請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93848
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊國鑫 | zh_TW |
dc.contributor.advisor | Kuo-Hsin Yang | en |
dc.contributor.author | 鍾源俊 | zh_TW |
dc.contributor.author | Yuan-Chun Chung | en |
dc.date.accessioned | 2024-08-08T16:32:26Z | - |
dc.date.available | 2024-08-09 | - |
dc.date.copyright | 2024-08-08 | - |
dc.date.issued | 2024 | - |
dc.date.submitted | 2024-08-01 | - |
dc.identifier.citation | [1]. Ashtiani, M., Hashemabadi, S. H., & Ghaffari, A. (2015). A review on the magnetorheological fluid preparation and stabilization. Journal of magnetism and Magnetic Materials, 374, 716-730.
[2]. Anastasopoulos, I., Gazetas, G., Bransby, M. F., Davies, M. C. R., & El Nahas, A. (2007). Fault rupture propagation through sand: finite-element analysis and validation through centrifuge experiments. Journal of Geotechnical and Geoenvironmental Engineering, 133(8), 943-958. [3]. Bray, J. D. (2009). Earthquake surface fault rupture design considerations. Proceedings of the Sixth International Conference on Urban Earthquake Engineering, Tokyo, Japan, 37-45. [4]. Bransby, M. F., Davies, M. C. R., El Nahas, A., & Nagaoka, S. (2008). Centrifuge modelling of reverse fault–foundation interaction. Bulletin of Earthquake Engineering, 6, 607-628. [5]. Bransby, M. F., Davies, M. C. R., El Nahas, A., & Nagaoka, S. (2008). Centrifuge modelling of reverse fault–foundation interaction. Bulletin of Earthquake Engineering, 6, 607-628. [6]. Bray, J. D. (2001). Developing mitigation measures for the hazards associated with earthquake surface fault rupture. In Workshop on seismic fault-induced failures—possible remedies for damage to urban facilities. Tokyo, Japan, 55-79. [7]. Bray, J. D., Seed, R. B., Cluff, L. S., & Seed, H. B. (1994). Earthquake fault rupture propagation through soil. Journal of Geotechnical Engineering, 120(3), 543-561. [8]. Bathurst, R. J., & Karpurapu, R. (1993). Large-scale triaxial compression testing of geocell-reinforced granular soils. Geotechnical testing journal, 16(3), 296-303. [9]. Chiang, J., Michel, E., Yang, K-H., & Zornberg, J.G. (2023). Mitigation of Reverse Faulting in Foundation Soils using Geosynthetic-Encased Granular Columns, Transportation Geotechnics, 42, 101067. [10]. Chiang, J., Yang, K-H., Chan, Y-S., & Yuan C-L. (2021) “Finite Element Analysis and Design Method of Geosynthetic-Reinforced Soil Foundation subjected to Normal Fault Movement”, Computers and Geotechnics, 139, 104412. [11]. Chang, Y.Y., Lee, C.J., Huang, W.C., Huang, W.J., Lin, M.L., Hung, W.Y., & Lin, Y. H., Use of centrifuge experiments and discrete element analysis to model the reverse fault slip, International Journal of Civil Engineering, 11(2), 79-89. [12]. Fadaee, M., Ezzatyazdi, P., Anastasopoulos, I., & Gazetas, G. (2016). Mitigation of reverse faulting deformation using a soil bentonite wall: dimensional analysis, parametric study, design implications. Soil Dynamic and Earthquake Engineering. 89, 248-261. [13]. Fang, Y. S., Yang, Y. C., & Chen T. J. (2003). Retaining walls damaged in the Chi-Chi earthquake. Canadian Geotechnical Journal, 40, 1142-1153. [14]. Garcia, F. E., & Bray, J. D. (2019a). Discrete element analysis of earthquake fault rupture-soil-foundation interaction. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 145(9), 04019046. [15]. Garcia, F. E., & Bray, J. D. (2019b). Discrete-element analysis of influence of granular soil density on earthquake surface fault rupture interaction with rigid foundations. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 145(11), 04019093. [16]. Hung, W. Y., Yang, K. H., & Nguyen, T. S. (2020). PERFORMANCE OF GEOSYNTHETIC-REINFORCED SOIL WALLS AT FAILURE. Journal of GeoEngineering, 15(1), 13-29. [17]. Hung, W. Y., Lee, C. J., Chung, W. Y., Tsai, C. H., Chen, T., Huang, C. C., & Wu, Y. C. (2014). Seismic behavior of pile in liquefiable soil ground by centrifuge shaking table tests. Journal of Vibroengineering, 16(6), 2712-2721. [18]. Lin, M. L., Lin, C. H., Li, C. H., Liu, C. Y., & Hung, C. H. (2021). 3D modeling of the ground deformation along the fault rupture and its impact on engineering structures: Insights from the 1999 Chi-Chi earthquake, Shigang District, Taiwan. Engineering Geology, 281, 105993. [19]. Li, C. H., Lin, M. L., & Huang W. C. (2019). Interaction between pile groups and thrust faults in a physical sandbox and numerical analysis. Engineering Geology, 252, 65-77. [20]. Lin, M. L., Chung, C. F., & Jeng, F. S. (2006). Deformation of overburden soil induced by thrust fault slip. Engineering Geology, 88(1-2), 70-89. [21]. Lee, J. W., & Hamada, M. (2005). An experimental study on earthquake fault rupture propagation through a sandy soil deposit. Structural Engineering/Earthquake Engineering, 22(1), 1-13. [22]. Lazarte, C. A., Bray, J. D., Johnson, A. M., & Lemmer, R. E. (1994). Surface breakage of the 1992 Landers earthquake and its effects on structures. Bulletin of the Seismological Society, 84(3), 547-561. [23]. Moosavi, S. M., Jafari, M. K., Kamalian, M., & Shafiee, A. (2010). Experimental Investigation of Reverse Fault Rupture–Rigid Shallow Foundation Interaction. International Journal of Civil Engineering, 8(2), 85-98. [24]. Oettle, N. K., & Bray, J. D. (2013). Geotechnical mitigation strategies for earthquake surface fault rupture. Journal of Geotechnical and Geoenvironmental Engineering, 139(11), 1864-1874. [25]. Rasouli, H., & Fatahi, B. (2021). Geosynthetics reinforced interposed layer to protect structures on deep foundations against strike-slip fault rupture. Geotextiles and Geomembranes, 49(3), 722-736. [26]. Stamhuis, E. J. (2006). Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows. Aquatic Ecology, 40(4), 463-479. [27]. Tseng, C. H., Hu, J. C., Chan, Y. C., Chu, H. T., Lee, J. F., Wei, J. Y., & Lin, M. L. (2009). Non-catastrophic landslides induced by the Mw 7.6 Chi-Chi earthquake in central Taiwan as revealed by PIV analysis. Tectonophysics, 466(3-4), 427-437. [28]. Viswanadham, B. V. S., & König, D. (2004). Studies on scaling and instrumentation of a geogrid. Geotextiles and Geomembranes, 22(5), 307-328. [29]. Yang, K. H., Chiang, J., Lai, C. W., Han, J., & Lin, M. L. (2020). Performance of geosynthetic-reinforced soil foundations across a normal fault. Geotextiles and Geomembranes, 48(3), 357-373. [30]. Zhou, H., & Wen, X. (2008). Model studies on geogrid-or geocell-reinforced sand cushion on soft soil. Geotextiles and Geomembranes, 26(3), 231-238. [31]. 吳俊緯、鍾源俊、蔣榮、楊國鑫 (2023)。加勁路堤與基礎系統受逆斷層錯動之模型試驗。岩盤工程暨工程地質研討會發表,國立陽明交通大學。 [32]. 蔣榮、楊國鑫、吳俊緯、洪勇善、阮仲如 (2022),以柔性加勁基礎減緩逆斷層錯動引致之地表變形,地工技術,172,75-87。 [33]. 羅佳明、林銘郎、董家鈞、張光宗、簡士堯、黃安斌 (2009),遙測影像判釋與 PIV 技術於紅菜坪地滑特徵及其分區之研究. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 21(2), 000-000. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93848 | - |
dc.description.abstract | 地震災害是臺灣常見災害之一,斷層錯動引致的地表變形破壞,對於眾多地表結構物造成嚴重損毀。1999年集集地震,車籠埔斷層帶鄰近地表與結構物,產生嚴重破裂及倒塌。儘管國內建築技術規則中訂定,鄰近活動斷層兩側不得進行建築開發,但有些線型公共工程,像是高速公路、隧道、橋樑等,無法避開通過斷層帶,本研究參考國道四號臺中環線豐原至潭子段,以加勁擋土牆作為公路路堤,跨越車籠埔斷層,並透過加勁路堤與基礎系統進行整體性考量評估,致力於減緩斷層錯動引致之災害。
本研究採用1/15物理縮尺模型試驗,探討加勁路堤與基礎系統抗逆斷層之效能。研究旨在藉由不同加勁措施評估加勁路堤與基礎系統之減災功效,同時比較傳統剛性RC路堤與柔性路堤抗逆斷層之表現。其中,加勁措施包括基礎型式、路堤型式、路堤加勁材鋪設長度與加勁層垂直間距。首先探討加勁路堤與基礎系統受逆斷層作用下,其減緩牆面前傾位移之效果,並評估路堤牆頂變形、斷層剪裂帶發展、力學機制與現象,最終提出加勁路堤與基礎系統抗逆斷層之最佳建議。 考量各項加勁措施的改善效果,鋪設蜂巢格網基礎與施作加勁路堤取代傳統剛性RC路堤的效果最佳,得以提升整體系統穩定性,分別減少約8.5-10%與7.5-9%的最大正規化牆面前傾位移;增長路堤加勁材鋪設長度依然有效,能減少約5%。蜂巢格網基礎提供土壤圍束力,增加土壤剪力強度。與平面加勁材不同,屬於三維加勁結構,本身具有彎矩勁度,能有效阻擋與消散斷層剪裂帶之發展。加勁路堤作為柔性結構,可以消散斷層剪裂帶,並且容許剪裂帶引致之地表差異沉陷。然而,縮短加勁層垂直間距,由於近牆頂的加勁材上方垂直覆土減少,導致近牆頂牆面前傾位移較大,導致效果並不顯著。因此本研究提出三項具有減災效益之加勁改善措施,分別是鋪設蜂巢格網、施作加勁路堤取代傳統剛性RC路堤與增長路堤加勁材鋪設長度。 研究結果顯示採用加勁路堤(加勁材鋪設長度增長)與蜂巢格網基礎系統最為有效,相較於傳統剛性RC路堤與未加勁基礎,能大幅減緩接近七成之最大正規化路堤牆面前傾位移,有效地降低逆斷層錯動引致之災害。亦即當未來地震來襲,採用本研究提出之加勁路堤與基礎系統得以於災害中倖免,儘管破壞可於災後迅速搶修恢復交通運輸之功能。 | zh_TW |
dc.description.abstract | Earthquake disasters are one of the most common hazards in Taiwan. Surface deformations caused by fault movements lead to significant damage to numerous surface structures. During the 1999 Chi-Chi earthquake, severe ruptures and collapses occurred in the surface and structures near the Chelungpu fault. Despite regulations in Taiwan prohibiting construction near active fault zones, some linear public infrastructure, such as highways, tunnels, and bridges, cannot avoid crossing fault line. This study references the National Highway No. 4, using a geosynthetic-reinforced soil (GRS) wall as a highway embankment crossing the Chelungpu Fault. It evaluates the comprehensive performance of the GRS embankment and foundation systems in mitigating fault-induced hazards.
This research conducts a series of scaled model experiments to explore the effectiveness of GRS embankment and foundation systems across reverse faults. The research aims to assess the disaster mitigation efficiency through various reinforcing measures, comparing the performance of rigid and flexible embankments. The reinforcing measures include foundation types, embankment types, the length of the reinforcement, and the vertical spacing of the reinforcement layers. Firstly, the study examines the effectiveness of GRS embankment and foundation systems in reducing normalized facing displacement subject to reverse fault. It evaluates the top deformation of the embankment, fault shear rupture development, mechanical mechanisms, and phenomena, ultimately proposing the best recommendations for GRS embankment and foundation systems against reverse faults. Considering the improvement effects of various reinforcing measures, the use of geocell foundation and the construction of a GRS embankment instead of a traditional RC embankment have the best results. These measures can enhance the overall system stability, reducing the maximum normalized facing displacement by approximately 8.5-10.0% and 7.5-9.0%, respectively. Extending the length of the reinforcement in the embankment remains effective, reducing displacement by about 5%. Geocells provide soil confinement, increasing soil shear strength. Unlike planar reinforcement materials, the Geocell foundation is a three-dimensional reinforcement structure with bending stiffness. The development of shear rupture is mostly intercepted by the Geocell. The GRS embankment, being a flexible structure, can diffuse fault shear rupture and accommodate differential settlements induced by shear rupture. However, reducing the vertical spacing of the reinforcement layers results in increased facing displacement of the wall near the top due to the decreased vertical overburden on the reinforcement material above. Hence, this effect is not significant. Therefore, this study proposes three reinforcing improvement measures: utilizing Geocell foundation, constructing GRS embankments instead of traditional RC embankments, and extending the length of the reinforcement layers in the embankment. The research results indicate that the use of GRS embankment with long reinforcement and Geocell foundation system is most effective. Compared to traditional RC embankment and unreinforced foundation system, they significantly reduce maximum normalized facing displacement by up to reduction of 70%, effectively mitigating disasters caused by reverse fault movements. Thus, during future earthquakes, utilizing the GRS embankment and foundation systems proposed in this study can help prevent disasters, allowing for rapid post-disaster repair and restoration of transportation functions. | en |
dc.description.provenance | Submitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:32:26Z No. of bitstreams: 0 | en |
dc.description.provenance | Made available in DSpace on 2024-08-08T16:32:26Z (GMT). No. of bitstreams: 0 | en |
dc.description.tableofcontents | 謝辭 I
中文摘要 II 英文摘要 IV 目次 VI 圖次 IX 表次 XIV 第一章 序論 1 1.1 研究背景與動機 1 1.2 研究目的 4 1.3 研究架構與流程 4 第二章 文獻回顧 7 2.1 斷層錯動引致地表變形災害與結構互制行為 7 2.2 剛性構造物受斷層錯動破壞之原因與案例 11 2.3 柔性(加勁)構造物抵抗斷層錯動之案例 15 2.4 斷層錯動引致災害之減災對策 17 2.5 蜂巢格網應用與研究 19 2.6 加勁擋土牆設計參數 21 第三章 物理模型建置與試驗方法 23 3.1 物理模型設計 23 3.1.1 模型設計 23 3.1.2 模型相似性定律 25 3.2 試驗材料參數 27 3.3 試驗計畫與配置 31 3.3.1 試驗計畫 31 3.3.2 試驗配置 33 3.4 試驗準備與步驟 38 3.4.1 未加勁基礎設置 38 3.4.2 蜂巢格網基礎設置 38 3.4.3 加勁路堤設置 39 3.4.4 傳統剛性RC路堤設置 40 3.4.5 基本試驗步驟 42 3.5 數位影像分析技術 44 3.5.1 數值高程模型 44 3.5.2 質點影像量測技術 46 第四章 試驗結果與討論 49 4.1 加勁路堤與未加勁基礎系統 49 4.1.1 Test GRS+UF 49 4.1.2 Test GRS_L+UF 55 4.1.3 Test GRS_S+UF 59 4.2 加勁路堤與蜂巢格網基礎系統 63 4.2.1 Test GRS+GCF 63 4.2.2 Test GRS_L+GCF 67 4.3 傳統剛性RC路堤與未加勁基礎系統 72 4.4 傳統剛性RC路堤與蜂巢格網基礎系統 77 第五章 綜合比較與設計建議 81 5.1 路堤與基礎系統 81 5.1.1 基礎斷層剪裂帶發展 81 5.1.2 路堤牆面前傾位移 86 5.1.3 路堤牆頂變形曲線 92 5.2 加勁措施減災功效與力學機制 94 5.2.1 蜂巢格網基礎 94 5.2.2 加勁路堤(取代傳統剛性RC路堤) 96 5.2.3 加勁路堤設計參數 98 5.2.4 牆面前傾成因與減災對策 101 5.3 最佳化配置與設計建議 104 第六章 結論與建議 106 6.1 結論 106 6.2 建議 107 參考文獻 108 | - |
dc.language.iso | zh_TW | - |
dc.title | 不同加勁措施對於加勁路堤與基礎系統作為跨逆斷層減災工法之研究 | zh_TW |
dc.title | Effect of various reinforcing measures on geosynthetic-reinforced embankment and foundation systems for mitigating reverse fault-induced hazards | en |
dc.type | Thesis | - |
dc.date.schoolyear | 112-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 洪汶宜;邱俊翔;蔣榮 | zh_TW |
dc.contributor.oralexamcommittee | Wen-Yi Hung;Jiunn-Shyang Chiou;Jung Chiang | en |
dc.subject.keyword | 地工合成材料,加勁路堤與基礎系統,逆斷層,路堤牆面前傾位移,斷層剪裂帶, | zh_TW |
dc.subject.keyword | Geosynthetics,Geosynthetic-reinforced embankment and foundation systems,Reverse fault,Normalized facing displacement,Fault shear rupture, | en |
dc.relation.page | 111 | - |
dc.identifier.doi | 10.6342/NTU202402401 | - |
dc.rights.note | 同意授權(全球公開) | - |
dc.date.accepted | 2024-08-04 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 土木工程學系 | - |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-112-2.pdf | 8.09 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。