請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93894完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李宇修 | zh_TW |
| dc.contributor.advisor | Yu-Hsiu Lee | en |
| dc.contributor.author | 詹妹臻 | zh_TW |
| dc.contributor.author | Mei-Chen Chan | en |
| dc.date.accessioned | 2024-08-09T16:15:16Z | - |
| dc.date.available | 2024-08-10 | - |
| dc.date.copyright | 2024-08-09 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-02 | - |
| dc.identifier.citation | Mohd Javaid, Abid Haleem, Ravi Pratap Singh, and Rajiv Suman. Substantial capabilities of robotics in enhancing industry 4.0 implementation. Cognitive Robotics, 1:58–75, 2021.
Ruchi Goel and Pooja Gupta. Robotics and industry 4.0. A Roadmap to Industry 4.0: Smart Production, Sharp Business and Sustainable Development, pages 157– 169, 2020. Martin Hägele, Klas Nilsson, J Norberto Pires, and Rainer Bischoff. Industrial robotics. Springer handbook of robotics, pages 1385–1422, 2016. Orhan Özgüner, Thomas Shkurti, Siqi Huang, Ran Hao, Russell C Jackson, Wyatt S Newman, and M Cenk Çavuşoğlu. Camera-robot calibration for the da vinci robotic surgery system. IEEE Transactions on Automation Science and Engineering, 17(4):2154–2161, 2020. Hang Su, Chenguang Yang, Hussein Mdeihly, Alessandro Rizzo, Giancarlo Ferrigno, and Elena De Momi. Neural network enhanced robot tool identification and calibration for bilateral teleoperation. IEEE Access, 7:122041–122051, 2019. ZVIS Roth, Benjamin Mooring, and Bahram Ravani. An overview of robot calibration. IEEE Journal on Robotics and Automation, 3(5):377–385, 1987. Long Qian, Jie Ying Wu, Simon P DiMaio, Nassir Navab, and Peter Kazanzides. A review of augmented reality in robotic-assisted surgery. IEEE Transactions on Medical Robotics and Bionics, 2(1):1–16, 2019. Joon Hyun Jang, Soo Hyun Kim, and Yoon Keun Kwak. Calibration of geometric and non-geometric errors of an industrial robot. Robotica, 19(3):311–321, 2001. Samad Hayati and M Mirmirani. Improving the absolute positioning accuracy of robot manipulators. Journal of robotic systems, 2(4):397–413, 1985. W Veitschegger and Chi-haur Wu. A method for calibrating and compensating robot kinematic errors. In Proceedings. 1987 IEEE International Conference on Robotics and Automation, volume 4, pages 39–44. IEEE, 1987. Donald Lee Pieper. The kinematics of manipulators under computer control. Stanford University, 1969. Ahmed Joubair and Ilian A Bonev. Non-kinematic calibration of a six-axis serial robot using planar constraints. Precision Engineering, 40:325–333, 2015. Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal approximators. Neural networks, 2(5):359–366, 1989. Batta Mahesh. Machine learning algorithms-a review. International Journal of Science and Research (IJSR).[Internet], 9(1):381–386, 2020. Warren S McCulloch and Walter Pitts. A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5:115–133, 1943. Christian Bauckhage and Daniel Speicher. Lecture notes on machine learning neurons with non-monotonic activation functions. cal, 5:4, 1943. Paul Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences. PhD thesis, Committee on Applied Mathematics, Harvard University, Cambridge, MA, 1974. Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014. Jooyoung Park and Irwin W Sandberg. Universal approximation using radial-basisfunction networks. Neural computation, 3(2):246–257, 1991. Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and data engineering, 22(10):1345–1359, 2009. Phuong DH Nguyen, Tobias Fischer, Hyung Jin Chang, Ugo Pattacini, Giorgio Metta, and Yiannis Demiris. Transferring visuomotor learning from simulation to the real world for robotics manipulation tasks. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pages 6667–6674. IEEE, 2018. Jack Collins, David Howard, and Jurgen Leitner. Quantifying the reality gap in robotic manipulation tasks. In 2019 International Conference on Robotics and Automation (ICRA), pages 6706–6712. IEEE, 2019. Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Domain randomization for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017. Jared Alan Frank, Sai Prasanth Krishnamoorthy, and Vikram Kapila. Toward mobile mixed-reality interaction with multi-robot systems. IEEE Robotics and Automation Letters, 2(4):1901–1908, 2017. Jacques Denavit and Richard S Hartenberg. A kinematic notation for lower-pair mechanisms based on matrices. 1955. Mecademic. User Manual Original instructions, 2021. Meca500 (R3) Robot Firmware: 8.3 Document Revision: A February 17, 2021. Russell Reed. Pruning algorithms-a survey. IEEE transactions on Neural Networks, 4(5):740–747, 1993. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93894 | - |
| dc.description.abstract | 本論文採用了一種創新的方法來解決機械手臂精度控制中的挑戰。通過結合雅可比矩陣(Jacobian matrix)校正和前饋神經網路(Feedforward neural network, FNN),我們提出了一個新型的平行架構模型,旨在提高機械手臂在現實世界中的運動學準確性。傳統的雅可比矩陣校正方法在捕捉機械手臂系統複雜性方面存在局限性,因此我們引入了數位雙生(Digital twin)技術和轉移學習(Transfer learning)的理念,以優化模型。透過這種平行架構,我們旨在識別出最貼近實際機械手臂行為的模型,從而提高精度控制,以滿足工業和醫療應用對精準度不斷增長的需求。
這一研究的貢獻在於,它不僅修正了傳統運動學模型的缺陷,還引入了數位雙生和轉移學習的思想,使得模擬環境中的演算法能夠直接應用到實際機械手臂的問題中。這不僅提高了機械手臂在現實應用中的準確性和效率,也拓展了機械手臂技術在工業和醫療領域的應用範疇。透過本研究提出的方法,可以更好地應對機械手臂精度控制面臨的挑戰,為相關領域的發展提供新的思路和解決方案。 | zh_TW |
| dc.description.abstract | This paper adopts an innovative approach to address challenges in precision control of robotic arms. By combining Jacobian matrix correction and feed-forward neural networks, we propose a novel parallel architecture model aimed at enhancing the kinematic accuracy of robotic arms in real-world scenarios. Traditional Jacobian matrix correction methods have limitations in capturing the complexity of robotic arm systems; therefore, we introduce the concept of digital twin technology and transfer learning to optimize the model. Through this parallel architecture, we aim to identify models that closely mimic actual robotic arm behavior, thereby improving precision control to meet the increasing demands in industrial and medical applications.
The contribution of this research lies in its dual approach: correcting the shortcomings of traditional kinematic models and integrating the concepts of digital twins and transfer learning. This allows algorithms developed in simulation environments to be directly applied to real-world robotic arm challenges. Consequently, this approach not only enhances the accuracy and efficiency of robotic arms in practical applications but also broadens the scope of robotic arm technology in industrial and medical fields. The method proposed in this study provides a robust solution to the challenges in precision control of robotic arms and offers new perspectives and solutions for the advancement of related fields. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-09T16:15:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-09T16:15:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii 目次 v 圖次 ix 表次 xiii 符號列表 xv 第一章 緒論 1 1.1 研究背景與動機 1 1.2 文獻回顧 2 1.2.1 傳統校正法 2 1.2.2 類神經網路的分類 4 1.2.3 基於類神經網路的校正方法 6 1.2.4 從模擬到現實:縮小差距的校正方法 9 第二章 手臂建模與校正算法 13 2.1 機器人運動學 13 2.2 校正演算法 16 2.2.1 幾何校正 17 2.2.2 基於機器學習的非幾何校正 21 2.2.3 機器學習中的模型優化 30 2.2.4 基於轉移學習的非幾何校正 33 第三章 RR手臂示範演算法流程 37 3.1 步驟說明 37 3.2 RR手臂的模型建置 39 3.2.1 運動學模型 39 3.2.2 物理模型 40 3.3 基於平行架構的校正 42 3.3.1 DH參數校正 43 3.3.2 類神經網路校正 45 3.3.3 使用轉移學習進行的數位雙生模型校正 50 3.4 與轉軸方向不同的扭轉彈簧 56 第四章 串聯式工業機器人的校正模擬 59 4.1 機械手臂的模型 59 4.1.1 運動學模型 59 4.1.2 物理模型 61 4.2 基於平行架構的校正 64 4.2.1 DH參數校正 64 4.2.2 類神經網路校正 66 4.2.3 使用轉移學習進行的數位雙生模型校正 70 第五章 結論 73 5.1 整體校正效能 73 5.2 未來展望 73 參考文獻 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 運動學校正 | zh_TW |
| dc.subject | 機械手臂 | zh_TW |
| dc.subject | 轉移學習 | zh_TW |
| dc.subject | 數位雙生 | zh_TW |
| dc.subject | 前饋神經網路 | zh_TW |
| dc.subject | Feedforward neural network | en |
| dc.subject | Digital twin | en |
| dc.subject | Transfer learning | en |
| dc.subject | Kinematic calibration | en |
| dc.subject | Robotic arm | en |
| dc.title | 利用前饋神經網路與數位雙生學習增強機器手臂的運動學校正演算法 | zh_TW |
| dc.title | Enhancing Robotic Arm Kinematic Calibration Algorithm with Feedforward Neural Network and Digital Twin Learning | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 葉奕良;張秉純 | zh_TW |
| dc.contributor.oralexamcommittee | Yi-Liang Yeh;Biing-Chwen Chang | en |
| dc.subject.keyword | 機械手臂,運動學校正,前饋神經網路,數位雙生,轉移學習, | zh_TW |
| dc.subject.keyword | Robotic arm,Kinematic calibration,Feedforward neural network,Digital twin,Transfer learning, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU202402735 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-06 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 機械工程學系 | - |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf | 16.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
