainfall events, exposing metropolitan areas to significant disaster risks. Incorporating resilience concepts into flood prevention strategies can effectively mitigate disaster impacts. Traditionally, qualitative methods utilizing flood hazard maps and risk matrices have been employed for disaster prevention decision-making and resource allocation. However, flood hazard maps only provide reference values for total volumes and cannot reflect the varying needs of different areas over time. Furthermore, conventional flood risk analyses typically only consider physical inundation conditions, neglecting socioeconomic and infrastructural disparities, leading to uneven resource distribution. This study establishes a quantitative assessment from a resilience perspective on both temporal and spatial scales, proposing time-varying indicators to enhance urban disaster prevention efficacy.
Using the ISO 14091 definition of climate change risk as a resilience assessment framework, hazard, exposure, and sensitivity serve as the basis for indicator consideration. Diverging from indicators that solely consider immediate hydrological factors, this study integrates hydrological, socioeconomic, and infrastructural factors to construct a Flood Resilience Index (FRI). The 3Di flood simulation model is employed to simulate real events and obtain hazard sub-indicators of physical flood quantities. These are then combined with exposure and sensitivity sub-indicators influenced by social, economic, and infrastructural factors to compose the FRI. The study areas include the Zhonghe-Yonghe district of New Taipei City, the Beitun district of Taichung City, and the Xinhua urban planning area of Tainan City. In addition to exploring the impact of different factors on the FRI, the study identifies dominant factors through the interactions between sub-indicators and the overall FRI across different regions, while also investigating the influence of various factors on urban flood resilience and disaster prevention strategies. Under the interplay of hazard, exposure, and sensitivity, the research results indicate a temporal discrepancy between the FRI and the lowest point of the hazard curve, providing crucial basis for disaster relief and mitigation strategy formulation. Moreover, during flood events, the extent of urban infrastructure damage affects the overall disaster impact. Compared to retention ponds and drainage systems, road and power grid networks have a more significant influence on disasters, implying that infrastructure substantially impacts the FRI. In high-density development areas, economic development and autonomous disaster prevention have a certain influence on resilience. The overall disaster impact is affected by rainfall intensity, with rainfall skewness dominating in the initial stages of a disaster. The FRI curve shape is determined by the position of its lowest point, while population age distribution and economic conditions significantly influence the flood recovery period, with better socioeconomic conditions leading to faster recovery rates and higher resilience. Comparing urban and non-urban areas reveals that exposure is the primary determinant of resilience in both contexts, with sensitivity having a relatively greater influence in urban areas. Classifying the study areas based on urbanization and flood severity, this research employs cross-correlation functions and coupling coordination degree to establish standardized disaster prevention strategies, utilizing quantified FRI and sub-indicator interactions to intelligently assist decision support systems. In high-hazard areas, adaptive mitigation measures must primarily focus on reducing physical flooding while considering socioeconomic factors to enhance disaster recovery efficacy and reduce risks. In low and moderate hazard areas, rescue strategies should rely on factors dominating hazard levels and maintaining socioeconomic stability. Applying the FRI to examine the disaster prevention benefits of Low Impact Development (LID) in urban planning areas, the results indicate that LID can reduce flood area and depth in short-duration rainfall events but is less effective for long-duration rainfall. However, FRI analysis shows that even under long-duration conditions, LID can effectively shorten the recovery period of flood disasters, thereby increasing flood resilience. The time-varying FRI proposed in this study can capture the complex temporal interactions among various resilience factors. Its temporal characteristics allow for more appropriate planning and disaster prevention strategies, adapting to various risk factors throughout the flood event process. Future flood resilience strategies could consider greater adaptability, including comprehensive risk assessments, integrating dynamic resilience measures into urban planning and policies to further enhance urban flood response capabilities. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:21:55Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:21:55Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌謝 II 中文摘要 IV 英文摘要 VI 目 次 IX 圖 次 XV 表 次 XXIV 第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 4 1.3 研究流程 6 第二章 文獻回顧 8 2.1 不同國際氣候變遷風險定義下的韌性評估架構 8 2.1.1 災害的定義、種類與特性 8 2.1.2 洪水風險之定義 9 2.1.3 災害管理與韌性防災概念 11 2.1.4 臺灣淹水風險圖資之發展 20 2.2 洪災韌性指標(FRI) 22 2.3 不同影響韌性的評估層面 36 2.3.1 物理淹水層面 36 2.3.2 社會經濟層面 36 2.3.3 關鍵基礎設施 37 2.3.4 都市與非都市區域的韌性差異 38 2.4 都市淹水模式 39 2.4.1 SOBEK 40 2.4.2 MIKE 43 2.4.3 FLO-2D 45 2.4.4 InfoWorks ICM 47 2.4.5 SWMM 48 2.4.6 HEC-RAS 49 2.4.7 3Di 51 2.4.8 各淹水模式之比較 55 2.5 低衝擊開發設施與對於韌性之效益 56 2.5.1 低衝擊開發設施 56 2.5.2 低衝擊開發之水理模擬 62 第三章 FRI理論與研究方法 66 3.1 FRI基本結構建立 66 3.2 物理淹水因子的確立 68 3.3 社會經濟因子的確立 70 3.4 社會經濟因子作用範疇的改變及FRI架構的修正 72 3.4.1 危害度指標 74 3.4.2 暴露度指標 74 3.4.3 敏感度指標 76 3.5 最終修正之FRI架構及評估因子 79 3.6 FRI表現之模式評估 80 3.6.1 FRI表現程度之評估方式 80 3.6.2 FRI子指標間的相互作用程度評估 82 第四章 模式建置 85 4.1 3Di 模式說明 85 4.1.1 模式技術及特性簡介 85 4.1.2 水理運算基本原理 87 4.1.3 數值計算方法 88 4.2 模式建置 96 4.2.1 模擬降雨情境設計 96 4.2.2 不同區域模式一二維參數設定 97 4.2.3 研究區域排水系統設置 98 4.2.4 網格設定 102 4.2.5 二維參數設定 110 4.2.6 一維下水道設定 117 4.2.7 研究區域洪水模式建置完成 123 4.3 模式率定及驗證 125 4.3.1 新化都市計畫區模式驗證 125 4.3.2 新北市中永和區域模式驗證 127 4.3.3 臺中市北屯區域模式驗證 129 4.4 數值模擬完成後之物理淹水因子結果產出 130 4.5 低衝擊開發模式建置 132 4.5.1 低衝擊開發對於都市洪災韌性之潛在效益 132 4.5.2 低衝擊開發元件 133 4.5.3 低衝擊開發於水理模式中之設定 134 第五章 研究區域選擇與模擬降雨情境 139 5.1 臺南市新化都市計畫區 139 5.1.1 地理位置與地文條件 139 5.1.2 人口趨勢與經濟發展 140 5.1.3 淹水風險與模擬情境 141 5.1.4 關鍵議題 144 5.2 新北市中永和地區 144 5.2.1 地理位置與地文條件 144 5.2.2 人口發展、經濟發展與自我防災政策 146 5.2.3 淹水風險與模擬情境 150 5.2.4 關鍵議題 153 5.3 臺中市北屯區 154 5.3.1 地理位置與地文條件 154 5.3.2 人口發展、經濟發展與自我防災政策 155 5.3.3 關鍵基礎設施 156 5.3.4 淹水風險與模擬情境 157 5.3.5 關鍵議題 159 5.4 關鍵議題統整與對應研究結果章節 159 第六章 時變性因子對於FRI之影響 161 6.1 不同降雨型態對於FRI產生之影響 161 6.1.1 降雨強度 161 6.1.2 降雨延時 162 6.1.3 降雨偏態 163 6.2 社會經濟因子在FRI扮演之角色 165 6.2.1 考量社會經濟因子以及時變性 166 6.2.2 社會經濟因子之重要性 169 6.3 關鍵基礎設施因子的導入對於FRI的影響及應用性 170 第七章 FRI應用於防災決策 175 7.1 低衝擊開發作為防災決策 175 7.1.1 LID對減洪的影響 175 7.1.2 LID對FRI的影響 178 7.1.3 FRI隨時間的變化 181 7.2 臨界值變化應用於不同特性之區域 184 7.3 不同土地利用中FRI的表現形態 185 7.4 利用FRI的分數曲線與各子指標做為防災策略制定之依據 188 7.4.1 以FRI 分類為根據制定防災策略路徑圖 188 7.4.2 CCD與CCF函數量化各因子對於FRI之影響來制定防災策略 193 7.5 FRI的時空變異性實際用於防災策略 196 第八章 討論 198 8.1 流速因子之適用性評估 198 8.2 評估因子對於FRI之敏感度 199 第九章 結論與建議 201 9.1 結論 201 9.2 建議 203 參考文獻 205 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 洪災韌性指標(Flood Resilience Index) | zh_TW |
| dc.subject | 動態風險地圖 | zh_TW |
| dc.subject | 洪災風險管理 | zh_TW |
| dc.subject | 耦合協調 | zh_TW |
| dc.subject | 低衝擊開發(LID) | zh_TW |
| dc.subject | Flood Resilience Index | en |
| dc.subject | Flood Risk Management | en |
| dc.subject | Coupling Coordination | en |
| dc.subject | Dynamic Risk Map | en |
| dc.subject | Low Impact Development | en |
| dc.title | 考量時空變化之都市洪災韌性指標定量化研究 | zh_TW |
| dc.title | Evaluation of Multi-Factor Flood Resilience Index for Resilient Capacity and Guiding Disaster Mitigation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 博士 | - |
| dc.contributor.coadvisor | 李鴻源 | zh_TW |
| dc.contributor.coadvisor | Hong-Yuan Lee | en |
| dc.contributor.oralexamcommittee | 游景雲;施上粟;林鎮洋;葉克家;陳憲宗 | zh_TW |
| dc.contributor.oralexamcommittee | Jiing-Yun You;Shang-Shu Shih;Jen-Yang Lin;Keh-Chia Yeh;Shien-Tsung Chen | en |
| dc.subject.keyword | 洪災韌性指標(Flood Resilience Index),耦合協調,洪災風險管理,低衝擊開發(LID),動態風險地圖, | zh_TW |
| dc.subject.keyword | Flood Resilience Index,Low Impact Development,Coupling Coordination,Flood Risk Management,Dynamic Risk Map, | en |
| dc.relation.page | 226 | - |
| dc.identifier.doi | 10.6342/NTU202402627 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| dc.date.embargo-lift | 2029-07-29 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 15.96 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
