請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93870完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊睿中 | zh_TW |
| dc.contributor.advisor | Jui-Chung Yang | en |
| dc.contributor.author | 李艷娟 | zh_TW |
| dc.contributor.author | Yan-Jyuan Li | en |
| dc.date.accessioned | 2024-08-08T16:40:16Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-08-06 | - |
| dc.identifier.citation | Rosana Aguilera, Thomas Corringham, Alexander Gershunov, and Tarik Benmarhnia. Wildfire smoke impacts respiratory health more than fine particles from other sources: observational evidence from southern california. Nature communications, 12(1):1493, 2021.
Giuseppe Amatulli, Andrea Camia, and Jesús San-Miguel-Ayanz. Estimating future burned areas under changing climate in the eu-mediterranean countries. Science of the total environment, 450:209–222, 2013. Sandra Banholzer, James Kossin, and Simon Donner. The impact of climate change on natural disasters. Reducing disaster: Early warning systems for climate change, pages 21–49, 2014. Patrick T Brown, Holt Hanley, Ankur Mahesh, Colorado Reed, Scott J Strenfel, Steven J Davis, Adam K Kochanski, and Craig B Clements. Climate warming increases extreme daily wildfire growth risk in california. Nature, 621(7980):760–766, 2023. Supinda Bunyavanich, Christopher P Landrigan, Anthony J McMichael, and Paul R Ep- stein. The impact of climate change on child health. Ambulatory pediatrics, 3(1):44–52, 2003. Marshall Burke, Solomon M Hsiang, and Edward Miguel. Global non-linear effect of temperature on economic production. Nature, 527(7577):235–239, 2015. Ivan A Canay. A simple approach to quantile regression for panel data. The econometrics journal, 14(3):368–386, 2011. D. Delforge et al. Em-dat: The emergency events database. Preprint, 2023. Available at https://doi.org/10.21203/rs.3.rs-3807553/v1. Melissa Dell, Benjamin F Jones, and Benjamin A Olken. Temperature shocks and eco- nomic growth: Evidence from the last half century. American Economic Journal: Macroeconomics, 4(3):66–95, 2012. Jean-luc Dupuy, Hélène Fargeon, Nicolas Martin-StPaul, François Pimont, Julien Ruf- fault, Mercedes Guijarro, Carmen Hernando, Javier Madrigal, and Paulo Fernandes. Climate change impact on future wildfire danger and activity in southern europe: a review. Annals of Forest Science, 77:1–24, 2020. Mario Elia, Marina D’Este, Davide Ascoli, Vincenzo Giannico, Giuseppina Spano, Anto- nio Ganga, Giuseppe Colangelo, Raffaele Lafortezza, and Giovanni Sanesi. Estimating the probability of wildfire occurrence in mediterranean landscapes using artificial neu- ral networks. Environmental Impact Assessment Review, 85:106474, 2020. Sergio Firpo, Nicole M Fortin, and Thomas Lemieux. Unconditional quantile regressions. Econometrica, 77(3):953–973, 2009. MD Flannigan, BM Wotton, GA Marshall, WJ De Groot, J Johnston, N Jurko, and AS Cantin. Fuel moisture sensitivity to temperature and precipitation: climate change implications. Climatic Change, 134:59–71, 2016. C Vega Garcia, PM Woodard, SJ Titus, WL Adamowicz, and BS Lee. A logit model for predicting the daily occurrence of human caused forest-fires. International Journal of Wildland Fire, 5(2):101–111, 1995. Lukas Gudmundsson, Francisco C Rego, Marta Rocha, and Sonia I Seneviratne. Predict- ing above normal wildfire activity in southern europe as a function of meteorological drought. Environmental Research Letters, 9(8):084008, 2014. Kaixing Huang, Hong Zhao, Jikun Huang, Jinxia Wang, and Christopher Findlay. The im- pact of climate change on the labor allocation: Empirical evidence from china. Journal of Environmental Economics and Management, 104:102376, 2020. IPCC. Climate change 2023: synthesis report. Contribution of working groups I, II and III to the sixth assessment report of the intergovernmental panel on climate change. The Australian National University, 2023. Piyush Jain, Sean CP Coogan, Sriram Ganapathi Subramanian, Mark Crowley, Steve Tay- lor, and Mike D Flannigan. A review of machine learning applications in wildfire sci- ence and management. Environmental Reviews, 28(4):478–505, 2020. Matthew E Kahn, Kamiar Mohaddes, Ryan NC Ng, M Hashem Pesaran, Mehdi Raissi, and Jui-Chung Yang. Long-term macroeconomic effects of climate change: A cross- country analysis. Energy Economics, 104:105624, 2021. Tord Kjellstrom, R Sari Kovats, Simon J Lloyd, Tom Holt, and Richard SJ Tol. The direct impact of climate change on regional labor productivity. Archives of environmental & occupational health, 64(4):217–227, 2009. Roger Koenker. Quantile regression for longitudinal data. Journal of multivariate analysis, 91(1):74–89, 2004. Yongqiang Liu, Scott L Goodrick, and John A Stanturf. Future us wildfire potential trends projected using a dynamically downscaled climate change scenario. Forest Ecology and Management, 294:120–135, 2013. Yiqun Ma, Emma Zang, Yang Liu, Jing Wei, Yuan Lu, Harlan M Krumholz, Michelle L Bell, and Kai Chen. Long-term exposure to wildfire smoke pm2. 5 and mortality in the contiguous united states. medRxiv, 2024. Jeremy Martinich and Allison Crimmins. Climate damages and adaptation potential across diverse sectors of the united states. Nature climate change, 9(5):397–404, 2019. Robert Mendelsohn, William D Nordhaus, and Daigee Shaw. The impact of global warm- ing on agriculture: a ricardian analysis. The American economic review, pages 753– 771, 1994. Richard G Newell, Brian C Prest, and Steven E Sexton. The gdp-temperature relationship: implications for climate change damages. Journal of Environmental Economics and Management, 108:102445, 2021. P Papakosta, G Xanthopoulos, and D Straub. Probabilistic prediction of wildfire economic losses to housing in cyprus using bayesian network analysis. International Journal of Wildland Fire, 26(1):10–23, 2017. Jisung Park. Will we adapt? temperature shocks, labor productivity, and adaptation to climate change in the united states. Unpublished. Harvard University, Cambridge, MA, page 4, 2016. Jonathan A Patz, Diarmid Campbell-Lendrum, Tracey Holloway, and Jonathan A Foley. Impact of regional climate change on human health. Nature, 438(7066):310–317, 2005. David Powell. Quantile regression with nonadditive fixed effects. Empirical Economics, 63(5):2675–2691, 2022. Haiganoush K Preisler, Anthony L Westerling, Krista M Gebert, Francisco Munoz- Arriola, and Thomas P Holmes. Spatially explicit forecasts of large wildland fire prob- ability and suppression costs for california. International Journal of Wildland Fire, 20 (4):508–517, 2011. Michele Salis, Bachisio Arca, Fermin Alcasena, Margarita Arianoutsou, Valentina Bac- ciu, Pierpaolo Duce, Beatriz Duguy, Nikos Koutsias, Giorgos Mallinis, Ioannis Mit- sopoulos, et al. Predicting wildfire spread and behaviour in mediterranean landscapes. International Journal of Wildland Fire, 25(10):1015–1032, 2016. Scott L Stephens, Brandon M Collins, Christopher J Fettig, Mark A Finney, Chad M Hoffman, Eric E Knapp, Malcolm P North, Hugh Safford, and Rebecca B Wayman. Drought, tree mortality, and wildfire in forests adapted to frequent fire. BioScience, 68 (2):77–88, 2018. Peter Stott. How climate change affects extreme weather events. Science, 352(6293): 1517–1518, 2016. Andrew Sullivan, Elaine Baker, Tiina Kurvits, Alexandra Popescu, Alison K Paul- son, Amy Cardinal Christianson, Ayesha Tulloch, Bibiana Bilbao, Camilla Mathison, Catherine Robinson, et al. Spreading like wildfire: The rising threat of extraordinary landscape fires. 2022. Boon Teck Tan, Pei Shan Fam, RB Radin Firdaus, Mou Leong Tan, and Mahinda Senevi Gunaratne. Impact of climate change on rice yield in malaysia: a panel data analysis. Agriculture, 11(6):569, 2021. Marco Turco, Maria Carmen Llasat, Jost von Hardenberg, and Antonello Provenzale. Im- pact of climate variability on summer fires in a mediterranean environment (northeast- ern iberian peninsula). Climatic Change, 116:665–678, 2013. Sergey Venevsky, Yannick Le Page, José MC Pereira, and Chao Wu. Analysis fire patterns and drivers with a global sever-fire v1. 0 model incorporated into dynamic global vegetation model and satellite and on-ground observations. Geoscientific Model Development, 12(1):89–110, 2019. Rachel H White, Sam Anderson, James F Booth, Ginni Braich, Christina Draeger, Cuiyi Fei, Christopher DG Harley, Sarah B Henderson, Matthias Jakob, Carie-Ann Lau, et al. The unprecedented pacific northwest heatwave of june 2021. Nature Communications, 14(1):727, 2023. Danlu Zhang, Wenhao Wang, Yuzhi Xi, Jianzhao Bi, Yun Hang, Qingyang Zhu, Qiang Pu, Howard Chang, and Yang Liu. Wildfire worsens population exposure to pm2. 5 pollution in the continental united states. Research Square, 2023. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93870 | - |
| dc.description.abstract | 本研究旨在探討氣候變遷對美國野火損失的影響。本文建構了兩種估計方法:直接估計、兩階段估計,並分析何種方法於預測野火損失表現較佳。在兩種估計方法中,我們使用NOAA Storm Event Database提供的野火數據與PRISM氣候小組提供的歷史氣候數據建立了兩組函數,並以面板資料分析溫度、降水量與野火損失之間的關係、以機器學習方法估計野火發生的機率。研究結果顯示,隨著溫度上升,野火損失有增加的趨勢;隨著降雨變多,野火損失有降低的趨勢。此外,本研究使用IPCC-WGI AR6互動地圖數據集提供的未來氣候預測數據,在RCP4.5和RCP8.5路徑下,預測了美國各州至本世紀末的野火損失。研究發現,RCP8.5相較其他路徑降水量上升較多,降水量抵消了部分野火損失。加總2024年至2100年預測的野火損失,在RCP4.5下總損失金額約為1.8至2.7千萬美元、RCP8.5為3.0至5.4千萬美元。我們的結果一致顯示加州、密西根為未來野火損失較高的州。此外,野火分佈將可能發生改變,過去野火損失不高的州將有一定機率發生更頻繁且帶有損失的野火,如密西根州、田納西州與內布拉斯加州。 | zh_TW |
| dc.description.abstract | This paper analyzes the impact of climate change on wildfire losses in the United States. We constructed two approaches: direct estimation and two-stage estimation, to identify the better-performing method for predicting future wildfire losses. For both estimation methods, we built two distinct functions using wildfire data from the NOAA Storm Event Database and historical climate data from the PRISM Climate Group. We used panel analysis to examine the relationship between temperature, precipitation, and wildfire losses and applied machine learning methods to estimate the probability of wildfire occurrence. Furthermore, this research used future climate prediction data from the IPCC-WGI AR6 Interactive Atlas dataset to predict wildfire losses in each state of the United States until the end of this century under RCP4.5 and RCP8.5 scenarios.
The results show that as the climate warms, high temperatures under the RCP8.5 scenario could significantly increase future wildfire losses, while increased precipitation can mitigate losses to a certain extent. The total predicted wildfire losses from 2024 to 2100 are estimated to be approximately 18 to 27 million USD under RCP4.5, and 30 to 54 million USD under RCP8.5. Our results consistently identify California and Michigan as states with higher future wildfire losses. Additionally, states with historically low wildfire losses show an increased probability of experiencing more frequent wildfires, suggesting a shift in wildfire distribution from the West to other states like Michigan, Tennessee, and Nebraska. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:40:16Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:40:16Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | Contents
Verification Letter from the Oral Examination Committee i Acknowledgements iii 摘要 v Abstract vii Contents ix List of Figures xi List of Tables xiii Chapter 1 Introduction 1 1.1 Introduction to Representative Concentration Pathways . . . . . . . . 4 1.2 The structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . 6 Chapter 2 Literature Review 7 Chapter 3 Model and Methods 11 3.1 Model Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.1 Model of Panel Analysis . . . . . . . . . . . . . . . . . . . . . . . 11 3.1.2 Probability of Wildfire Occurrence . . . . . . . . . . . . . . . . . . 13 3.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Data Resource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Chapter 4 Result 23 4.1 Comparative Analysis of Direct Estimation and Two-stage Estimation 23 4.2 Prediction Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 4.2.1 Prediction Using Temperature and Precipitation . . . . . . . . . . . 29 4.2.2 Prediction Using Temperature . . . . . . . . . . . . . . . . . . . . 33 Chapter 5 Further Analysis 39 5.1 Poisson Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.2 The Storyline Function . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2.1 Panel Regression Using Temperature and Precipitation . . . . . . . 43 5.2.2 Panel Regression Using Temperature . . . . . . . . . . . . . . . . . 44 5.2.3 Quantile Regression . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3 The Expected Loss Function . . . . . . . . . . . . . . . . . . . . . . 50 5.3.1 Panel Regression Using Temperature and Precipitation . . . . . . . 50 5.3.2 Panel Regression Using Temperature . . . . . . . . . . . . . . . . 51 5.3.3 Unconditional Quantile Regression . . . . . . . . . . . . . . . . . . 54 Chapter 6 Conclusion and Discussion 57 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 References 63 Appendix A — Annual Temperature and Precipitation of U.S. States under Different RCPs (2050-2100) 69 Appendix B — The results of panel regression controlling for different fixed effects 73 | - |
| dc.language.iso | en | - |
| dc.subject | 氣候變遷 | zh_TW |
| dc.subject | 網格資料分析 | zh_TW |
| dc.subject | 機器學習 | zh_TW |
| dc.subject | 面板資料分析 | zh_TW |
| dc.subject | 野火 | zh_TW |
| dc.subject | Wildfire | en |
| dc.subject | Machine learning | en |
| dc.subject | Climate change | en |
| dc.subject | Gridded data analysis | en |
| dc.subject | Panel analysis | en |
| dc.title | 氣候變遷下的美國野火損失估計 | zh_TW |
| dc.title | The impact of climate change on wildfire losses: An empirical study of the United States | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 廖肇寧;黃景沂 | zh_TW |
| dc.contributor.oralexamcommittee | Chao-Ning Liao;Ching-I Huang | en |
| dc.subject.keyword | 氣候變遷,野火,面板資料分析,機器學習,網格資料分析, | zh_TW |
| dc.subject.keyword | Climate change,Wildfire,Panel analysis,Machine learning,Gridded data analysis, | en |
| dc.relation.page | 77 | - |
| dc.identifier.doi | 10.6342/NTU202402604 | - |
| dc.rights.note | 同意授權(限校園內公開) | - |
| dc.date.accepted | 2024-08-08 | - |
| dc.contributor.author-college | 社會科學院 | - |
| dc.contributor.author-dept | 經濟學系 | - |
| dc.date.embargo-lift | 2029-07-29 | - |
| 顯示於系所單位: | 經濟學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-112-2.pdf 未授權公開取用 | 22.69 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
