Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93850Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張宏浩 | zh_TW |
| dc.contributor.advisor | Hung-Hao Chang | en |
| dc.contributor.author | 林昭吟 | zh_TW |
| dc.contributor.author | Jhao-Yin Lin | en |
| dc.date.accessioned | 2024-08-08T16:33:02Z | - |
| dc.date.available | 2024-08-09 | - |
| dc.date.copyright | 2024-08-08 | - |
| dc.date.issued | 2024 | - |
| dc.date.submitted | 2024-07-30 | - |
| dc.identifier.citation | 中文文獻
中華民國中央銀行全球資訊網(2024)。檢自https://www.cbc.gov.tw/統計資料。 中華民國統計資訊網(2024)。檢自https://www.stat.gov.tw/統計資料。 全國法規資料庫,氣候變遷因應法(2023)。檢自https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020098。 李國忠、林俊成、陳麗琴(2000)。臺灣杉人工林碳吸存潛力及其成本效益分析。 李國忠、林俊成(2006)。森林資源二氧化碳吸存與碳排放權交易。全球變遷通訊雜誌, 26(6),27 – 40。 行政院農業委員會林務局(1995)。第三次全省森林資源及土地利用調查。 行政院農業委員會林務局(2008)。全國第四次森林資源調查。 林俊成、鄭美如、劉淑芬、李國忠(2002)。全民造林運動二氧化碳吸存潛力之經濟效益評估。臺灣林業科學,17(3),311-321。 林俊成(2009)。森林碳匯議題之趨勢。林業研究專訊16(3), 9-14。 林俊成、黃惠娟、黃建民、李宛瑩(2013)。台灣森林碳匯專案的現況與挑戰。臺灣林業科學,28(2),111-121. 卓志隆、胡子恒(2018)。針葉樹人工林疏伐作業之生產量與二氧化碳排放量分析比較。林產工業,37(1), 23-35。 陶子婕、林俊成(2014)。平地造林溫室氣體抵換專案減量方法之研擬。農業與經濟,52, 113-138。 柳婉郁、林國慶(2012)。REDD緣起與運作機制之分析。臺灣林業期刊,38(6), 15-19。 國立臺灣大學生物資源暨農學院實驗林管處網站(2024)。檢自https://www.exfo.ntu.edu.tw/index.php 。 經濟部網站(2024)。檢自https://www.gomoea.tw/carbonManagement 鄭欽龍(2000)。再造林成本與林木伐採決策之分析。中華林學季刊,33(1), 81-87。 環境部(2023)。2021年國家溫室氣體清冊報告。 環境部氣候變遷署(2023)。檢自溫室氣體自願減量暨抵換資訊平臺https://carbonoffset.moenv.gov.tw/ 。 英文文獻 Addicott, E., Badahdah, A., Elder, L., and Tan, W. (2019). Internal Carbon Pricing. Policy Framework and Case Studies, 9. Ameray, A., Bergeron, Y., Valeria, O., Montoro Girona, M., and Cavard, X. (2021). Forest carbon management: A review of silvicultural practices and management strategies across boreal, temperate and tropical forests. Current Forestry Reports, 1-22. Binkley, C. S., and Cornelis Van Kooten, G. (1994). Integrating climatic change and forests: Economic and ecologic assessments. Climatic Change, 28(1), 91-110. BloombergNEF(2024). Global Carbon Market Outlook 2024. https://about.bnef.com/blog/global-carbon-market-outlook-2024/ . BloombergNEF.(2024).Ten Things to Watch in Global Carbon Markets in 2024. https://about.bnef.com/blog/ten-things-to-watch-in-global-carbon-markets-in-2024/ . Bravo, F., del Río, M., Bravo-Oviedo, A., Ruiz-Peinado, R., del Peso, C., and Montero, G. (2017). Forest carbon sequestration: the impact of forest management. Managing Forest Ecosystems: The Challenge of Climate Change, 34, 251-275. Cambria, D., and Pierangeli, D. (2012). Application of a life cycle assessment to walnut tree (Juglans regia L.) high quality wood production: a case study in southern Italy. Journal of Cleaner Production, 23(1), 37-46. Carbon Credits(2024). Live Carbon Prices Today. https://carboncredits.com/carbon-prices-today/ Coase, R. H. (2013). The problem of social cost. The Journal of Law and Economics, 56(4), 837-877. De Jong, B. H., Tipper, R., and Montoya-Gómez, G. (2000). An economic analysis of the potential for carbon sequestration by forests: evidence from southern Mexico. Ecological Economics, 33(2), 313-327. Dewar, R. C., and Cannell, M. G. (1992). Carbon sequestration in the trees, products and soils of forest plantations: an analysis using UK examples. Tree Physiology, 11(1), 49-71. Drucker, P. (2018). The effective executive. Routledge. Ecosystem Marketplace(2023), ECOSYSTEM MARKETPLACE INSIGHTS REPORT -Paying for Quality, https://www.ecosystemmarketplace.com/. FAO (2020). Global Forest Resources Assessment 2020. Gaboury, S., Boucher, J. F., Villeneuve, C., Lord, D., and Gagnon, R. (2009). Estimating the net carbon balance of boreal open woodland afforestation: A case-study in Québec’s closed-crown boreal forest. Forest Ecology and Management, 257(2), 483-494. Gorte, R. W., and Ramseur, J. L. (2008). Forest Carbon Markets: Potential and Drawbacks. DIANE Publishing. Grassi, G., House, J., Dentener, F., Federici, S., den Elzen, M., and Penman, J. (2017). The key role of forests in meeting climate targets requires science for credible mitigation. Nature Climate Change, 7(3), 220-226. Hamrick, K., and Gallant, M. (2015). State of the voluntary carbon markets 2015. Ahead of The Curve. Forest Trends Ecosystem Marketplace. Helin, T., Sokka, L., Soimakallio, S., Pingoud, K., and Pajula, T. (2013). Approaches for inclusion of forest carbon cycle in life cycle assessment–a review. GCB bioenergy, 5(5), 475-486. Huang, C. H., Bates, R., Kronrad, G. D., and Cheng, S. (2004). Economic analyses of sequestering carbon in loblolly pine, cherrybark oak, and northern red oak in the United States. Environmental Management, 33, 187-199. IPCC (2014). Climate Change 2014 Synthesis Report Fifth Assessment Report. Jen IAn, J. I. (1994). Outlook and historical review of Chinese fir (Cunninghamia lanceolata) timber production in the Taiwan private forests. Taiwan Journal of Forest Science , 9(3), 235-240. Keith, H., Vardon, M., Obst, C., Young, V., Houghton, R. A., and Mackey, B. (2021). Evaluating nature-based solutions for climate mitigation and conservation requires comprehensive carbon accounting. Science of The Total Environment, 769, 144341. Kerchner, C. D., and Keeton, W. S. (2015). California's regulatory forest carbon market: Viability for northeast landowners. Forest Policy and Economics, 50, 70-81. King, D. M. (2004). Trade-based carbon sequestration accounting. Environmental Management, 33, 559-571. King, J. K. K., Granjou, C., Fournil, J., and Cecillon, L. (2018). Soil sciences and the French 4 per 1000 Initiative—The promises of underground carbon. Energy Research & Social Science, 45, 144-152. Klein, D., Wolf, C., Schulz, C., and Weber-Blaschke, G. (2015). 20 years of life cycle assessment (LCA) in the forestry sector: state of the art and a methodical proposal for the LCA of forest production. The International Journal of Life Cycle Assessment, 20, 556-575. Knoke, T., Paul, C., Hildebrandt, P., Calvas, B., Castro, L. M., Härtl, F., and Bendix, J. (2016). Compositional diversity of rehabilitated tropical lands supports multiple ecosystem services and buffers uncertainties. Nature Communications, 7(1), 11877. Kollmuss, A., Zink, H., and Polycarp, C. (2008). Making sense of the voluntary carbon market: A comparison of carbon offset standards. WWF Germany, 1-23. Li, L., and Zhang, D. (2024). Forest carbon offset protocols in compliance carbon markets. Forest Policy and Economics, 165, 103253. Lin J.C. (1994). A study on private forest management intention and subsidy system- a case study on Taipei Hsien. [MSc thesis]. Dept. of Forestry, National Taiwan Univ. 181. Lo, K. A. (1997). The Private Holding Forestland Use and Influential Factors-An Illustration of the Nankang Watershed in Nantou County. Doctoral dissertation, Doctoral Dissertation of Forestry National Chung-Hsing University. Mankiw, N. G. (2021). Principles of Economics. Cengage Learning. 52-54. Miner, R., and Gaudreault, C. (2013). A Review of Biomass Carbon Accounting Methods and Implications. NCASI. Mohan, M. (2018). Perovskite photovoltaics: Life cycle assessment. Perovskite Photovoltaics. Academic Press. 447-480. Nakano, K., Shibahara, N., Nakai, T., Shintani, K., Komata, H., Iwaoka, M., and Hattori, N. (2018). Greenhouse gas emissions from round wood production in Japan. Journal of Cleaner Production, 170, 1654-1664. Nilsson, S., and Schopfhauser, W. (1995). The carbon-sequestration potential of a global afforestation program. Climatic change, 30(3), 267-293. Niskanen, A., Saastamoinen, O., and Rantala, T. (1996). Economic impacts of carbon sequestration in reforestation: examples from boreal and moist tropical conditions. Silva. Fennica, 30(2-3), 269-280. Nordhaus, W. D. (2006). After Kyoto: alternative mechanisms to control global warming. American Economic Review, 96(2), 31-34. Nowak, D. J., and Crane, D. E. (2002). Carbon storage and sequestration by urban trees in the USA. Environmental Pollution, 116(3), 381-389. Parajuli, R., Megalos, M., Ruseva, T., Chizmar, S., and Fisher, M. (2019). An introduction to forest carbon offset markets. North Carolina Cooperative Extension. Putney, J. D., Kline, N., Fitzgerald, S., Grand, L., Schnepf, C., Latta, G., and Rizza, J. (2023). Introduction to Forest Carbon, Offsets and Markets. Richards, K. R., and Stokes, C. (2004). A review of forest carbon sequestration cost studies: a dozen years of research. Climatic change, 63(1), 1-48. Robertson, K., Loza-Balbuena, I., and Ford-Robertson, J. (2004). Monitoring and economic factors affecting the economic viability of afforestation for carbon sequestration projects. Environmental Science & Policy, 7(6), 465-475. Samuelson, P. A., and Nordhaus, W. D. (2009). Macroeconomics, 19e, 26-28. Schneider, U. A. (2002). The cost of agricultural carbon savings. Sun, X., Wang, P., Ferris, T., Lin, H., Dreyfus, G., Gu, B. H., and Wang, Y., et al. (2022). Fast action on short-lived climate pollutants and nature-based solutions to help countries meet carbon neutrality goals. Advances in Climate Change Research, 13(4), 564-577. Susaeta, A. (2023). Optimal Forest Management of Even-Aged Longleaf Pine Stands with Nontimber Benefits. Journal of Agricultural and Applied Economics, 55(1), 1-12. USDA Forest Service. (2015). Forests and Water: Ensuring Clean Water in Forests. Van Kooten, G. C., Eagle, A. J., Manley, J., and Smolak, T. (2004). How costly are carbon offsets? A meta-analysis of carbon forest sinks. Environmental Science & Policy, 7(4), 239-251. Vennesland, B., Hohle, A. M. E., Kjøstelsen, L., and Gobakken, L. R. (2013). Prosjektrapport KlimaTre. Energiforbruk og kostnader-Skog og bioenergi. Rapport Fra Skog og Landskap. Wang D.H., Chung H.H., and Lin J.S. (1994). The investigation of public and private forest in Miaoli County. Taiwan Journal of Forest Science, 9(2), 143-160. Winjum, J. K., Dixon, R. K., and Schroeder, P. E. (1993). Forest management and carbon storage: an analysis of 12 key forest nations. Water, Air, and Soil Pollution, 70, 239-257. WorldBank. (2016). The Economic Impact of Forests. https://www.worldbank.org WorldBank(2024). State and Trends of Carbon Pricing Dashboard. https://carbonpricingdashboard.worldbank.org/ Zanchi, G., Pena, N., and Bird, N. (2012). Is woody bioenergy carbon neutral? A comparative assessment of emissions from consumption of woody bioenergy and fossil fuel. Gcb Bioenergy, 4(6), 761-772. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93850 | - |
| dc.description.abstract | 氣候變遷已成為全球重要議題,從1988年IPCC成立到《京都議定書》和《巴黎協定》的通過,各國政府積極減少溫室氣體排放。臺灣也響應全球趨勢,提出2050淨零排放目標,並擬定包括自然碳匯在內的多項關鍵戰略,並關注自然碳匯於抵減溫室氣體排放的潛力,以積極促成溫室氣體減量,而本研究旨在探討臺灣如何通過碳定價機制推動森林碳匯自願減量專案成本效益評估。
本文就碳減量機制及森林碳交易進行說明,並就碳定價機制通過對碳排放設定價格,引導企業減排。臺灣於西元2023年修訂《氣候變遷因應法》以碳定價機制概念推動溫室氣體自願減量專案。其中森林碳匯專案目前有造林及再造林,普遍國際間森林碳市場透過造林、撫育和疏伐等加強森林經營活動,增加的碳吸存量轉換為碳權額度轉賣給排放者,以抵減其排放量。 臺灣在推動自然碳匯工作之森林碳匯專案初期成本高、碳吸存效果需長期觀察,其專案成本效益挑戰高。本研究顯示,提高碳交易價格能顯著改善專案的淨收益,需著重控制造林成本和森林經營管理成本以提升經濟效益,而不同專案地點間的效益差異大,且經營面積規模越大,專案平均成本相對越低。以本研究柳杉森林碳匯專案在低碳收益的情況下難以獲得正收益,但隨著碳交易價格的提升,專案經濟效益會有顯著改善。為達到更好的經濟效益,需嚴格控制各項成本並提高碳收益,另外,研究結果顯示單位碳吸存成本的變動範圍較大,需在專案制定時謹慎考量。而透過強化私人營林經營效率和增加造林面積,能有效提升碳吸存量,並提供經濟誘因促使林主積極參與,然而碳匯專案的成本效益仍需考量各項不確定性及風險,如自然災害、管理難度等。 透過推動自然碳匯和碳定價機制,自然碳匯在減少溫室氣體排放中的潛力巨大,但其推動需要有效的經濟誘因和政策支持。未來可透過改進碳匯專案的管理和技術,並結合經濟誘因機制,將有助於達成臺灣實現2050淨零排放目標。 | zh_TW |
| dc.description.abstract | Climate change has become a critical global issue. Since the establishment of the IPCC in 1988 and the adoption of the Kyoto Protocol and the Paris Agreement, governments worldwide have been actively working to reduce greenhouse gas emissions. Taiwan has responded to this global trend by setting a target of achieving net-zero emissions by 2050 and formulating several key strategies, including carbon sinks. This strategy focuses on the potential of carbon sinks to offset greenhouse gas emissions, thereby actively promoting emission reductions. This study aims to explore how Taiwan can promote the cost-effectiveness of voluntary forest carbon reduction projects through carbon pricing mechanisms.
This paper explains the carbon reduction mechanisms and forest carbon trading. It discusses how carbon pricing mechanisms set a price on carbon emissions to guide companies in reducing their emissions. In 2023, Taiwan amended the Climate Change Response Act to promote voluntary greenhouse gas reduction projects using the concept of carbon pricing mechanisms. Currently, forest carbon sink projects in Taiwan include afforestation and reforestation. The international forest carbon market typically enhances forest management activities such as afforestation, cultivation, and thinning to increase carbon sequestration. This increased carbon sequestration is converted into carbon credits sold to emitters to offset their emissions. In promoting natural carbon sinks, Taiwan faces high initial costs and long-term observation requirements for forest carbon sink projects, presenting significant cost-effectiveness challenges. This study shows that increasing carbon trading prices can significantly improve the net benefits of these projects. It is essential to control afforestation costs and improved forest management costs to enhance economic efficiency. The benefits vary significantly across different project locations, and larger management areas result in lower average project costs. The study on the Taiwan Cryptomeria japonica forest carbon sink project shows that achieving positive returns is challenging under low carbon prices. However, as carbon trading prices rise, the project's economic efficiency significantly improves. To achieve better economic efficiency, strict cost control and increased carbon revenue are necessary. Additionally, the study results indicate a wide range of unit carbon sequestration costs, requiring careful consideration during project planning. Enhancing private forest management efficiency and increasing afforestation areas can effectively improve carbon sequestration, providing economic incentives for forest owners to participate actively. However, the cost-effectiveness of carbon sink projects must also consider uncertainties and risks such as natural disasters and management difficulties. Promoting carbon sinks and carbon pricing mechanisms reveals a significant potential for reducing greenhouse gas emissions, but it requires effective economic incentives and policy support. Improving project management and technology, combined with economic incentive mechanisms, will contribute to achieving Taiwan's 2050 net-zero emissions target. | en |
| dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:33:02Z No. of bitstreams: 0 | en |
| dc.description.provenance | Made available in DSpace on 2024-08-08T16:33:02Z (GMT). No. of bitstreams: 0 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iii 目次 v 圖次 vii 表次 viii 第一章 前言 1 第一節 研究背景 1 第二節 研究動機與目的 5 第二章 溫室氣體排放管制及碳交易 9 第一節 溫室氣體排放管制系統 9 第二節 我國溫室氣體排放管制及碳交易市場 11 第三章 造林與再造林及加強森林經營碳匯專案 16 第一節 碳減量機制及森林碳交易 16 第二節 我國自願減量規定與機制 21 第三節 森林碳匯專案制度及方法學 22 第四章 森林碳匯專案成本及效益 37 第一節 相關文獻回顧 37 第二節 森林碳匯專案成本要素 40 第三節 臺灣森林自願減量專案樣區資料 45 第四節 臺灣森林碳匯專案成本效益架構 47 第五節 森林碳匯專案成本與效益 57 第六節 森林碳匯專案成本效益結果分析 61 第五章 結果與建議 67 參考文獻 75 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 自然碳匯 | zh_TW |
| dc.subject | 溫室氣體排放 | zh_TW |
| dc.subject | 溫室氣體自願減量專案 | zh_TW |
| dc.subject | 碳定價 | zh_TW |
| dc.subject | 森林自願減量專案 | zh_TW |
| dc.subject | 碳權 | zh_TW |
| dc.subject | 成本效益 | zh_TW |
| dc.subject | Carbon Sinks | en |
| dc.subject | Cost-effectiveness | en |
| dc.subject | Carbon Credits | en |
| dc.subject | Voluntary Forest Carbon Reduction Projects | en |
| dc.subject | Carbon Pricing | en |
| dc.subject | Voluntary Greenhouse Gas Reduction Projects | en |
| dc.subject | Greenhouse Gas Emissions | en |
| dc.title | 推動自然碳匯溫室氣體自願減量專案成本評估—以造林與再造林及加強森林經營專案為例 | zh_TW |
| dc.title | Promoting Carbon Sink Voluntary Greenhouse Gas Reduction Offset Project Cost Assessment: By Case Study of Afforestation, Reforestation, and Improved Forest Management Projects | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 112-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.coadvisor | 蘇怡如 | zh_TW |
| dc.contributor.coadvisor | Yi-Ju Su | en |
| dc.contributor.oralexamcommittee | 江博能;王尚禮;謝建達 | zh_TW |
| dc.contributor.oralexamcommittee | Po-Neng Chiang;Shan-Li Wang;Chien-Ta Hsieh | en |
| dc.subject.keyword | 自然碳匯,溫室氣體排放,溫室氣體自願減量專案,碳定價,森林自願減量專案,碳權,成本效益, | zh_TW |
| dc.subject.keyword | Carbon Sinks,Greenhouse Gas Emissions,Voluntary Greenhouse Gas Reduction Projects,Carbon Pricing,Voluntary Forest Carbon Reduction Projects,Carbon Credits,Cost-effectiveness, | en |
| dc.relation.page | 81 | - |
| dc.identifier.doi | 10.6342/NTU202401921 | - |
| dc.rights.note | 同意授權(全球公開) | - |
| dc.date.accepted | 2024-08-01 | - |
| dc.contributor.author-college | 生物資源暨農學院 | - |
| dc.contributor.author-dept | 農業經濟學系 | - |
| Appears in Collections: | 農業經濟學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-112-2.pdf | 2.09 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
