Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93859
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor韓玉山zh_TW
dc.contributor.advisorYu-San Hanen
dc.contributor.author林晏廷zh_TW
dc.contributor.authorYen-Ting Linen
dc.date.accessioned2024-08-08T16:36:23Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-07-31-
dc.identifier.citation徐崇仁 (1997)。自動化超集約循環水養鰻專輯。台灣省水產試驗所養殖漁業生產自動化技術服務團,p.33-35。
張鴻猷 (2001)。腸內菌,水產動物疾病細菌篇黴菌篇。雲林縣家畜疾病防治所,p.87-92。
黃志忠 (2007)。循環水養殖之推廣成果。農政與農情第184期, p.62-67。
李建霖 (2009)。愛德華氏病,水產動物疾病防治及正確用藥手冊。財團法人台灣養殖漁業發展基金會,台北,p.30-32。
楊順德、林享霖、張錦宜、周瑞良、林天生、劉富光 (2010)。鰻線人工餌料之開發。水產試驗所2010年報,p.39。
楊順德、張錦宜、周瑞良、劉富光 (2011)。開發日本鰻苗人工膏狀飼料取代絲蚯蚓馴餌。台灣水產學會學術論文發表會論文摘要集,DO-07,p.36。
楊順德、劉富光 (2011)。兼具效率與衛生的鰻苗用膏狀飼料。水試所電子報第64期。
張雅棻 (2014)。藉由PCR方法快速且具有專一性的診斷鰻魚重要疾病。國立臺灣大學漁業科學研究所碩士論文。
謝嘉裕 (2014)。生物安全管理,養殖水產動物健康管理手冊魚類篇。財團法人台灣養殖漁業發展基金會,台北,p.56-59。
黃粮期、張斐斐、杜弘逸、黃安進、廖培志 (2015)。日本鰻艾德華氏病。雲林縣動植物防疫所病例報告。
林天生 (2016)。水溫與餌料對鱸鰻苗之活存、攝餌與成長的影響。水產研究,24 (1): p.75-82。
林天生、楊順德 (2016)。雙色鰻養殖技術之研究。水產試驗所年報,2016。
巫宗樺 (2017)。渦流浮性粒子過濾器暨高填充率流動式生物濾床用於循環水養殖系統的可行性研究。國立臺灣大學漁業科學研究所碩士論文。
林天生、黃德威 (2017)。不同飼料對太平洋雙色鰻成長的影響。水產研究, 25 (2): p.35-42。
林天生 (2019)。熱帶性異種鰻養殖。水產試驗所特刊,25。
解文麗 (2022) 四種功能性飼料添加劑對花鰻鱺生長性能、脂肪代謝、非特異性免疫和肝腸健康的影響。廈門大學海洋生物學系碩士論文。
Abele, D., & Puntarulo, S. (2004). Formation of reactive species and induction of antioxidant defence systems in polar and temperate marine invertebrates and fish. Comparative biochemistry and physiology, 138 (4), 405-415.
Ahn, J. C., Chong, W. S., Na, J. H., Yun, H. B., Shin, K. J., & Lee, K. W. (2015). An evaluation of major nutrients of four farmed freshwater eel species (Anguilla japonica, A. rostrata, A. bicolor pacifica and A. marmorata). pp.44-50.
Ai, Q., Xu, H., Mai, K., Xu, W., Wang, J., & Zhang, W. (2011). Effects of dietary supplementation of Bacillus subtilis and fructooligosaccharide on growth performance, survival, non-specific immune response and disease resistance of juvenile large yellow croaker, Larimichthys crocea. Aquaculture, 317(1-4), 155-161.
Aich, N., Nama, S., Biswal, A., & Paul, T. (2020). A review on recirculating aquaculture systems: Challenges and opportunities for sustainable aquaculture. Innovative Farming, 5(1), 017-024.
Alavi, M., Jabari, E., & Jabbari, E. (2021). Functionalized carbon-based nanomaterials and quantum dots with antibacterial activity: a review. Expert Review of Anti-infective Therapy, 19(1), 35-44.
Aya, F. A., & Garcia, L. M. B. (2022). Cage culture of tropical eels, Anguilla bicolor pacifica and A. marmorata juveniles: Comparison of growth, feed utilization, biochemical composition and blood chemistry. Aquaculture Research, 53 (17), 6283-6291.
Bae, J. Y., Park, G. H., Lee, J. Y., Okorie, O. E., & Bai, S. C. (2012). Effects of dietary propolis supplementation on growth performance, immune responses, disease resistance and body composition of juvenile eel, Anguilla japonica. Aquaculture International, 20, 513-523.
Balcazar, J. L., Blas, I., Ruiz-Zarzuela, I., Cunningham, D., Vendrell, D., & Muzquiz, J. L. (2006). The role of probiotics in aquaculture. Veterinary Microbiology, 114 (3-4): 173-186.
Božić, G., Rašković, B., Stanković, M., Poleksić, V., & Marković, Z. (2021). Effects of different feeds on growth performance parameters, histology of liver, distal intestine, and erythrocytes morphology of common carp (Cyprinus carpio L.). Biologia, 1-11.
Cadiz, R., & Traifalgar, R. F. (2020). Optimum salinity for growth of tropical eel Anguilla marmorata Quoy & Gaimard, 1824 in nursery culture. Asian Fisheries Science, 33, 315–320.
Cara, J. B., Aluru, N., Moyano, F. J., & Vijayan, M. M. (2005). Food-deprivation induces HSP70 and HSP90 protein expression in larval gilthead sea bream and rainbow trout. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 142(4), 426-431.
Cerezuela, R., Guardiola, F. A., González, P., Meseguer, J., & Esteban, M. Á. (2012). Effects of dietary Bacillus subtilis, Tetraselmis chuii, and Phaeodactylum tricornutum, singularly or in combination, on the immune response and disease resistance of sea bream (Sparus aurata L.). Fish & Shellfish Immunology, 33(2), 342-349.
Chen, H. H., Lin, H. T., Foung, Y. F., & Lin, J. H. Y. (2012). The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production. Developmental & Comparative Immunology, 38(2), 285-294.
Chen, J. Z., Huang, S. L., & Han, Y. S. (2014). Impact of long-term habitat loss on the Japanese eel Anguilla japonica. Estuarine, Coastal and Shelf Science, 151, 361-369.
Chen, X., Xie, J., Liu, Z., Yin, P., Chen, M., Liu, Y., ... & Niu, J. (2020). Modulation of growth performance, non-specific immunity, intestinal morphology, the response to hypoxia stress and resistance to Aeromonas hydrophila of grass carp (Ctenopharyngodon idella) by dietary supplementation of a multi-strain probiotic. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 231, 108724.
Chung, C. Y., Chen, Y. J., Kang, C. H., Lin, H. Y., Huang, C. C., Hsu, P. H., & Lin, H. J. (2021). Toxic or not toxic, that is the carbon quantum dot’s question: a comprehensive evaluation with zebrafish embryo, eleutheroembryo, and adult models. Polymers, 13 (10), 1598
Copaescu, A., Smibert, O., Gibson, A., Phillips, E. J., & Trubiano, J. A. (2020). The role of IL-6 and other mediators in the cytokine storm associated with SARS-CoV-2 infection. Journal of Allergy and Clinical Immunology, 146(3), 518-534.
Cuesta, A., Meseguer, J., & Esteban, M. (2004). Total serum immunoglobulin M levels are affected by immunomodulators in seabream (Sparus aurata L.). Veterinary Immunology and Immunopathology, 101(3-4), 203-210.
Cuvin-Aralar, M. L., Aya, F. A., Rowena-Eguia, M. R. R., & Logronio, D. J. (2019). Nursery culture of tropical anguillid eels in The Philippines. Aquaculture Department, Southeast Asian Fisheries Development Center, p.38.
Dainys, J., Gorfine, H., Šidagytė, E., Jakubavičiūtė, E., Kirka, M., Pūtys, Ž., & Ložys, L. (2017). Do young on‐grown eels, Anguilla anguilla (Linnaeus, 1758), outperform glass eels after transition to a natural prey diet? Journal of Applied Ichthyology, 33(3), 361-365.
Degani, G. (1986). Dietary effects of lipid source, lipid level and temperature on growth of glass eel (Anguilla anguilla). Aquaculture, 56(3-4), 207-214.
Dekker, W. (2004). Slipping through our hand. Population dynamics of the European eel. PhD dissertation. Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam.
Demers, N. E., & Bayne, C. J. (1997). The immediate effects of stress on hormones and plasma lysozyme in rainbow trout. Developmental & Comparative Immunology, 21(4), 363-373.
De Silva, S. S., Gunasekera, R. M., Ingram, B. A., & Dobson, J. L. (2001). Weaning of Australian shortfin glass eels (Anguilla australis): a comparison on the effectiveness of four types of fish roe. Aquaculture, 195(1-2), 133-148.
Deviller, G., Palluel, O., Aliaume, C., Asanthi, H., Sanchez, W., Nava, M. F., ... & Casellas, C. (2005). Impact assessment of various rearing systems on fish health using multi-biomarker response and metal accumulation. Ecotoxicology and environmental safety, 61(1), 89-97.
Dhanasiri, A. K., Brunvold, L., Brinchmann, M. F., Korsnes, K., Bergh, Ø., & Kiron, V. (2011). Changes in the intestinal microbiota of wild Atlantic cod Gadus morhua L. upon captive rearing. Microbial ecology, 61, 20-30.
Du, Y., Yi, M., Xiao, P., Meng, L., Li, X., Sun, G., & Liu, Y. (2015). The impact of Aeromonas salmonicida infection on innate immune parameters of Atlantic salmon (Salmo salar L). Fish & shellfish immunology, 44(1), 307-315.
Ege, V. (1939). A revision of the genus Anguilla Shaw, a systematic, phylogenetic and geographical study. Dana Report, 16: 1-256.
Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 32(19), 3047-3048.
Fattman, C. L., Schaefer, L. M., & Oury, T. D. (2003). Extracellular superoxide dismutase in biology and medicine. Free Radical Biology and Medicine, 35, 236-256.
Feder, M. E., & Hofmann, G. E. (1999). Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annual review of physiology, 61(1), 243-282.
Food and Agriculture Organization (FAO). (2017). Global Anguilla spp. Production 1960–2015. FISHSTAT Global Capture and Aquaculture Production Databases.
Gong, P., Li, H., He, X., Wang, K., Hu, J., & Tan, W. (2007). Preparation and antibacterial activity of Fe and Ag nanoparticles. Nanotechnology, 18, p. 604-611.
Guan, R., Xiong, J., Huang, W., & Guo, S. (2011). Enhancement of protective immunity in European eel (Anguilla anguilla) against Aeromonas hydrophila and Aeromonas sobria by a recombinant Aeromonas outer membrane protein. Acta Biochimica et Biophysica Sinica, 43(1), 79-88.
Guzik, K., Bzowska, M., Dobrucki, J., & Pryjma, J. (1999). Heat-shocked monocytes are resistant to Staphylococcus aureus-induced apoptotic DNA fragmentation due to expression of HSP72. Infection and immunity, 67(8), 4216-4222.
Han, Y. S. (2010). Study of production of potential aquaculture species–Anguilla marmorata. Project report of Council of Agriculture, Executive Yuan.
Han, Y. S., Lin, Y. F., Wu, C. R., Iizuka, Y., Castillo, T. R., Yambot, I. U., ... & Yambot, A. V. (2016). Biogeographic distribution of the eel Anguilla luzonensis: dependence upon larval duration and oceanic currents. Marine Ecology Progress Series, 551, 227-238.
Harroun, S. G., Lai, J. Y., Huang, C. C., Tsai, S. K., & Lin, H. J. (2017). Reborn from the ashes: Turning organic molecules to antimicrobial carbon quantum dots. ACS infectious diseases, 3(11), 777-779.
Heinsbroek, L. T. N. (1991). A review of eel culture in Japan and Europe. Aquaculture Research, 22(1), 57-72.
Heinsbroek, L. T. N., & Kreuger, J. G. (1992). Feeding and growth of glass eels, Anguilla anguilla L.: the effect of feeding stimulants on feed intake, energy metabolism and growth. Aquaculture Research, 23(3), 327-336.
Hirano, T. (1998). Interleukin 6 and its receptor: ten years later. International reviews of immunology, 16(3-4), 249-284.
Huang, K., Ma, H., Liu, J., Huo, S., Kumar, A., Wei, T., ... & Liang, X. J. (2012). Size-dependent localization and penetration of ultrasmall gold nanoparticles in cancer cells, multicellular spheroids, and tumors in vivo. ACS nano, 6(5), 4483-4493.
Huang, S., Wang, L., Liu, L., Hou, Y., & Li, L. (2015). Nanotechnology in agriculture, livestock, and aquaculture in China. A review. Agronomy for Sustainable Development, 35, 369-400.
Huang, H. T., Lin, H. J., Huang, H. J., Huang, C. C., Lin, J. H. Y., & Chen, L. L. (2020). Synthesis and evaluation of polyamine carbon quantum dots (CQDs) in Litopenaeus vannamei as a therapeutic agent against WSSV. Scientific reports, 10(1), 7343.
Hung, Y. M., Lu, T. P., Tsai, M. H., Lai, L. C., & Chuang, E. Y. (2021). EasyMAP: A user- friendly online platform for analyzing 16S ribosomal DNA sequencing data. New Biotechnology, 63, 37-44.
Hsieh, Y. Y., Tung, S. Y., Pan, H. Y., Yen, C. W., Xu, H. W., Lin, Y. J., ... & Li, C. (2018). Increased abundance of Clostridium and Fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Scientific reports, 8(1), 158.
Hsu, H. Y., Chang, F. C., Wang, Y. B., Chen, S. H., Lin, Y. P., Lin, C. Y., & Han, Y. S. (2018). Revealing the compositions of the intestinal microbiota of three Anguillid eel species using 16S rDNA sequencing. Aquaculture Research, 49(7), 2404-2415.
Iida, T., Yamamoto, A., & Wakabayashi, H. (1984). Changes in intestinal flora of the juvenile eel, Anguilla japonica, after beginning to feed. Fish Pathology, 19(3), 201-204.
Ingram, B. A., Gooley, G. J., De Silva, S. S., Larkin, B. J., & Collins, R. A. (2001). Preliminary observations on the tank and pond culture of the glass eels of the Australian shortfin eel, Anguilla australis Richardson. Aquaculture Research, 32(10), 833-848
Ishihara, S., & Kusuda, R. (1981). Experimental infection of elvers and anguillettes with Edwardsiella tarda bacteria. Bulletin of the Japanese Society of Scientific Fisheries.
Islam, M., & Yasmin, R. (2017). Impact of aquaculture and contemporary environmental issues in Bangladesh. International Journal of Fisheries and Aquatic Studies, 5, 100-107.
Jacoby, D., Casselman, J., DeLucia, M., Hammerson, G. A., & Gollock, M. (2014) Anguilla rostrata. The IUCN Red List of Threatened Species.
Jacoby, D. & Gollock, M. (2014). Anguilla japonica. The IUCN Red List of Threatened Species, 2014 e.T166184A1117791.
Jang, W. J., Kim, S. K., Park, S. Y., Kim, D. P., Heo, Y. J., Kim, H., ... & Lee, J. M. (2023). Effect of host-associated Bacillus-supplemented artificial diets on growth, survival rate, and gene expression in early-stage eel larvae (Anguilla japonica). Fishes, 8(5), 247.
Jian, H. J., Yu, J., Li, Y. J., Unnikrishnan, B., Huang, Y. F., Luo, L. J., ... & Huang, C. C. (2020). Highly adhesive carbon quantum dots from biogenic amines for prevention of biofilm formation. Chemical Engineering Journal, 386, 123913.
Jiang, J., Shi, D., Zhou, X. Q., Hu, Y., Feng, L., Liu, Y., ... & Zhao, Y. (2015). In vitro and in vivo protective effect of arginine against lipopolysaccharide induced inflammatory response in the intestine of juvenile Jian carp (Cyprinus carpio var. Jian). Fish & Shellfish Immunology, 42(2), 457-464.
Kamstra, A., & Heinsbroek, L. T. N. (1991). Effects of attractants on start of feeding of glass eel, Anguilla anguilla L. Aquaculture Research, 22(1), 47-56.
Katya, K., Lee, S. H., Bharadwaj, A. S., Browdy, C. L., Vazquez-Anon, M., & Bai, S. C. (2016). Effects of inorganic and chelated trace minerals (Cu, Zn, Mn and Fe) premix sources in marine fish rockfish, Sebastes schlegeli (Hilgendorf) fed diets containing phytic acid. Aquaculture Research, 48 (8), 4165–4173.
Keiichi, M., Kiyokuni, M., & Toshihiro, N. (1984). Increased susceptibility of Japanese Eel Anguilla japonica to Edwardsiella tarda and Pseudomonas anguilliseptica following exposure to copper. Bulletin of the Japanese Society of Scientific Fisheries, 50 (11), 1797-1801.
Kers, J. G., & Saccenti, E. (2022). The power of microbiome studies: Some considerations on which alpha and beta metrics to use and how to report results. Frontiers in microbiology, 12, 796025.
Knights, B. (1996). Studies of feeding stimulation in young eels, Anguilla anguilla L., before and after first‐feeding using a novel rapid‐screening method. Aquaculture Research, 27(5), 379-385.
Knetsch, M. L., & Koole, L. H. (2011). New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers, 3 (1):340-366.
Kou, G. H. (1974). Studies on the bacterial flora in eel-culturing ponds with special reference to Aeromonas. Journal of the Fish Society of Taiwan, 3, 21-27.
Kou, G. H. (1979). Some bacterial diseases if eel in Taiwan. In: Proceedings of Republic of China. United States Cooperative Seminar on Fish Diseases, 11-20.
Kumai, Y., Tsukamoto, K., & Kuroki, M. (2020). Growth and habitat use of two anguillid eels, Anguilla marmorata and A. japonica, on Yakushima Island, Japan. Ichthyological Research, 67, 375–384.
Kuo, L. C., Wu, R. Y., & Lee, K. T. (2012). A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18. Applied microbiology and biotechnology, 94, 1181-1188.
Kuo, W. S. (2017). Graphene quantum dots with nitrogen-doped content dependence for highly efficient dual- modality photodynamic antimicrobial therapy and bioimaging. Biomaterials, 120, 185–194.
Kusumawaty, D., Augustine, S. M. N., Aryani, A., Effendi, Y., Emran, T. B., & Tallei, T. E. (2023). Configuration of gut bacterial community profile and their potential functionality in the digestive tract of the wild and cultivated Indonesian shortfin elver-phase eels (Anguilla bicolor bicolor McClelland, 1844). 3 Biotech, 13(5), 153.
Kwon, D. H., & Lu, C. D. (2007). Polyamine effects on antibiotic susceptibility in bacteria. Antimicrobial agents and chemotherapy, 51(6), 2070-2077.
Leander, N. J., Wang, Y. T., Yeh, M. F. & Tzeng, W. N. (2014). The largest giant mottled eel Anguilla marmorata discovered in Taiwan. Taiwanese Journal of Biodiversity, 16, 77–84.
Lee, J. S., Cheng, H., Damte, D., Lee, S. J., Kim, J. C., Rhee, M. H., & Park, S. C. (2013). Effects of dietary supplementation of Lactobacillus pentosus PL11 on the growth performance, immune and antioxidant systems of Japanese eel Anguilla japonica challenged with Edwardsiella tarda. Fish & shellfish immunology, 34(3), 756-761.
Lee, S., Katya, K., Park, Y., Won, S., Seong, M., & Bai, S. C. (2017). Comparative evaluation of dietary probiotics Bacillus subtilis WB60 and Lactobacillus plantarum KCTC3928 on the growth performance, immunological parameters, gut morphology and disease resistance in Japanese eel, Anguilla japonica. Fish & Shellfish Immunology, 61, 201-210.
Lee, S., Moniruzzaman, M., Yun, H., Park, Y., Mann, J., & Bai, S. C. (2016). Comparative studies on effects of extruded pellets and dough type diets on growth, body composition, hematology and gut histology of juvenile Japanese Eel, Anguilla japonica (Temminck et Schlegel). Journal of Fisheries and Aquatic Sciences, 11, 378-384.
Li, L., Ren, W. J., Liu, C. Y., Dong, S. L., & Zhu, Y. H. (2018). Comparing trace element concentrations in muscle tissue of marbled eel Anguilla marmorata reared in three different aquaculture systems. Aquaculture Environment Interactions, Vol. 10: 13–20.
Li, Y. J., Harroun, S. G., Su, Y. C., Huang, C. F., Unnikrishnan, B., Lin, H. J., ... & Huang, C. C. (2016). Synthesis of self‐assembled spermidine‐carbon quantum dots effective against multidrug‐resistant bacteria. Advanced Healthcare Materials, 5(19), 2545-2554.
Li, X., Naseem, S., Hussain, R., Ghaffar, A., Li, K., & Khan, A. (2022). Evaluation of DNA damage, biomarkers of oxidative stress, and status of antioxidant enzymes in freshwater fish (Labeo rohita) exposed to pyriproxyfen. Oxidative Medicine and Cellular Longevity, 2022.
Liang, Y., Liu, H., Zhai, S., Huang, L., Huang, W., Huang, B., ... & Wang, B. (2023). Effects of weaning American glass eels (Anguilla rostrata) with the formula diet on intestinal microbiota and inflammatory cytokines genes expression. Heliyon, 9(6).
Lim, S. Y., Shen, W., & Gao, Z. (2015). Carbon quantum dots and their applications. Chemical Society Reviews, 44(1), 362-381.
Lin, T. S., & Huang, D. U. (2017). Effects of different feeds on growth of Anguilla bicolor pacifica. Journal of Taiwan Fisheries Research, 25, 35–42.
Lin, Y. T., Pan, Y. F., & Han, Y. S. (2023). Effects of adding spermidine carbon quantum dots in feed on growth, intestinal morphology, immunity and disease resistance of Anguilla japonica and Anguilla marmorata. Aquaculture Reports, 33, 101847.
Lin, Y. T., Hung, Y. C., Chen, L. H., Lee, K. T., & Han, Y. S. (2024). Effects of adding Bacillus subtilis natto NTU-18 in paste feed on growth, intestinal morphology, gastrointestinal microbiota diversity, immunity, and disease resistance of Anguilla japonica glass eels. Fish & Shellfish Immunology, 109556.
Liono, D. A., Arief, M., & Isroni, W. (2019). Addition of the papain enzyme to commercial feed against protein retention and feed efficiency in eels (Anguilla bicolor). Earth and Environmental Science, 236 (1), 012068.
Liu, X. Q., Li, K. F., Du, J., Li, J., & Li, R. (2011). Growth rate, catalase and superoxide dismutase activities in rock carp (Procypris rabaudi Tchang) exposed to supersaturated total dissolved gas. Journal of Zhejiang University Science B, 12, 909-914.
Liu, H., He, J., Chi, C., & Gu, Y. (2015). Identification and analysis of icCu/Zn-SOD, Mn-SOD and ecCu/Zn-SOD in superoxide dismutase multigene family of Pseudosciaena crocea. Fish & Shellfish Immunology, 43 (2), 491-501.
Liu, L., Jiang, C., Wu, Z. Q., Gong, Y. X., & Wang, G. X. (2013). Toxic effects of three strobilurins (trifloxystrobin, azoxystrobin and kresoxim-methyl) on mRNA expression and antioxidant enzymes in grass carp (Ctenopharyngodon idella) juveniles. Ecotoxicology and environmental safety, 98: 297-302.
Luo, M., Guan, R., Li, Z., & Jin, H. (2013). The effects of water temperature on the survival, feeding, and growth of the juveniles of A. marmorata and A. bicolor pacifica. Aquaculture, 400-401:61−64.
Mai, Q., Jin, Y., Chen, Y., Dong, H., Wu, Y., Sun, D., ... & Zeng, W. (2023). Assessing the effects of dietary live prey versus an artificial compound feed on growth performance, immune response, and intestinal microflora of largemouth bass Micropterus salmoides. Aquaculture International, 31(3), 1213-1230.
Marchese, G., Fitzgibbon, Q. P., Trotter, A. J., Carter, C. C., Jones, C. M., & Smith, G. G. (2019). The influence of flesh ingredients format and krill meal on growth and feeding behaviour of juvenile tropical spiny lobster Panulirus ornatus. Aquaculture, 499, 128-139.
Marini, M., Pedrosa-Gerasmio, I. R., Santos, M. D., Shibuno, T., Daryani, A., Romana-Eguia, M. R. R., & Wibowo, A. (2021) Genetic diversity, population structure and demographic history of the tropical eel Anguilla bicolor pacifica in Southeast Asia using mitochondrial DNA control region sequences. Global Ecology and Conservation, 26, e01493.
Martins, C. I., Eding, E. H., & Verreth, J. A. (2011). The effect of recirculating aquaculture systems on the concentrations of heavy metals in culture water and tissues of Nile tilapia Oreochromis niloticus. Food Chemistry, 126(3), 1001-1005.
McKinnon, L. J., Ingram, B. A., Larkin, B., & Gasior, R. J. (2002). Best Practice Guidelines for Australian Glass Eel Fishing and Aquaculture. Assessment of Eastern Australian glass eel tocks and associated eel aquaculture, 204.
Meziani, M. J., Dong, X., Zhu, L., Jones, L. P., LeCroy, G. E., Yang, F., ... & Sun, Y. P. (2016). Visible-light-activated bactericidal functions of carbon “Quantum” dots. ACS applied materials & interfaces, 8(17), 10761-10766.
Michael, J., & Abbott, S. L. (1993). Infections associated with the genus Edwardsiella: the role of Edwardsiella tarda in human disease. Clinical Infectious Diseases, 17 (4): 742-748.
Miller, M. A. (2017). Counting on carbon quantum dots to clear infection. Science Translational Medicine, 9(399), eaao0969.
Mohanty, B. R., & Sahoo, P. K. (2007). Edwardsiellosis in fish: a brief review. Journal of biosciences, 32, 1331-1344.
Muthmainnah, D., Honda, S., Suryati, N. K., & Prisantoso, B. I. (2016). Understanding the current status of anguillid eel fisheries in Southeast Asia. Fish for the People, 14, 19-25.
Nasruddin, N. S., Azmai, M. N. A., Ismail, A., Saad, M. Z., Daud, H. M., & Zulkifli, S. Z. (2014). Histological features of the gastrointestinal tract of wild Indonesian shortfin eel, Anguilla bicolor bicolor (McClelland, 1844), captured in Peninsular Malaysia. The Scientific World Journal, 2014, 312670.
Nayak, S. K. (2021). Multifaceted applications of probiotic Bacillus species in aquaculture with special reference to Bacillus subtilis. Reviews in Aquaculture, 13(2), 862-906.
Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311 (5761):622- 627.
Oliva, M., Vicente, J. J., Gravato, C., Guilhermino, L., & Galindo-Riaño, M. D. (2012). Oxidative stress biomarkers in Senegal sole, Solea senegalensis, to assess the impact of heavy metal pollution in a Huelva estuary (SW Spain): seasonal and spatial variation. Ecotoxicology and Environmental Safety, 75, 151-162.
Olsvik, P. A., Kristensen, T., Waagbø, R., Rosseland, B. O., Tollefsen, K. E., Baeverfjord, G., & Berntssen, M. H. G. (2005). mRNA expression of antioxidant enzymes (SOD, CAT and GSH-Px) and lipid peroxidative stress in liver of Atlantic salmon (Salmo salar) exposed to hyperoxic water during smoltification. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 141(3), 314-323.
Park, E. J., & Park, K. (2009). Oxidative stress and pro-inflammatory responses induced by silica nanoparticles in vivo and in vitro. Toxicology letters, 184 (1), 18-25.
Park, Y., Kim, H., Won, S., Hamidoghli, A., Hasan, M. T., Kong, I. S., & Bai, S. C. (2020). Effects of two dietary probiotics (Bacillus subtilis or licheniformis) with two prebiotics (mannan or fructo oligosaccharide) in Japanese eel, Anguilla japonica. Aquaculture Nutrition, 26(2), 316-327.
Pelgrift, R. Y., & Friedman, A. J. (2013). Nanotechnology as a therapeutic tool to combat microbial resistance. Advanced drug delivery reviews, 65 (13):1803-1815.
Qi, X., Zhang, Y., Zhang, Y., Luo, F., Song, K., Wang, G., & Ling, F. (2023). Vitamin B12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. Microbiome, 11(1), 135.
Qin, Y., Lin, G., Chen, W., Huang, B., Huang, W., & Yan, Q. (2014). Flagellar motility contributes to the invasion and survival of Aeromonas hydrophila in Anguilla japonica macrophages. Fish & Shellfish Immunology, 39(2), 273-279.
Qiu, T., Liu, L., Gao, M., Zhang, L., Tursun, H., & Wang, X. (2016). Effects of solid-phase denitrification on the nitrate removal and bacterial community structure in recirculating aquaculture system. Biodegradation, 27, 165-178.
Roberts, J. R. (2012). The bacteriology of teleosts. Fish pathology.
Rodríguez, A., Gisbert, E., Rodríguez, G., & Castelló-Orvay, F. (2005). Histopathological observations in European glass eels (Anguilla anguilla) reared under different diets and salinities. Aquaculture, 244(1-4), 203-214.
Sadler, K. (1981). The toxicity of ammonia to the European eel (Anguilla anguilla L.). Aquaculture, 26(1-2), 173-181.
Sahoo, S., Banu, H., Prakash, A., & Tripathi, G. (2021). Immune System of Fish: An Evolutionary Perspective. Antimicrobial immune response, 1.
Saurabh, S., & Sahoo, P. K. (2008). Lysozyme: an important defence molecule of fish innate immune system. Aquaculture Research, 39 (3), 223-239.
Shahkar, E., Yun, H., Kim, D. J., Kim, S. K., Lee, B. I., & Bai, S. C. (2015). Effects of dietary vitamin C levels on tissue ascorbic acid concentration, hematology, non-specific immune response and gonad histology in broodstock Japanese eel Anguilla japonica. Aquaculture, 438, 115–121.
Shahkar, E., Hamidoghli, A., Yun, H., Kim, D. J., & Bai, S. C. (2018). Effects of dietary vitamin E on hematology, tissueα-tocopherol concentration and non-specific immune responses of Japanese eel, Anguilla japonica. Aquaculture, 484, 51-57.
Shi, Y., Ma, D. Y., & Zhai, S. W. S. W. (2020). Revealing the difference of intestinal microbiota composition of cultured European eels (Anguilla anguilla) with different growth rates. Israeli Journal of Aquaculture-Bamidgeh, 72, 1-12.
Song, X., Zhao, J., Bo, Y., Liu, Z., Wu, K., & Gong, C. (2014). Aeromonas hydrophila induces intestinal inflammation in grass carp (Ctenopharyngodon idella): an experimental model. Aquaculture, 434, 171-178.
Simangunsong, T., Anjaini, J., Situmorang, N., & Liu, C. H. (2023). The latest application of Tubifex as live feed in aquaculture. Journal of Environmental Engineering and Sustainable Technology, 10(02), 112-121.
Su, L., Guo, H., Guo, B., Yi, J., Yang, Z., Zhou, S., & Xiu, Y. (2023). Efficacy of bivalent vaccine against Aeromonas salmonicida and Edwardsiella tarda infections in turbot. Fish & Shellfish Immunology, 139, 108837.
Sun, H., Gao, N., Dong, K., Ren, J., & Qu, X. (2014). Graphene quantum dots-band-aids used for wound disinfection. ACS Nano, 8, 6202–6210.
Swain, P., Nayak, S. K., Sasmal, A., Behera, T., Barik, S. K., & Swain, S. K. (2014). Antimicrobial activity of metal-based nanoparticles against microbes associated with diseases in aquaculture. World Journal of Microbiology and Biotechnology, 30 (9), 2491-2502.
Swirplies, F., Wuertz, S., Baßmann, B., Orban, A., Schäfer, N., Brunner, R. M., ... & Rebl, A. (2019). Identification of molecular stress indicators in pikeperch Sander lucioperca correlating with rising water temperatures. Aquaculture, 501, 260-271.
Thuc, T. N., & Van, D. H. (2021). An overview of the anguillid culture in Viet Nam. Journal of Aquaculture and Marine Biology, 10, 96-101.
Tseng, K. F., & Wu, K. L. (2004). The ammonia removal cycle for a submerged biofilter used in a recirculating eel culture system. Aquacultural engineering, 31(1-2), 17-30.
Tuševljak, N., Dutil, L., Rajić, A., Uhland, F. C., McClure, C., & St‐Hilaire, S. (2013). Antimicrobial use and resistance in aquaculture: findings of a globally administered survey of aquaculture‐allied professionals. Zoonoses and public health, 60 (6):426-436.
Tzeng, W. N. (1982). Newly record of the elver, Anguilla celebesensis Kaup, from Taiwan. Bioscience, 19, 57-66.
Vazirzadeh, A., Marhamati, A., Rabie, R., & Faggio, C. (2020). Immunomodulation, antioxidant enhancement and immune genes up-regulation in rainbow trout (Oncorhynchus mykiss) fed on seaweeds included diets. Fish & Shellfish Immunology, 106, 852-858.
Wang, Q. F., Shen, W. L., Hou, C. C., Liu, C., Wu, X. F., & Zhu, J. Q. (2017). Physiological responses and changes in gene expression in the large yellow croaker Larimichthys crocea following exposure to hypoxia. Chemosphere, 169, 418-427.
Wang, J., Feng, J., Liu, S., Cai, Z., Song, D., Yang, L., & Nie, G. (2021). The probiotic properties of different preparations using Lactococcus lactis Z-2 on intestinal tract, blood and hepatopancreas in Cyprinus carpio. Aquaculture, 543, 736911.
Watanabe, S., Aoyama, J., & Tsukamoto, K. (2009). A new species of freshwater eel Anguilla luzonensis (Teleostei: Anguillidae) from Luzon Island of the Philippines. Fisheries Science, 75, 387-392.
Vazirzadeh, A., Marhamati, A., Rabie, R., & Faggio, C. (2020). Immunomodulation, antioxidant enhancement and immune genes up-regulation in rainbow trout (Oncorhynchus mykiss) fed on seaweeds included diets. Fish & Shellfish Immunology, 106, 852-858.
Xiong, F., Xiong, J., Wu, Y. F., Cao, L., Huang, W. S., & Chang, M. X. (2020). Time-resolved RNA-seq provided a new understanding of intestinal immune response of European eel (Anguilla anguilla) following infection with Aeromonas hydrophila. Fish & Shellfish Immunology, 105, 297-309.
Xu, T., & Zhang, X. H. (2014). Edwardsiella tarda: an intriguing problem in aquaculture. Aquaculture, 431, 129-135.
Yajima, D., Fujita, H., Hayashi, I., Shima, G., Suzuki, K., & Toju, H. (2023). Core species and interactions prominent in fish-associated microbiome dynamics. Microbiome, 11(1), 53.
Zhang, M., Wu, X., & Zhai, S. (2022). Effect of dietary compound acidifiers supplementation on growth performance, serum biochemical parameters, and body composition of juvenile American eel (Anguilla rostrata). Fishes, 7(4), 203.
Zhao, Y., Xue, B., Bi, C., Ren, X., & Liu, Y. (2023). Influence mechanisms of macro‐infrastructure on micro‐environments in the recirculating aquaculture system and biofloc technology system. Reviews in Aquaculture, 15(3), 991-1009.
Zheng, C. C., Cai, X. Y., Huang, M. M., Mkingule, I., Sun, C., Qian, S. C., ... & Fei, H. (2019). Effect of biological additives on Japanese eel (Anguilla japonica) growth performance, digestive enzymes activity and immunology. Fish & shellfish immunology, 84, 704-710.
Zhou, L., Limbu, S. M., Shen, M., Zhai, W., Qiao, F., He, A., & Zhang, M. (2018). Environmental concentrations of antibiotics impair zebrafish gut health. Environmental Pollution, 235, 245-254.
Zhu, A., Qu, Q., Shao, X., Kong, B., & Tian, Y. (2012). Carbon-dot-based dual-emission nanohybrid produces a ratiometric fluorescent sensor for in vivo imaging of cellular copper ions. Angewandte Chemie (International ed. in English), 51(29), 7185-7189.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93859-
dc.description.abstract目前臺灣之鰻魚養殖業者多以赤蟲及絲蚯蚓作為鰻苗初期之開口餌料,取其對鰻苗具有強誘引性及良好適口性。但二種餌料皆生活於富含有機質之水域,容易夾帶病原或寄生蟲進養殖環境中,特別對於封閉集約式的循環水養殖系統有嚴重威脅。所以日本及韓國目前皆以人工膏狀飼料作為鰻苗之開口與初期餌料,其誘引性及適口性與赤蟲/絲蚯蚓接近,然其缺點為進口售價過於高昂,並不符合養殖經濟效益。而當鰻苗成長進入幼鰻階段後,目前主流使用鰻粉或浮料進行餵飼。其中鰻粉的散失性極強,容易對養殖池之水質造成嚴重影響,且易造成物理過濾器過載;浮料則由於加工過程需經過高溫膨發,無法在製程中有效添加對鰻魚成長、抗病有益之添加物如益生菌等,且初期鰻苗無法攝食。而膏狀飼料具有不易散失及低溫製作之特性,非常容易於製程中添加各種有利於鰻魚之添加物。若能研發出價格合理之鰻苗膏狀飼料,具有良好適口性及誘引性,散失性低,再加以功能性添加劑,極適合使用在室內集約循環水養殖系統,將具有龐大的商業潛力。本研究目前已研發出ㄧ種以魷魚漿搭配魚卵所製成之膏狀飼料,且發現對各類鰻苗之適口性、誘引性良好且成長表現不遜於赤蟲,更檢測不出對鰻魚有害之病原菌,極為適合搭配室內循環水系統使用。若搭配良好之機能性添加劑 (碳化多銨 (CQDSpds)、納豆枯草桿菌NTU-18)等可以進一步提升鰻苗之成長表現、抗病能力及腸道菌相,且不會影響鰻苗之腸道型態。zh_TW
dc.description.abstractCurrently, in Taiwan, eel aquaculture farmers mostly use bloodworms as initial feed, taking advantage of their strong attractiveness and palatability to glass eel. However, both types of feed live in waters rich in organic matter, making them prone to carry pathogens or parasites into the aquaculture systems, especially to the intensive eel recirculating aquaculture systems (RAS). Therefore, Japan currently using artificial paste feed as the initial feed for glass eel, which has similar attractiveness and palatability to bloodworms. However, its excessively high price, which is not cost efficiency. As glass eel grow into the elver stage, the main using feed used is eel powder or floating feed. Eel powder is highly dispersible, easily causing serious water quality impacts in aquaculture systems, and can overload RAS physical filters. Floating feed, due to the high-temperature required during processing, cannot effectively add beneficial additives such as probiotics for eel growth and disease resistance, and a glass eel cannot consume. Paste feed, on the other hand, has the characteristics of good stability and processed under low temperatures, making it very easy to add various additives beneficial to eel growth during processing. If a paste feed with good palatability, attractiveness, low dispersibility, reasonably priced, and additives can be easily added was developed, it will be extremely suitable for use in indoor intensive RAS. This study has currently developed a paste feed made from squid paste combined with fish roes, which has been found to have good palatability and attractiveness to various species of glass eels and performance comparable growth performance with bloodworms. Furthermore, harmful pathogens for eels were not detected in the glass eel intestine, making it highly suitable for use in indoor intensive RAS. If combined with good functional additives (CQDSpds, Bacillus subtilis natto NTU-18), it can further enhance the growth performance, disease resistance, immune gene response and intestinal microbiota of glass eel without affecting their intestinal morphology.en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:36:23Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:36:23Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents目次
致謝 i
中文摘要 ii
英文摘要 iii
目次 iv
表次 viii
圖次 ix
1. 前言 1
1.1 鰻魚養殖近況 1
1.2 熱帶性異種鰻養殖 2
1.3 循環水養殖系統 (RAS) 3
1.4 鰻苗飼料現況 3
1.5 疾病防治 5
1.6 機能性添加劑 7
1.7 本研究目標 8
2. 材料與方法 10
2.1 膏狀飼料配方設計 10
2.1.1 膏狀飼料原料及製程 10
2.1.2 飼料水中穩定性試驗 10
2.2 實際鰻苗養殖測試 11
2.2.1 膏狀飼料比較分析 11
2.2.2 碳化多銨 (CQDSpds) 添加劑 12
2.2.3 納豆枯草桿菌 NTU-18 添加劑實驗 13
2.3 採樣與計算 14
2.4 組織切片 14
2.5 非專一性免疫實驗 (qPCR) 15
2.6 腸道菌相分析 16
2.7 攻毒實驗 17
2.8 統計分析 18
3. 結果 19
3.1 膏狀飼料配方設計 19
3.1.1 膏狀飼料配方及製程 19
3.1.2 飼料水中穩定性 20
3.2 鰻苗生長表現 20
3.2.1 膏狀飼料比較分析 20
3.2.2 碳化多銨 (CQDSpds) 添加劑 21
3.1.3 納豆枯草桿菌 NTU-18 添加劑實驗 21
3.3 組織切片 22
3.3.1 膏狀飼料比較分析 22
3.3.2 碳化多銨 (CQDSpds) 添加劑 22
3.3.3 納豆枯草桿菌 NTU-18 添加劑實驗 22
3.4 免疫分析 23
3.4.1 膏狀飼料比較分析 23
3.4.2 碳化多銨 (CQDSpds) 添加劑實驗 23
3.4.3 納豆枯草桿菌 NTU-18 添加劑實驗 24
3.5 攻毒實驗 24
3.5.1 膏狀飼料比較分析 24
3.5.2 碳化多銨 (CQDSpds) 添加劑 25
3.5.3 納豆枯草桿菌 NTU-18 添加劑實驗 25
3.6 腸道菌相 25
3.6.1 膏狀飼料比較分析 25
3.6.2 納豆枯草桿菌 NTU-18 添加劑實驗 26
4. 討論 27
4.1 膏狀飼料比較分析 27
4.1.1 成長表現 27
4.1.2 鰻苗免疫表現 29
4.1.3 腸道菌相及型態分析 30
4.2 碳化多銨 (CQDSpds) 添加實驗 32
4.2.1 成長表現 32
4.2.2 鰻苗免疫表現 33
4.3 納豆枯草桿菌 NTU-18 添加實驗 35
4.3.1 成長表現 35
4.3.2 鰻苗免疫表現 36
4.3.3 腸道菌相分析 37
5. 結論 39
Reference 41
Publication 59
Table 61
Figure 70
補充資料 97
已發表期刊論文全文 99
-
dc.language.isozh_TW-
dc.title適用鰻苗循環水養殖系統之高成長膏狀飼料開發zh_TW
dc.titleDevelopment of palatable glass eel paste feed with high growth rate in the recirculating aquaculture systemen
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee廖一久;侯文祥;陳立涵;潘彥儒zh_TW
dc.contributor.oralexamcommitteeI-Chiu Liao;Wen-Shang Hou;Li-Han Chen;Yen-Ju Panen
dc.subject.keyword鰻魚養殖,室內循環水系統,鰻苗飼料,膏狀飼料,飼料添加劑,zh_TW
dc.subject.keywordEel aquaculture,RAS,glass eel feed,paste feed,feed additive,en
dc.relation.page142-
dc.identifier.doi10.6342/NTU202402135-
dc.rights.note同意授權(全球公開)-
dc.date.accepted2024-08-02-
dc.contributor.author-college生命科學院-
dc.contributor.author-dept漁業科學研究所-
顯示於系所單位:漁業科學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf39.7 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved