Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93845
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor闕蓓德zh_TW
dc.contributor.advisorPei-Te Chiuehen
dc.contributor.author張千晴zh_TW
dc.contributor.authorChien-Ching Changen
dc.date.accessioned2024-08-08T16:31:32Z-
dc.date.available2024-08-09-
dc.date.copyright2024-08-08-
dc.date.issued2024-
dc.date.submitted2024-08-01-
dc.identifier.citationAdeleke, O., Akinlabi, S. A., Jen, T.-C., & Dunmade, I. (2021). Application of Artificial Neural Networks for Predicting the Physical Composition of Municipal Solid Waste: an Assessment of the Impact of Seasonal Variation. Waste Manag Res, 39(8), 1058-1068. https://doi.org/10.1177/0734242X21991642
Asif Afzal, Aabid, A., Khan, A., Khan, S. A., Rajak, U., Verma, T. N., & Kumar, R. (2020). Response Surface Analysis, Clustering, and Random Forest Regression of Pressure in Suddenly Expanded High-speed Aerodynamic Flows. Aerospace Science and Technology, 107, 106318.
Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for Hyper-Parameter Optimization. Advances in neural information processing systems, 24.
Breiman, L. (2001). Random Forests. Machine learning, 45, 5-32.
Buekens, A., & Cen, K. (2011). Waste incineration, PVC, and dioxins. Journal of Material Cycles and Waste Management, 13, 190-197.
Caneghem, J. V., Greef, J. D., Block, C., & Vandecasteele, C. (2016). NOx Reduction in Waste Incinerators by Selective Catalytic Reduction (SCR) instead of Selective Non Catalytic Reduction (SNCR) Compared from a Life Cycle Perspective: a Case Study. Journal of Cleaner Production, 112, 4452-4460.
Chen, D. M.-C., Bodirsky, B. L., Krueger, T., Mishra, A., & Popp, A. (2020). The World’s Growing Municipal Solid Waste: Trends and Impacts. Environmental Research Letters, 15(7). https://doi.org/10.1088/1748-9326/ab8659
Cui, J., Li, J., Zhang, H., Zhang, R., Ma, W., Zhu, Y., Yuan, W., Palocz-Andresen, M., Zhao, Y., & Lou, Z. (2024). Synergistic Control Potential of Flue Gas Pollutants under Ultra-Low Emission Standards in Waste Incineration Plants. Environment International, 186, 108590.
Deuster, E. V., Mensing, A., Jiang, M. X., & Majdeski, H. (1994). Cleaning of flue gas from solid waste incinerator plants by wet/semi‐dry process. Environmental Progress, 13(2), 149-153. https://doi.org/10.1002/ep.670130222
Doka, G. (2003). Life Cycle Inventories of Waste Treatment Services (ecoinvent report No. 13.Swiss Centre for Life Cycle Inventories, Issue. http://www.doka.ch/13_II_WasteIncineration.pdf
Drzyzga, O., & Prieto, A. (2019). Plastic Waste Management, a matter for the ‘Community’. Microbial Biotechnology, 12(1), 66-68. https://doi.org/https://doi.org/10.1111/1751-7915.13328
Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we Need Hundreds of Classifiers to Solve Real World Classification Problems? The journal of machine learning research, 15(1), 3133-3181.
Han, Z., Liu, Y., Zhong, M., Shi, G., Li, Q., Zeng, D., Zhang, Y., Fei, Y., & Xie, Y. (2018). Influencing Factors of Domestic Waste Characteristics in Rural Areas of Developing Countries. Waste Manag, 72, 45-54. https://doi.org/10.1016/j.wasman.2017.11.039
He, T., Niu, D., Chen, G., Wu, F., & Chen, Y. (2022). Exploring Key Components of Municipal Solid Waste in Prediction of Moisture Content in Different Functional Areas Using Artificial Neural Network. Sustainability, 14(23). https://doi.org/10.3390/su142315544
He, W., Zheng, Y., Liu, B., & Zhang, B. (2022). Effects of Garbage Classification on Air Pollutant Emissions from Garbage Incineration. China Environmental Science, 42(5), 2433-2441.
Heydari, A., Nezhad, M. M., Garcia, D. A., Keynia, F., & Santoli, L. D. (2021). Air Pollution Forecasting Application Based on Deep Learning Model and Optimization Algorithm. Clean Technologies and Environmental Policy, 24(2), 607-621. https://doi.org/10.1007/s10098-021-02080-5
Hung, W. S. Y., & Langenbacher, F. (1995). PEMS: Monitoring NOx Emissions From Gas Turbines.
Leckner, B., & Lind, F. (2020). Combustion of Municipal Solid Waste in Fluidized Bed or on Grate–A Comparison. Waste Management, 109, 94-108.
Lu, J.-W., Zhang, S., Hai, J., & Lei, M. (2017). Status and Perspectives of Municipal Solid Waste Incineration in China: a Comparison with Developed Regions. Waste Management, 69, 170-186.
Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. Advances in Neural Information Processing Systems 30 (NIPS 2017).
Ma, S., Zhou, C., Chi, C., Liu, Y., & Yang, G. (2020). Estimating Physical Composition of Municipal Solid Waste in China by Applying Artificial Neural Network Method. Environ Sci Technol, 54(15), 9609-9617. https://doi.org/10.1021/acs.est.0c01802
Ma, W., Cui, J., Abdoulaye, B., Wang, Y., Du, H., Bourtsalas, A. C., & Chen, G. (2022). Air Pollutant Emission Inventory of Waste-to-Energy Plants in China and Prediction by the Artificial Neural Network Approach. Environ Sci Technol. https://doi.org/10.1021/acs.est.2c01087
Mason, T. G., Schooling, C. M., Chan, K. P., & Tian, L. (2019). An Evaluation of the Air Quality Health Index Program on Respiratory Diseases in Hong Kong: an Interrupted Time Series Analysis. Atmospheric Environment, 211, 151-158.
Meng, X., Tang, J., & Qiao, J. (2022). NOx Emissions Prediction With a Brain-Inspired Modular Neural Network in Municipal Solid Waste Incineration Processes. IEEE Transactions on Industrial Informatics, 18(7), 4622-4631. https://doi.org/10.1109/tii.2021.3116528
Ogwueleka, T. C., & Ogwueleka, F. N. (2010). Modeling Energy Content of Municipal Solid Waste using Artificial Neural Network [Article]. Iranian Journal of Environmental Health Science & Engineering, 7(3), 259-266. <Go to ISI>://WOS:000281200200008
Puntarić, E., Pezo, L., Zgorelec, Ž., Gunjača, J., Grgić, D. K., & Voća, N. (2022). Prediction of the Production of Separated Municipal Solid Waste by Artificial Neural Networks in Croatia and the European Union. Sustainability, 14(16). https://doi.org/10.3390/su141610133
Rogaume, T., Koulidiati, J., Richard, F., Jabouille, F., & Torero, J. L. (2006). A Model of the Chemical Pathways Leading to NOx Formation during Combustion of Mixtures of Cellulosic and Plastic Materials. International journal of thermal sciences, 45(4), 359-366.
Rosecký, M., Šomplák, R., Slavík, J., Kalina, J., Bulková, G., & Bednář, J. (2021). Predictive Modelling as a Tool for Effective Municipal Waste Management Policy at Different Territorial Levels. Journal of Environmental Management, 291, 112584.
Sharifuddin M Zain, & Chua, K. K. (2011). Development of a Neural Network Predictive Emission Monitoring System for Flue Gas Measurement. 2011 IEEE 7th International Colloquium on Signal Processing and its Applications.
Shuya Li, Zhang, Y., Song, W., Zhang, C., Zhao, C., Shen, W., Hai, J., Lu, J., & Xie, Y. (2021). Prediction of Typical Flue Gas Pollutants from Municipal Solid Waste Incineration Plants 2021 IEEE 24th International Conference on Computer Supported Cooperative Work in Design (CSCWD),
Simon L Turner, Karahalios, A., Forbes, A. B., Taljaard, M., Grimshaw, J. M., & McKenzie, J. E. (2021). Comparison of Six Statistical Methods for Interrupted Time Series Studies: Empirical Evaluation of 190 Published Series. BMC Medical Research Methodology, 21(1), 134.
Tang, Y., Ma, X., Lai, Z., Zhou, D., Lin, H., & Chen, Y. (2012). NOx and SO2 Emissions from Municipal Solid Waste (MSW) Combustion in CO2/O2 Atmosphere. Energy, 40(1), 300-306.
USEPA. (2024). Sustainable Materials Management: Non-Hazardous Materials and Waste Management Hierarchy. https://www.epa.gov/smm/sustainable-materials-management-non-hazardous-materials-and-waste-management-hierarchy
Wang, D., Tang, Y.-T., He, J., Yang, F., & Robinson, D. (2021). Generalized Models to Predict the Lower Heating Value (LHV) of Municipal Solid Waste (MSW). Energy, 216. https://doi.org/10.1016/j.energy.2020.119279
Wang, Y., & Shi, Q. (2022). The Impact of Municipal Solid Waste Sorting Policy on Air Pollution: Evidence from Shanghai, China. Plos one, 17(11), e0277035.
Wenchao, M., Xu, L., Chen, M., Tianbao, G., & Guanyi, C. (2022). Basic: A Comprehensive Model for SOx Formation Mechanism and Optimization in Municipal Solid Waste(MSW) Combustion. ACS omega, 7(5), 3860-3871.
White, D., K. Nebel, Gundappa, M., & Ferry, K. (1994). NOx Control Technologies Applicable to Municipal Waste Combustion. U. S. E. P. Agency.
Xu, A., Chang, H., Xu, Y., Li, R., Li, X., & Zhao, Y. (2021). Applying Artificial Neural Networks (ANNs) to Solve Solid Waste-related Issues: a Critical Review. Waste Manag, 124, 385-402. https://doi.org/10.1016/j.wasman.2021.02.029
Yang, N., Zhang, H., Chen, M., Shao, L.-M., & He, P.-J. (2012). Greenhouse Gas Emissions from MSW Incineration in China: Impacts of Waste Characteristics and Energy Recovery. Waste Manag, 32(12), 2552-2560. https://doi.org/10.1016/j.wasman.2012.06.008
You, H., Ma, Z., Tang, Y., Wang, Y., Yan, J., Ni, M., Cen, K., & Huang, Q. (2017). Comparison of ANN (MLP), ANFIS, SVM, and RF Models for the Online Classification of Heating Value of Burning Municipal Solid Waste in Circulating Fluidized Bed Incinerators. Waste Management, 68, 186-197.
Yu, T., & Zhu, H. (2020). Hyper-parameter Optimization: A Review of Algorithms and Applications. arXiv preprint arXiv:2003.05689.
Zaini, N. a., Ean, L. W., Ahmed, A. N., & Malek, M. A. (2022). A Systematic Literature Review of Deep Learning Neural Network for Time Series Air Quality Forecasting. Environ Sci Pollut Res Int, 29(4), 4958-4990. https://doi.org/10.1007/s11356-021-17442-1
Zhang, B., Rong, Y., Yong, R., Qin, D., Li, M., Zou, G., & Pan, J. (2022). Deep Learning for Air Pollutant Concentration Prediction: A Review. Atmospheric Environment, 290. https://doi.org/10.1016/j.atmosenv.2022.119347
Zhang, H., Yu, S., Shao, L., & He, P. (2019). Estimating Source Strengths of HCl and SO2 Emissions in the Flue Gas from Waste Incineration. Journal of Environmental Sciences, 75, 370-377.
Zhang, M., Wei, J., Li, H., Chen, Y., & Liu, J. (2024). Comparing and Optimizing Municipal Solid Waste (MSW) Management Focused on Air Pollution Reduction from MSW Incineration in China. Science of the Total Environment, 907, 167952.
Zhang, Y., Li, Q., Meng, A., & Chen, C. (2011). Carbon Monoxide Formation and Emissions during Waste Incineration in a Grate-circulating Fluidized Bed Incinerator. Waste Manag Res, 29(3), 294-308. https://doi.org/10.1177/0734242X10368581
Zhao, Q., Tang, W., Han, M., Cui, W., Zhu, L., Xie, H., Li, W., & Wu, F. (2023). Estimation of Reduced Greenhouse Gas Emission from Municipal Solid Waste Incineration with Electricity Recovery in Prefecture- and County-level Cities of China. Sci Total Environ, 875, 162654. https://doi.org/10.1016/j.scitotenv.2023.162654
Zhu, Y., Zhang, Y., Luo, D., Chong, Z., Li, E., & Kong, X. (2020). A Review of Municipal Solid Waste in China: Characteristics, Compositions, Influential Factors and Treatment Technologies. Environment, Development and Sustainability, 23(5), 6603-6622. https://doi.org/10.1007/s10668-020-00959-9
一般廢棄物(垃圾)採樣方法(2004年2月3日)公告。
三級防制區既存固定污染源應削減污染物排放量準則(2020年07月10日)公告。
司洪濤、鄭乙任、李遠志(1998)。垃圾焚化廠廢氣處理系統規劃設計與運轉之探討。工業污染防治,17:3=67卷,46-65.。
全球化監察(2020)兩岸三都垃圾圍城的對策:香港、廣州與臺北減廢經驗之初步報告。
江康鈺主持(2020)。107-108年度一般廢棄物最終處置前組成採樣及分析工作委託專案計畫(環境部專案成果報告,EPA-107-HA14-02-A117)。國立中央大學。
呂連慶、張乃斌(1995)。大型混燒式都市垃圾焚化爐爐體機能與構造之研究。工業污染防治,56,85-126。
呂錫民(2019)。焚化廢棄物產生能源的演變:綜述。工業污染防治,145,63-92。
固定污染源空氣污染防制費收費費率(2023年10月2日)修正公布。
高思懷、蘇文亮、李明國、陳政綱、吳靜薇、吳欣慧(2010)。一般廢棄物清理政策與管理(2)垃圾費隨袋徵收政策與焚化爐的未來。環境工程會刊,21(2)。
翁瑞裕(2019)。選擇性觸媒還原(SCR)脫硝法。工業污染防治,57,140-155。
劉鎮溢(1996)。電廠排煙脫硝SCR選擇性觸媒還原脫硝技術。工業污染防治,76,98-112。
蔡仕杰、朱沛峰、王彥智、黃騰輝、李雲龍(2015)。都市垃圾焚化廠 SNCR 系統反應效率實務探討。工業污染防治,132,107-123。
環境部(2017)。多元化垃圾處理計畫。
環境部(2023)。空氣污染防制方案(113年至116年)。
環興科技股份有限公司(2022)。新店焚化廠整建成果及效益。
魏憶琳、王東山、張乃斌(1995)。流體化床焚化爐技術之發展與處理一般垃圾及事業廢棄物之潛力評估。工業污染防治,62,48-78。
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/93845-
dc.description.abstract垃圾焚化為台灣主要的廢棄物處置方式,但卻導致空氣污染物的排放。為改善垃圾焚化的排放問題,我國政府提出了加嚴管制焚化爐排放污染物的政策與規範。然而,目前多數焚化爐仍無法達到加嚴管制的標準,顯示焚化爐排放管理仍需要進一步檢視與討論。此外,與要達到焚化爐減排相關的因素除了空氣污染防制設備技術的更新外,還有長期被忽視的垃圾組成因素及源頭減量政策。

本研究旨在釐清焚化爐減排的關鍵因素,以政策檢驗及機器學習模型的方式探討相關因子。首先,通過季節性分解與中斷時間序列分析,檢驗源頭減量政策及焚化爐改建政策對垃圾減量及焚化爐減排的效益。其次,採用特徵工程方法,分析減排因子對焚化爐排放的相關性與顯著性。再應用機器學習方法建立焚化爐排放預測模型,並分析輸入因子對模型的影響程度。最後,對政策檢驗、特徵工程及機器學習建模三階段的結果進行比較,以確定焚化爐減排的關鍵參數。

研究結果顯示,在政策檢驗階段,「限制塑膠吸管使用」及「雙北專用垃圾袋互收」政策對垃圾減量具有立即減量但逐漸增量的顯著效果。然而,由於空氣污染監測數據無呈現一致性,本研究未能確定該政策對焚化爐減排的效益;「新店焚化爐改建」政策顯示出空氣污染物排放值逐漸減少的顯著效果,表明該政策對焚化爐減排具有長期效益。在特徵工程階段,O2(%) 與焚化爐設計參數,特別是空氣污染物防制設備,對排放濃度影響顯著(p-value <0.001)。模型驗證結果顯示,NOx 模型(MAPE=10.4%; R2=0.714) 在穩定性及準確性上優於其他四個污染物排放預測模型, 其表現依次為HCl (MAPE=82.8%; R2=0.65) 、CO(MAPE=75.4%; R2=0.26)與SO2 (MAPE=96.6%; R2=0.39) 預測模型。SHAP 分析結果顯示,空氣污染物防制設備對四個模型的影響程度高於其他因子。對於組成參數而言,高度影響的組成參數與文獻回顧中的解釋一致。

綜合上述結果,空氣污染物防制設備仍是改善焚化爐排放的最重要且直接的因子。然而,源頭減量及垃圾組成仍然是輔助焚化爐減排的不可忽視的關鍵。
zh_TW
dc.description.abstractAs socio-economic development progresses, the amount of urban solid waste is increasing. Incineration processes are the primary waste disposal method in Taiwan, but they result in the emission of air pollutants. To address the issue of emissions from incinerators, the Taiwanese government has proposed stricter regulations and standards for incinerator emissions. However, most incinerators currently fail to meet these standards. Factors related to reducing emissions from incinerators include not only updates to air pollution control technologies but also long-neglected factors such as waste composition and source reduction policies.

This study aims to identify the key factors in reducing emissions from incinerators. First, through seasonal decomposition and interrupted time series analysis, the effects of source reduction policies and incinerator reconstruction policies on waste reduction and emission reduction were examined. Second, feature engineering methods were performed to analyze the correlation and significance of emission reduction factors on incinerator emissions. Furthermore, machine learning methods were used to establish prediction models for incinerator emissions and to analyze the impact of emission reduction factors on these models. Finally, the results from the policy examination, feature engineering, and machine learning modeling phases were compared to determine the key factors for emission reduction in incinerators.

The results indicate that during the policy examination phase, the "Restriction on Plastic Straw Usage" and "Reciprocal Use of Special Garbage Bags in Taipei and New Taipei City" policies had an immediate but gradually increasing significant effect on waste reduction. However, due to inconsistent air pollution monitoring data, this study could not confirm the policy's effectiveness in reducing emissions from incinerators. The "Xindian Incinerator Reconstruction" policy showed a gradual decrease in significant effect, indicating that the policy has long-term benefits. In the feature engineering phase, O2 (%) and incinerator design parameters, particularly air pollution control equipment, had a significant impact on emission concentrations (p-value <0.001). Model validation results show that the NOx model (MAPE=10.4%; R2=0.714) performed better in terms of stability and accuracy compared to the other four pollutant emission prediction models, followed by the HCl (MAPE=82.8%; R2=0.652), CO (MAPE=75.4%; R2=0.259), and SO2 (MAPE=96.6%; R2=0.392) prediction models.SHAP analysis results indicate that air pollution control equipment had a greater impact on the four models compared to other factors. However, for composition parameters, the highly influential parameters were consistent with explanations found in the literature and still had a significant impact.

In summary, air pollution control equipment remains the most important and direct factor in improving incinerator emissions. Nonetheless, source reduction and waste composition are also critical auxiliary factors in emission reduction.
en
dc.description.provenanceSubmitted by admin ntu (admin@lib.ntu.edu.tw) on 2024-08-08T16:31:31Z
No. of bitstreams: 0
en
dc.description.provenanceMade available in DSpace on 2024-08-08T16:31:32Z (GMT). No. of bitstreams: 0en
dc.description.tableofcontents致謝.......................................................................................I
摘要.....................................................................................III
Abstract ................................................................................. V
目次.................................................................................... VII
圖次......................................................................................IX
表次......................................................................................XI
第 1 章 緒論.............................................................................. 1
1.1 研究背景與動機......................................................................... 1
1.2 研究目的.............................................................................. 2
1.3 研究流程.............................................................................. 3
第 2 章 文獻回顧........................................................................... 4
2.1 政策與法規............................................................................ 4
2.1.1 空氣污染防制法........................................................................4
2.1.2 廢棄物與源頭減量政策..............................................................6
2.2 廢棄物組成特徵......................................................................... 8
2.3 焚化爐空氣污染排放.................................................................... 10
2.3.1 空氣污染物來源與形成機制....................................................10
2.3.2 焚化爐裝置與空氣污染防制設備............................................12
2.3.3 源頭減量政策影響焚化爐空污排放........................................15
2.4 機器學習研究案例...................................................................... 15
2.4.1 空污排放預測模型....................................................................16
2.4.2 廢棄物管理相關模型................................................................16
第 3 章 研究方法.......................................................................... 20
3.1 數據來源與預處理...................................................................... 20
3.1.1 焚化爐設計與營運參數據........................................................20
3.1.2 廢棄物量與垃圾組成數據........................................................20
3.1.3 焚化爐空氣污染物排放監測數據............................................21
3.2 時間序列分析.......................................................................... 26
3.2.1 季節性趨勢分解.......................................................................26
3.2.2 中斷時間序列分析....................................................................27
3.3 特徵工程............................................................................. 30
3.3.1 相關性分析..........................................................................30
3.3.2 顯著性分析..........................................................................30
3.3.3 方差膨脹因子.........................................................................32
3.4 機器學習模式模擬...................................................................... 32
3.4.1 數據預處理..........................................................................33
3.4.2 隨機森林迴歸演算法................................................................34
3.4.3 TPE 超參數優化......................................................................35
3.4.4 模型驗證............................................................................37
3.4.5 Shapley Additive Explanations (SHAP) 方法...........................38
第 4 章 結果與討論........................................................................ 39
4.1 時間序列分析.......................................................................... 39
4.1.1 季節性分析..........................................................................39
4.1.2 中斷時間序列分析....................................................................57
4.2 特徵工程............................................................................. 87
4.2.1 相關性與顯著性分析................................................................87
4.2.2 VIF 方差膨脹係數結果............................................................91
4.3 機器學習模擬.......................................................................... 93
4.3.1 模型驗證結果.........................................................................93
4.3.2 SHAP 結果...........................................................................97
第 5 章 結論與建議....................................................................... 100
5.1 結論................................................................................ 100
5.2 限制................................................................................ 101
5.3 建議................................................................................ 102
參考文獻............................................................................... 104
附錄.................................................................................... 112
-
dc.language.isozh_TW-
dc.subject焚化爐zh_TW
dc.subject源頭減量zh_TW
dc.subject中斷時間序列分析zh_TW
dc.subject機器學習zh_TW
dc.subject空氣污染排放zh_TW
dc.subjectIncineratoren
dc.subjectSource Reductionen
dc.subjectAir Pollution Emissionsen
dc.subjectInterrupted Time Series Analysisen
dc.subjectMachine Learningen
dc.title以政策檢驗與機器學習建模探討焚化爐減排因子zh_TW
dc.titleExploring Factors for Emission Reduction in Incinerators through Policy Examination and Machine Learning Model Establishmenten
dc.typeThesis-
dc.date.schoolyear112-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee江康鈺;蔡俊鴻zh_TW
dc.contributor.oralexamcommitteeKung-Yuh Chiang;Jiun-Horng Tsaien
dc.subject.keyword焚化爐,空氣污染排放,源頭減量,中斷時間序列分析,機器學習,zh_TW
dc.subject.keywordIncinerator,Air Pollution Emissions,Source Reduction,Interrupted Time Series Analysis,Machine Learning,en
dc.relation.page133-
dc.identifier.doi10.6342/NTU202403045-
dc.rights.note同意授權(限校園內公開)-
dc.date.accepted2024-08-05-
dc.contributor.author-college工學院-
dc.contributor.author-dept環境工程學研究所-
dc.date.embargo-lift2029-08-01-
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-112-2.pdf
  未授權公開取用
8.1 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved