請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93874完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭原忠 | zh_TW |
| dc.contributor.advisor | Yuan-Chung Cheng | en |
| dc.contributor.author | 施麗釵 | zh_TW |
| dc.contributor.author | Li-Chai Shih | en |
| dc.date.accessioned | 2024-08-08T16:41:53Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-05 | - |
| dc.identifier.citation | [1] Michael A. NielsenF and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2002.
[2] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing, 26:1484–1509, 1997. [3] Artur K. Ekert. Quantum cryptography based on bell’s theorem. Physical Review Letters, 67:661–663, 1996. [4] Jay M. Gambetta, Jerry M. Chow, and Matthias Steffen. Building logical qubits in a superconducting quantum computing system. Nature, 549:219–223, 2017. [5] Christopher Monroe and Jungsang Kim. Scaling the ion trap quantum processor. Science, 339:1164–1169, 2013. [6] Frank Arute, Kunal Arya, Ryan Babbush, et al. Quantum supremacy using a programmable superconducting processor. Nature, 574:505–510, 2019. [7] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018. [8] Simon J. Devitt, William J. Munro, and Kae Nemoto. Quantum error correction for beginners. Reports on Progress in Physics, 76:076001, 2013. [9] Sam McArdle, Suguru Endo, Alán Aspuru-Guzik, Simon C. Benjamin, and Xiao Yuan. Quantum computational chemistry. Reviews of Modern Physics, 92:015003, 2020. [10] Margaret Martonosi and Martin Roetteler. Next steps in quantum computing: Computer science’s role. 2019. [11] Michel H. Devoret and Robert J. Schoelkopf. Superconducting circuits for quantum information: An outlook. Science, 339(6124):1169–1174, 2013. [12] Jens Koch and et al. Charge-insensitive qubit design derived from the cooper pair box. Physical Review A, 76(4):042319, 2007. [13] J. E. Mooij, T. P. Orlando, L. S. Levitov, and et al. Josephson persistent-current qubit. Science, 285(5430):1036–1039, 1999. [14] John M. Martinis and et al. Decoherence in josephson phase qubits from junction resonators. Physical Review Letters, 89(11):117901, 2002. [15] Göran Wendin. Quantum information processing with superconducting circuits: a review. Reports on Progress in Physics, 80(10), 2017. [16] John Clarke and Frank K. Wilhelm. Superconducting quantum bits. Nature, 453:1031–1042, 2008. [17] Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and Andreas Wallraff. Circuit quantum electrodynamics. Reviews of Modern Physics, 93(2), 2021. [18] S.E. Rasmussen, K.S. Christensen, S.P. Pedersen, L.B. Kristensen, T. Bækkegaard, N.J.S. Loft, and N.T. Zinner. Superconducting circuit companion—an introduction with worked examples. PRX Quantum, 2:040204, Dec 2021. [19] Jay M. Gambetta, Jerry M. Chow, and Matthias Steffen. Building logical qubits in a superconducting quantum computing system. npj Quantum Information, 3(2), 2017. [20] Philip Krantz, Marcus Kjaergaard, Fei Yan, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews, 6(2), 2019. [21] Electronics360. How quantum computers work. https://electronics360. globalspec.com/article/13553/how-quantum-computers-work, Accessed: 2024-06-19. [22] Frank Arute et al. Quantum supremacy using a programmable superconducting processor. Nature, 574:505–510, 2019. [23] Easwar Magesan, Jay M. Gambetta, and Joseph Emerson. Characterizing quantum gates via randomized benchmarking. Phys. Rev. A, 85:042311, Apr 2012. [24] Easwar Magesan, Jay M. Gambetta, B. R. Johnson, Colm A. Ryan, Jerry M. Chow, Seth T. Merkel, Marcus P. da Silva, George A. Keefe, Mary B. Rothwell, Thomas A. Ohki, Mark B. Ketchen, and M. Steffen. Efficient measurement of quantum gate error by interleaved randomized benchmarking. Phys. Rev. Lett., 109:080505, Aug 2012. [25] Easwar Magesan, J. M. Gambetta, and Joseph Emerson. Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett., 106:180504, May 2011. [26] Easwar Magesan, Jay M. Gambetta, and Joseph Emerson. Scalable and robust randomized benchmarking of quantum processes. Phys. Rev. Lett., 106:180504, 2011. [27] Emanuel Knill, Dietrich Leibfried, Rolf Reichle, Joe Britton, R. B. Blakestad, John D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland. Randomized benchmarking of quantum gates. Physical Review A, 77:012307, 2008. [28] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta. Validating quantum computers using randomized benchmarking. Physical Review A, 100:032328, 2019. [29] David McKay, Seth Merkel, Doug McClure, Neereja Sundaresan, and Isaac Lauer. How to measure errors on ibm quantum systems with randomized benchmarking. https://thequantumaviary.blogspot.com/2021/01/ how-to-measure-errors-on-ibm-quantum.html, 2021. Accessed: 2021-01-07. [30] Jay M. Gambetta, Jerry M. Chow, and Matthias Steffen. Characterization of addressability by simultaneous randomized benchmarking. Physical Review Letters, 109:240504, 2012. [31] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John Smolin, and Harald Weinfurter. Elementary gates for quantum computation. Physical Review A, 52:3457–3467, 1995. [32] Mark M. Wilde. Quantum Information Theory. Cambridge University Press, 2013. [33] Daniel A. Lidar and Todd A. Brun. Quantum Error Correction. Cambridge University Press, 2013. [34] Heinz-Peter Breuer and Francesco Petruccione. The Theory of Open Quantum Systems. Oxford University Press, 2002. [35] Wojciech H Zurek. Decoherence, einselection, and the quantum origins of the classical. Reviews of Modern Physics, 75(3):715, 2003. [36] C.W. Gardiner and P. Zoller. Quantum Noise. Springer, 2004. [37] Ryogo Kubo. Stochastic liouville equations. Journal of Mathematical Physics, 4(2):174–183, 1963. [38] Y. C. Cheng and R. J. Silbey. Stochastic liouville equation approach for the effect of noise in quantum computations. Physical Review A, 69(5):052325, 2004. [39] Masashi Ban, Syunya Kitajima, and Fumiko Shibata. Relaxation process of quantum system: stochastic liouville equation and initial correlation. Physical Review A, 82(2):022111, 2010. [40] Robin Blume-Kohout and et al. A taxonomy of small markovian errors. PRX Quantum, 2(2):020336, 2021. [41] Athanasios Papoulis and S. Unnikrishna Pillai. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, 2002. [42] Augustin-Louis Cauchy. Méthodes d’analyse et de physique mathématique. Gauthier-Villars, 1853. [43] Frank J. Massey. The kolmogorov-smirnov test for goodness of fit. Journal of the American Statistical Association, 46(253):68–78, 1951. [44] F. Sánchez-Bajo and F. L. Cumbrera. The use of the pseudo-voigt function in the variance method of x-ray line-broadening analysis. Journal of Applied Crystallography, 30(4):427–430, 1997. [45] Shin Sun, Li-Chai Shih, and Yuan-Chung Cheng. Efficient quantum simulation of open quantum system dynamics on noisy quantum computers. Physica Scripta, 99(3):035101, 2024. 114 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93874 | - |
| dc.description.abstract | 目前的量子電腦被稱為雜訊中等規模量子電腦(NISQ電腦),發展受到雜訊影響而受限,只能進行小規模計算且無法達成預期的應用。為了實現量子電腦的實際應用,了解並分析雜訊有助於保護量子資訊受到影響和 NISQ 電腦的開發。目前測量錯誤率的主要方法是隨機基準測試(RB)。 RB方法將來自不同量子邏輯閘的雜訊視為相同的雜訊,然而若不同的量子邏輯閘具有不同類型的雜訊,這種測量錯誤率方法就會有很多的討論空間。本研究介紹了一種定量特徵化量子邏輯閘雜訊的方法,系統性地分析了 IBM-Q 量子系統中的雜訊特性。透過量子動力學的擬合方法,我們得出了有關 IBM-Q 裝置雜訊特性的寶貴見解。隨後,我們採用統計方法建立了一個物理模型,深入分析了這些雜訊來源。利用開放量子理論框架,我們成功地藉由量子主方程式模擬了耗散系統的動態。對量子電腦進行詳細的雜訊特徵化除了有助於模擬開放量子系統動態中的量子雜訊之外,對於未來應用在量子電腦上的錯誤修正演算法或錯誤緩解演算法至關重要,有助於現階段量子電腦的發展。 | zh_TW |
| dc.description.abstract | Noisy Intermediate-Scale Quantum (NISQ) devices define the current state of quantum computing, capable of executing modest-scale calculations. Analyzing noise is crucial for protecting quantum information from errors and advancing these devices. This research introduces a method for quantitatively characterizing gate-specific noise within IBM-Q systems. Through a fitting procedure based on quantum dynamics and employing stochastic methodologies, we analyze noise profiles using the stochastic Liouville equation. This detailed characterization aids in simulating quantum noises in open quantum systems, a significant application of NISQ devices. We decompose noise using known channels and the quantum master equation, determining error rates and the noise Hamiltonian, and reproducing quantum dynamics to reveal environmental noise impacts. Observations of non-Gaussian distributions and correlated noises have significant implications for noise mitigation and error correction. Our findings suggest that specific gate sequences can be designed to mitigate or transform certain types of quantum noise, enhancing quantum simulation, error mitigation, and Quantum Error Correction (QEC). Understanding these noise mechanisms in IBM-Q computers is crucial for developing effective error mitigation protocols and shaping the future of quantum computing. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:41:53Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:41:53Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
Page Acknowledgements 3 摘要 5 Abstract 7 Contents 9 List of Figures 13 List of Tables 17 Abbreviations 19 Chapter 1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Architecture of IBM Superconducting Quantum Computers . . . . . 4 1.3 Overview of Randomized Benchmarking . . . . . . . . . . . . . . . 9 1.4 Domestic Development of Quantum Computers . . . . . . . . . . . . 12 1.5 Motivation of This Research . . . . . . . . . . . . . . . . . . . . . . 12 1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Chapter 2 Fundamentals of Quantum Computing 17 2.1 Quantum Bits (Qubits) . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Quantum Gates and Quantum Circuits . . . . . . . . . . . . . . . . . 19 2.3 Bloch Sphere Dynamics and Density Matrices . . . . . . . . . . . . 21 2.4 Quantum State Tomography . . . . . . . . . . . . . . . . . . . . . . 23 2.5 Trace Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.6 Conventional Noise Model . . . . . . . . . . . . . . . . . . . . . . . 26 Chapter 3 Quantification of Quantum Gate Noises 31 3.1 Stochastic Quantum Liouville Equation Picture for Open Quantum System Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.2 Measurement of Quantum Gate Errors . . . . . . . . . . . . . . . . . 34 3.3 Small Noise Error Model . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 Quantification of Coherent Errors . . . . . . . . . . . . . . . . . . . 39 3.5 Analysis of Random Noises . . . . . . . . . . . . . . . . . . . . . . 43 3.5.1 Characterization of Noise Distributions . . . . . . . . . . . . . . . . 44 3.5.2 Time Correlation Functions . . . . . . . . . . . . . . . . . . . . . . 46 3.6 Power Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . 47 Chapter 4 Single Qubit Gates Errors on IBM-Q Superconducting Devices 49 4.1 Noise Characteristics of Single Qubit Gates . . . . . . . . . . . . . . 49 4.2 Noise Analysis of X Gates . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Noise Analysis of Y Gates . . . . . . . . . . . . . . . . . . . . . . . 60 4.4 Noise Analysis of S Gates and Z Gates . . . . . . . . . . . . . . . . 68 4.5 Noise Analysis of H Gates . . . . . . . . . . . . . . . . . . . . . . . 76 4.6 Summary for Single Qubit Gate Errors . . . . . . . . . . . . . . . . 83 Chapter 5 Two-qubit Gate Errors on IBM-Q Superconducting Devices 87 5.1 Noise Decomposition in CNOT Gates . . . . . . . . . . . . . . . . . 87 5.2 Examining Correlated Errors in Two-qubit Systems . . . . . . . . . . 96 Chapter 6 Applications of Noise Analysis 99 6.1 Noise Characteristics of XX Gates and ZZ gates . . . . . . . . . . . 99 6.2 Pulse Sequence Design for Quantum Simulation of Open Quantum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 Chapter 7 Conclusion 107 References 109 Appendix A — Details 115 A.1 Mathematical details in the Forward Euler method . . . . . . . . . . 115 A.2 Application details in the Crank-Nicholson method . . . . . . . . . . 118 | - |
| dc.language.iso | en | - |
| dc.subject | 量子計算 | zh_TW |
| dc.subject | 量子電腦 | zh_TW |
| dc.subject | 量子雜訊 | zh_TW |
| dc.subject | 開放式量子系統 | zh_TW |
| dc.subject | 量子主方程式 | zh_TW |
| dc.subject | quantum computing | en |
| dc.subject | quantum master equation | en |
| dc.subject | quantum computer | en |
| dc.subject | quantum noise | en |
| dc.subject | open quantum system | en |
| dc.title | IBM-Q 超導量子電腦之量子閘雜訊特徵描述與分析研究 | zh_TW |
| dc.title | Characterization of Quantum Gate Errors on IBM-Q Superconducting Devices | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 金必耀;管希聖 | zh_TW |
| dc.contributor.oralexamcommittee | Bih-Yaw Jin;Hsi-Sheng Goan | en |
| dc.subject.keyword | 量子計算,開放式量子系統,量子雜訊,量子電腦,量子主方程式, | zh_TW |
| dc.subject.keyword | quantum computing,open quantum system,quantum noise,quantum computer,quantum master equation, | en |
| dc.relation.page | 120 | - |
| dc.identifier.doi | 10.6342/NTU202401792 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-07 | - |
| dc.contributor.author-college | 理學院 | - |
| dc.contributor.author-dept | 化學系 | - |
| dc.date.embargo-lift | 2029-07-31 | - |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 10.95 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
