請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93900完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 閔明源 | zh_TW |
| dc.contributor.advisor | Ming-Yuan Min | en |
| dc.contributor.author | 賴品寰 | zh_TW |
| dc.contributor.author | Pin-Huan Lai | en |
| dc.date.accessioned | 2024-08-09T16:17:52Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-22 | - |
| dc.identifier.citation | Arnsten AFT and Goldman-Rakic PS (1984) Selective prefrontal cortical projections to the region of the locus coeruleus and raphe nuclei in the rhesus monkey. Brain Res 306(1-2):9-18.
Arnsten, A. F. T. (2011). Catecholamine influences on dorsolateral prefrontal cortical networks. Biol Psychiatry 69(12):e89–99. Aston-Jones G and Bloom FE (1981) Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J Neurosci 1(8):876-86. Aston-Jones G and Cohen JD (2005) An integrative theory of locus coeruleus-norepinephrine function: adaptive gain and optimal performance. Annu Rev Neurosci 28:403-50. Aston-Jones G, Rajkowski J, Kubiak P, and Alexinsky T (1994) Locus Coeruleus Neurons in Monkey Are Selectively Activated by Attended Cues in a Vigilance Task. J Neurosci 14(7):4467-80. Barcomb K, Olah SS, Kennedy MJ, and Ford CP (2022) Properties and modulation of excitatory inputs to the locus coeruleus. J Physiol 600(22):4897-4916. Berridge CW and Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Rev 42(1):33-84 Borodovitsyna O, Duffy BC, Pickering AE, and Chandler DJ (2020) Anatomically and functionally distinct locus coeruleus efferents mediate opposing effects on anxiety-like behavior. Neurobiol Stress 13:100284. Boudkkazi S, Carlier E, Ankri N, Caillard O, Giraud P, Fronzaroli-Molinieres L, and Debanne D (2007) Release-Dependent Variations in Synaptic Latency: A Putative Code for Short- and Long-Term Synaptic Dynamics. Neuron 56(6):1048-1060. Bouret S and Richmond BJ (2015) Sensitivity of Locus Ceruleus Neurons to Reward Value for Goal-Directed Actions. J Neurosci 35(9):4005-14. Bouret S and Sara SJ (2004) Reward expectation, orientation of attention and locus coeruleus-medial frontal cortex interplay during learning. Eur J Neurosci 20(3):791-802 Bouret S and Sara SJ (2005) Network reset: a simplified overarching theory of locus coeruleus noradrenaline function. Trends Neurosci 28(11):574-82. Breton-Provencher V and Sur M (2019) Active control of arousal by a locus coeruleus GABAergic circuit. Nat Neurosci 22:218-28. Breton-Provencher V, Drummond GT, and Sur M (2021) Locus Coeruleus Norepinephrine in Learned Behavior: Anatomical Modularity and Spatiotemporal Integration in Targets. Front Neural Circuits 15:638007. Egroo MV, Koshmanova E, Vandewalle G, and Jacobs HIL (2022) Importance of the locus coeruleus-norepinephrine system in sleep-wake regulation: Implications for aging and Alzheimer's disease. Sleep Med Rev 62:101592 Franklin KBJ and Paxinos G (2007) The mouse brain in stereotaxic coordinates (3rd ed.). Academic Press. Gan JO, Walton ME, and Phillips PE (2010) Dissociable cost and benefit encoding of future rewards by mesolimbic dopamine. Nat Neurosci 13:25-27. Giorgi FS, Galgani A, Puglisi-Allegra S, Busceti CL, and Fornai F (2021) The connections of Locus Coeruleus with hypothalamus: potential involvement in Alzheimer’s disease. J Neural Transm (Vienna) 128(5):589-613. Giorgi FS, Galgani A, Puglisi-Allegra S, Limanaqi F, Busceti CL, and Fornai F (2020) Locus Coeruleus and neurovascular unit: From its role in physiology to its potential role in Alzheimer's disease pathogenesis. J Neurosci Res 98(12):2406-2434 Hervé-Minvielle A and Sara SJ (1995) Rapid habituation of auditory responses of locus coeruleus cells in anaesthetized and awake rats. Neuroreport 6(10):1363-8. Hirata A, Aguilar J, and Castro-Alamancos MA (2006) Noradrenergic Activation Amplifies Bottom-Up and Top-Down Signal-to-Noise Ratios in Sensory Thalamus. J Neurosci 26(16):4426-4436. Hirschberg S, Li Y, Randall A, Kremer EJ, and Pickering AE (2017) Functional dichotomy in spinal- vs prefrontal-projecting locus coeruleus modules splits descending noradrenergic analgesia from ascending aversion and anxiety in rats. eLife 6:e29808. Hopper HL and Moulins M (1989) Switching of a Neuron from One Network to Another by Sensory-Induced Changes in Membrane Properties. Science 244(4912):1587-9. Howorth PW, Teschemacher AG, and Pickering AE (2009) Retrograde adenoviral vector targeting of nociresponsive pontospinal noradrenergic neurons in the rat in vivo. J Comp Neurol 512(2):141-157. Jodo E and Aston-Jones G (1997) Activation of locus coeruleus by prefrontal cortex is mediated by excitatory amino acid inputs. Brain Res 768(1-2):327-32. Jodo E, Chiang C, and Aston-Jones G (1998) Potent excitatory influence of prefrontal cortex activity on noradrenergic locus coeruleus neurons. Neuroscience 83(1):63-79. Klapoetke NC, Murata Y, Kim SS, Pulver SR, Birdsey-Benson A, Cho YK, Morimoto TK, Chuong AS, Carpenter EJ, Tian ZJ, Wang J, Xie YL, Yan ZX, Zhang Y, Chow BY, Surek B, Melkonian M, Jayaraman V, Constantine-Paton M, Wong GKS, and Boyden ES (2014) Independent optical excitation of distinct neural populations. Nature Methods 11:338-346. Kuo CC, Hsieh JC, Tsai HC, Kuo YS, Yau HJ, Chen CC, Chen RF, Yang HW, and Min MY (2020) Inhibitory interneurons regulate phasic activity of noradrenergic neurons in the mouse locus coeruleus and functional implications. J Physiol 598(18):4003-4029. Llorca-Torralba M, Borges G, Neto F, Mico JA, and Berrocoso E (2016) Noradrenergic Locus Coeruleus pathways in pain modulation. Neuroscience 338:93-113. Markussen NB, Knopper RW, Hasselholt S, Skoven CS, Nyengaard JR, Østergaard L, and Hansen B (2023) Locus coeruleus ablation in mice: protocol optimization, stereology and behavioral impact. Front Cell Neurosci 17:1138624. Martins ARO and Froemke RC (2015) Coordinated forms of noradrenergic plasticity in the locus coeruleus and primary auditory cortex. Nat Neurosci 18(10):1483-92 Mather M and Harley CW (2016) The Locus Coeruleus: Essential for Maintaining Cognitive Function and the Aging Brain. Trends Cogn Sci 20(3):214-226. McKinney A, Hu M, Hoskins A, Mohammadyar A, Naeem N, Jing JZ, Patel SS, Sheth BR, and Jiang XL (2023) Cellular composition and circuit organization of the locus coeruleus of adult mice. eLife 12:e80100. Morris LS, McGall JG, Charney DS, and Murrough JW (2020) The role of the locus coeruleus in the generation of pathological anxiety. Brain Neurosci Adv 4:2398212820930321. Moxon KA, Devilbiss DM, Chapin JK, and Waterhouse BD (2007) Influence of norepinephrine on somatosensory neuronal responses in the rat thalamus: a combined modeling and in vivo multi-channel, multi-neuron recording study. Brain Res 1147:105-23. O’Donnell J, Zeppenfeld D, McConnell E, Pena S, and Nedergaard M (2012) Norepinephrine: a neuromodulator that boosts the function of multiple cell types to optimize CNS performance. Neurochem Res 37(11):2496-512. Opitz A, Falchier A, Linn GS, Milham MP, and Schroder CE (2017) Limitations of ex vivo measurements for in vivo neuroscience. Proc Natl Acad Sci U S A 114(20):5243-6. Pertovaara A (2013) The noradrenergic pain regulation system: a potential target for pain therapy. Eur J Pharmacol 716(1-3):2-7. Pfaff DW, Martin EM, and Faber D (2012) Origins of arousal: roles for medullary reticular neurons. Trends Neurosci 35(8):468-76. Rogers RD (2011) The Roles of Dopamine and Serotonin in Decision Making: Evidence from Pharmacological Experiments in Humans. Neuropsychopharmacol 36:114-132. Samuels ER and Szabadi E (2008) Functional neuroanatomy of the noradrenergic locus coeruleus: its roles in the regulation of arousal and autonomic function part I: principles of functional organization. Curr Neuropharmacol 6(3):235-53. Sara SJ (2009) The locus coeruleus and noradrenergic modulation of cognition. Nat Rev Neurosci 10(3):211-23. Sara SJ and Bouret S (2012) Orienting and reorienting: the locus coeruleus mediates cognition through arousal. Neuron 76(1):130-41. Schwarz LA, Miyamichi K, Gao XJJ, Beier KT, Brandon W, DeLoach KE, Ren J, Ibanes S, Malenka RC, Kremer EJ, and Luo LQ (2015) Viral-genetic tracing of the input–output organization of a central noradrenaline circuit. Nature 524:88-92. Sesack SR, Deutch AY, Roth TH, and Bunney BS (1989) Topographical organization of the efferent projections of the medial prefrontal cortex in the rat: an anterograde tract-tracing study with Phaseolus vulgaris leucoagglutinin. J Comp Neurol 290(2):213-42. Sharma Y, Xu T, Graf WM, Fobbs A, Sherwood CC, Hof PR, Allman JM, and Manaye KF (2010) Comparative Anatomy of the Locus Coeruleus in Humans and Non-Human Primates. J Comp Neurol 518(7):963-71. Suttkus S, Schumann A, de la Cruz F, and Bär KJ (2021) Working memory in schizophrenia: The role of the locus coeruleus and its relation to functional brain networks. Brain Behav 11(5):e02130. Szabadi E (2013) Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol 27(8):659-93 Takeuchi, T., Duszkiewicz, A., Sonneborn, A. et al. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 537, 357–362 (2016). Tubbs RS, Loukas M, Shoja MM, Mortazavi MM, and Cohen-Gadol AA (2011) Félix Vicq d’Azyr (1746–1794): early founder of neuroanatomy and royal French physician. Childs Nerv Syst 27:1031-1034. Valentino RJ and Bockstaele EV (2008) Convergent regulation of locus coeruleus activity as an adaptive response to stress. Eur J Pharmacol 583(2-3):194-203. Vazey EM, Moorman DE, and Aston-Jones G (2018) Phasic locus coeruleus activity regulates cortical encoding of salience information. Proc Natl Acad Sci U S A 115(40):E9439-48. Vierock J, Grimm C, Nitzan N, and Hegemann P (2017) Molecular determinants of proton selectivity and gating in the red-light activated channelrhodopsin Chrimson. Sci Rep 7:9928. Wagner-Altendorf TA, Fischer B, and Roeper J (2019) Axonal projection‐specific differences in somatodendritic α2 autoreceptor function in locus coeruleus neurons. Eur J Neurosci 50(11):3772-3785. Wakamatsu K, Tabuchi K, Ojika M, Zucca FA, Zecca L, and Ito S (2015) Norepinephrine and its metabolites are involved in the synthesis of neuromelanin derived from the locus coeruleus. J Neurochem 135(4):768-776. Wallis JD and Kennerley SW (2011) Contrasting reward signals in the orbitofrontal cortex and anterior cingulate cortex. Ann N Y Acad Sci 1239:33-42. Wang HY, Kuo ZC, Fu YS, Chen RF, Min MY and Yang HW (2015) GABAB receptor-mediated tonic inhibition regulates the spontaneous firing of locus coeruleus neurons in developing rats and in citalopram-treated rats. J Physiol 593(Pt 1):161-180. Wolfart J, Debay D, Masson GL, Destexhe A, and Bal T (2005) Synaptic background activity controls spike transfer from thalamus to cortex. Nat Neurosci 8(12):1760-7. Zebb FD, Baarendse PJJ, Vanderschuren LJMJ, and Winstanley CA (2015) Inactivation of the prelimbic or infralimbic cortex impairs decision-making in the rat gambling task. Psychopharmacology (Berl) 232(24):4481-91. Zhang Q, Xue Y, Wei K, Wang Hao, Ma Y, Wei Y, Fan Y, Gao L, Yao H, Wu FF, Ding X, Zhang QY, Ding JH, Fan Y, Lu M, and Hu G (2023) Locus Coeruleus-Dorsolateral Septum Projections Modulate Depression-Like Behaviors via BDNF But Not Norepinephrine. Adv Sci (Weinh) 11(10):e2303503. Zhou FM and Hablitz JJ (1997) Rapid kinetics and inward rectification of miniature EPSCs in layer I neurons of rat neocortex. J Neurophysiol 77(5)2416-26. Zingg B, Chou XL, Zhang ZG, Mesik L, Liang FX, Tao HZW, Zhang LI (2017) AAV-Mediated Anterograde Transsynaptic Tagging: Mapping Corticocollicular Input-Defined Neural Pathways for Defense Behaviors. Neuron 93(1):33-47. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93900 | - |
| dc.description.abstract | 在2005年,Aston-Jones與Cohen,以及Bouret與Sara,提出假說認為在獎勵導向目標(reward-oriented targets)或顯著刺激(salient stimuli)出現時,藍斑核(locus coeruleus, LC)會產生短暫高頻率活性(phasic activity)並調節下游迴路的刺激增益(gain)或重整(reset)下游迴路以最佳化行為結果。根據他們的假設,負責高等認知功能的皮質區域(cortical region),尤其是內側前額葉(medial prefrontal cortex, mPFC),會負責辨認行為效益並直接影響LC活性以達成此目的。然而過往研究所提出mPFC投射至LC的突觸傳遞(synaptic transmission)的生理證據在許多方面都不一致。其中一個衝突是兩篇研究提出mPFC會透過釋放γ-氨基丁酸的局部前LC細胞(LC-GABA)來對釋放正腎上腺素(Norepinephrine, NE)的LC細胞(LC-NA)達到前饋抑制(feedforward inhibition),而兩篇研究提出mPFC對LC-NA細胞只有興奮性(excitatory)效果。另一個衝突是兩篇研究認為mPFC活化對LC-NA細胞的整體效果是興奮性的,而兩篇則認為是抑制性的。為了調和這些不一致,我們透過結合對離體LC細胞的全細胞紀錄(ex vivo whole cell recording)與mPFC纖維的光遺傳學活化(optogenetic stimulation)來對此神經連結提供更全面的數據。我們發現63%被記錄到的LC-NA神經元會透過AMPA和NMDA受體的活化來對mPFC的光遺傳學活化做出反應。印防己毒素(picrotoxin)與馬錢子鹼(strychnine)的使用並沒有顯著影響突觸活性,顯示LC-GABA神經元沒有被招募。然而,我們發現39%被記錄的LC-GABA神經元也會透過AMPA受體的活化來對mPFC的光遺傳學活化做出反應。在電流鉗紀錄(current-clamp recording)中,模仿生理條件下 mPFC 神經元放電的輸入光刺激(2 Hz 下的 600 個偽隨機脈衝(pseudo-random pulses))顯著增加了LC-NA細胞放電間隔的變異度,但沒有增加平均頻率。因此我們在此報告,在生理條件下,mPFC 的活化可以透過增加突觸雜訊來顯著改變 LC 神經元的輸出模式,而不影響輸出強度。這種活化必須與其他 LC 輸入整合,以引發如活體實驗所示的前饋抑制,並誘導行為任務中所示的 LC phasic activity。 | zh_TW |
| dc.description.abstract | In 2005, Aston-Jones and Cohen, along with Bouret and Sara, suggested that in response to reward-oriented targets or salient stimuli, the locus coeruleus (LC) shows phasic activity and modulates the gain or resets the downstream cortical networks to optimize behavioral outcomes. Accordingly, cortical regions of high cognitive function, specifically the medial prefrontal cortex (mPFC), are thought to identify task utility and directly influence LC output for this purpose. However, physiological evidence for the properties of the synaptic transmission of mPFC inputs to LC provided by previous studies is inconsistent in several aspects. One of the conflicts presented is that 2 studies reported feed-forward inhibition of mPFC activation to norepinephrine-releasing LC (LC-NA) neurons that may be mediated by GABA-releasing LC (LC-GABA) neurons located in peri-LC regions, while 2 studies reported that mPFC only causes excitatory effect to LC-NA neurons. The other conflict is that the overall effect of mPFC activation is activating LC-NA neurons in 2 groups and inhibiting LC-NA neurons in 2 other groups. To reconcile these inconsistencies, we provide further comprehensive data on this connection by combining whole-cell recording in LC neurons with optogenetic activation of mPFC fibers ex vivo. We found that 63% of recorded LC-NA neurons responded to optogenetic activation of the mPFC with activation of both AMPA and NMDA receptors. Applying picrotoxin and strychnine did not significantly affect synaptic activity, suggesting that local inhibitory pre-LC neurons were not recruited. However, we discovered that 39% of recorded LC-GABA neurons responded to optogenetic activation of the mPFC with activation of AMPA receptors. In current-clamp recordings, photostimulation of mPFC inputs that mimicked mPFC neuron firing under physiological conditions (600 pseudo-random pulses at 2 Hz) significantly increased the variance of the inter-spike interval but not the mean frequency of LC firing. Accordingly, we report here that under physiological conditions, activation of the mPFC can significantly alter the output pattern, without affecting the output strength, of LC neurons by increasing synaptic noise. Such activation has to be integrated with other LC inputs to elicit feed-forward inhibition as shown in vivo, and induce LC phasic activity as shown in behavioral tasks. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:17:52Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:17:52Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 口試委員會審定書………………………………………………………………………… i
Acknowledgement |………………………………………………………………………... ii 摘要 |……………..……………………………………………………………………….. iii Abstract |……………………………………………………………………..….……….... v Content |…………………………………………………………………...……………... vii Introduction |…………………………………………………………...………………….. 1 Material and Method |……………………………………………………...…………...…. 9 2.1 Animals………………………………………………………………….…...…... 9 2.2 Viral vector and stereotaxic surgery………………………………………...…… 9 2.3 Preparation of brain slices……………………………………………………..... 10 2.4 Electrophysiology……………………………………………………...……….. 10 2.5 Biocytin histochemistry and immunohistochemistry…………………………… 14 2.6 Statistical analysis…………………………………………………...………….. 16 Results |………………………………………………………………………...…….…... 17 3.1 Characteristics of synaptic transmissions from mPFC to LC-NA neurons…...... 17 3.2 EPSC evoked in LC-NA neurons upon photostimulation is monosynaptic and glutamatergic……………………………………………………………………....... 20 3.3 Short-term plasticity of synaptic transmission from mPFC inputs onto LC-NA neurons: frequency-dependent facilitation and asynchronous release of synaptic vesicles…………………………………………………………………..………….. 21 3.4 Photostimulation with mean frequency of 2 Hz optimizes synaptic transmission from the mPFC inputs to LC-NA neurons.………………………………................. 24 3.5 Photostimulation of the mPFC with PRPT regulates LC-NA neuron activity by increasing the firing variance.…………………………………...………………….. 25 3.6 Long-term depression of LC-NA neurons to mPFC input…………..….…...….. 26 3.7 Basal properties of mPFC inputs to LC-GABA neurons …………..….….…..... 28 3.8 Response of LC-GABA neurons by physiological relevant stimulation of mPFC inputs ………………………………………………..……………….…….……….. 29 Discussion | ………………………………………………….…………….….…………. 31 Reference | …………………………………………………..………………..………….. 35 Table | ………………………………………………………..……………….………….. 43 Figures | ………………………………………………………..….…………………..…. 44 Figure 1. Recording and examination of LC-NA neurons in brain slices…..…........ 44 Figure 2. Recording and examination of LC-GABA neurons in brain slices..…....... 46 Figure 3. Optogenetic-induced EPSC properties in LC-NA and LC-GABA neurons……………………………………………………………………………… 48 Figure 4. Superimposed virus expression pattern showing injection site..…………. 50 Figure 5. Factors that may influence EPSC in LC-NA neurons.……………...…..... 52 Figure 6. Cell-to-cell variation in EPSC amplitude between and within individual mice……………………………………………………………………………..…... 53 Figure 7. Heat map in coronal section showing the correlation between EPSC amplitude, PPR, and neuron location..……………………………………………… 55 Figure 8. Molecular composition of synaptic transmission from mPFC to LC.......... 57 Figure 9. Frequency-dependent response of synaptic transmission from mPFC to LC………………………………………………………………………..…………. 59 Figure 10. Physiological-relevant stimulation induced short-term potentiation in synaptic transmission from mPFC to LC-NA but not LC-GABA………………….. 61 Figure 11. Physiological-relevant stimulation influences spiking properties in synaptic transmission from mPFC to LC-NA but not LC-GABA...………………………...... 63 Figure 12. Other attempts to show effect of physiological-relevant stimulation in LC-NA neurons ……………………………………………………………………….... 65 Figure 13. Spike-timing-dependent plasticity in synaptic transmission from mPFC to LC-NA …………………………………………………………...…………...……. 66 Figure 14. Behavioral time scale plasticity in synaptic transmission from mPFC to LC-NA …………………………………………………………….……………………. 67 | - |
| dc.language.iso | en | - |
| dc.subject | 藍斑核 | zh_TW |
| dc.subject | 內側前額葉 | zh_TW |
| dc.subject | 突觸傳遞 | zh_TW |
| dc.subject | 離體全細胞紀錄 | zh_TW |
| dc.subject | 光遺傳學 | zh_TW |
| dc.subject | 仿生理刺激 | zh_TW |
| dc.subject | 輸入整合 | zh_TW |
| dc.subject | medial prefrontal cortex | en |
| dc.subject | input integration | en |
| dc.subject | physiologically relevant stimulation | en |
| dc.subject | optogenetic | en |
| dc.subject | ex vivo whole-cell recording | en |
| dc.subject | synaptic transmission | en |
| dc.subject | locus coeruleus | en |
| dc.title | 內側前額葉皮質投射至藍斑核之突觸傳遞特性 | zh_TW |
| dc.title | Properties of the Synaptic Transmission from the Medial Prefrontal Cortex to the Locus Coeruleus | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 連正章;徐經倫;陳示國;周銘翊 | zh_TW |
| dc.contributor.oralexamcommittee | Cheng-Chang Lien;Ching-Lung Hsu;Shih-Kuo Chen;Ming-Yi Chou | en |
| dc.subject.keyword | 藍斑核,內側前額葉,突觸傳遞,離體全細胞紀錄,光遺傳學,仿生理刺激,輸入整合, | zh_TW |
| dc.subject.keyword | locus coeruleus,medial prefrontal cortex,synaptic transmission,ex vivo whole-cell recording,optogenetic,physiologically relevant stimulation,input integration, | en |
| dc.relation.page | 68 | - |
| dc.identifier.doi | 10.6342/NTU202401976 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-07-22 | - |
| dc.contributor.author-college | 生命科學院 | - |
| dc.contributor.author-dept | 生命科學系 | - |
| 顯示於系所單位: | 生命科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 4.02 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
